
The Python Language
(Part 3)

Copyright © 2026 by
Robert M. Dondero, Ph.D.

Princeton University

1

Objectives

• We will cover:
– A subset of Python...
– That is appropriate for COS 333...
– Through example programs

2

Agenda

• Statements
• Throwing exceptions
• Modules
• Packages
• Object-oriented programming

3

Statements

• See euclidclient1.py

4

$ python euclidclient1.py
Enter the first integer: 8
Enter the second integer: 12
gcd: 4
lcm: 24
$

Statements

• See euclidclient1.py (cont.)
– Unpacking assignment statement

5

temp = i%j
i = j
j = temp

Traditional

i, j = j, i%j

Python
temp1 = j
temp2 = i%j
i = temp1
j = temp2

Verbose

x, y = 1, 2

Assignment statements
 var = expr
 var += expr
 var -= expr
 var *= expr
 var /= expr
 var //= expr
 var %= expr
 var **= expr
 var &= expr
 var |= expr
 var ^= expr
 var >>= expr
 var <<= expr

Statements

6

Unpacking assignment statement
 var1,var2,... = iterable

No-op statement
 pass

assert statement
 assert expr, message

Statements

7

Function call statement
 f(expr, name=expr, ...)

return statement
 return
 return expr

Statements

8

if statement
 if expr:
 statement(s)
 elif expr:
 statement(s)
 …
 else:
 statement(s)

 False, 0, None, '', "", [], (), and {}
 indicate logical FALSE
 Any other value indicates logical TRUE

Statements

9

while statement
 while expr:
 statement(s)

 False, 0, None, '', "", [], (), and {}
 indicate logical FALSE
 Any other value indicates logical TRUE

Statements

10

for statement
 for var in iterable:
 statement(s)

break statement
 break

continue statement
 continue

Statements

11

for i in range(0, 5):
 … i …
for i in range(5):
 … i …

try statement
 try:
 statement(s)
 except [ExceptionClass [as var]]:
 statement(s)

raise statement
 raise ExceptionClass(str)

Statements

12

Agenda

• Statements
• Throwing exceptions
• Modules
• Packages
• Object-oriented programming

13

Throwing Exceptions

• Recall euclidclient1.py

14

$ python euclidclient1.py
Enter the first integer: 0
Enter the second integer: 12
gcd: 12
lcm: 0
$ python euclidclient1.py
Enter the first integer: 0
Enter the second integer: 0
gcd: 0
Traceback (most recent call last):
 File "euclidclient1.py", line 53, in <module>
 main()
 File "euclidclient1.py", line 42, in main
 my_lcm = lcm(i, j)
 File "euclidclient1.py", line 26, in lcm
 return (i // gcd(i, j)) * j
ZeroDivisionError: integer division or modulo by zero
$

Throwing Exceptions

• See euclidclient2.py

15

$ python euclidclient2.py
Enter the first integer: 8
Enter the second integer: 12
gcd: 4
lcm: 24
$ python euclidclient2.py
Enter the first integer: 0
Enter the second integer: 12
gcd: 12
lcm(i,j) is undefined if i or j is 0
$ python euclidclient2.py
Enter the first integer: 0
Enter the second integer: 0
gcd(i,j) is undefined if i and j are 0
$

Throwing Exceptions

16

BaseException
 Exception
 ArithmeticError
 FloatingPointError
 OverflowError (legacy)
 ZeroDivisionError
 AssertionError
 AttributeError
 BufferError
 EOFError
 ImportError
 ModuleNotFoundError
 LookupError
 IndexError
 KeyError
 MemoryError
 NameError
 UnboundLocalError

Python
standard
exception
classes

Throwing Exceptions

17

BaseException (cont.)
 Exception (cont.)
 OSError
 BlockingIOError
 ChildProcessError
 ConnectionError
 BrokenPipeError
 ConnectionAbortedError
 ConnectionRefusedError
 ConnectionResetError
 FileExistsError
 FileNotFoundError
 InterruptedError
 IsADirectoryError
 NotADirectoryError
 PermissionError
 ProcessLookupError
 TimeoutError

Python
standard
exceptions
(cont.)

Throwing Exceptions

18

BaseException (cont.)
 Exception (cont.)
 ReferenceError
 RuntimeError
 NotImplementedError
 RecursionError
 StopIteration
 StopAsyncIteration
 SyntaxError
 IndentationError
 TabError
 SystemError
 TypeError
 ValueError
 UnicodeError
 UnicodeDecodeError
 UnicodeEncodeError
 UnicodeTranslateError

Python
standard
exceptions
(cont.)

Throwing Exceptions

19

BaseException (cont.)
 Exception (cont.)
 Warning
 BytesWarning
 DeprecationWarning
 FutureWarning
 ImportWarning
 PendingDeprecationWarning
 ResourceWarning
 RuntimeWarning
 SyntaxWarning
 UnicodeWarning
 UserWarning
 GeneratorExit
 KeyboardInterrupt
 SystemExit

Python
standard
exceptions
(cont.)

Agenda

• Statements
• Throwing exceptions
• Modules
• Packages
• Object-oriented programming

20

Modules

• Module
– A .py file that is designed to be included into

a client .py file

21

Modules

• Building and running

• Automatically compiles/interprets included
modules

22

$ python toplevelmodule.py

Modules

• See euclid.py, euclidclient3.py

23

$ python euclidclient3.py
Enter the first integer: 8
Enter the second integer: 12
gcd: 4
lcm: 24
$ python euclidclient3.py
Enter the first integer: 8
Enter the second integer: 0
gcd: 8
lcm(i,j) is undefined if i or j is 0
$ python euclidclient3.py
Enter the first integer: 0
Enter the second integer: 0
gcd(i,j) is undefined if i and j are 0
$

Agenda

• Statements
• Throwing exceptions
• Modules
• Packages
• Object-oriented programming

24

Packages

• Package
– A named group of modules (and other

packages)
• A module is stored in a file
• A package is stored in a directory

25

Packages

• See intmath/__init__.py
– Declares intmath as a package

• See intmath/euclid.py
– A module in the intmath package

26

Packages

• See euclidclient4.py

27

$ python euclidclient4.py
Enter the first integer: 8
Enter the second integer: 12
gcd: 4
lcm: 24
$ python euclidclient4.py
Enter the first integer: 8
Enter the second integer: 0
gcd: 8
lcm(i,j) is undefined if i or j is 0
$ python euclidclient4.py
Enter the first integer: 0
Enter the second integer: 0
gcd(i,j) is undefined if i and j are 0
$

Agenda

• Statements
• Throwing exceptions
• Modules
• Packages
• Object-oriented programming

28

Object-Oriented Programming

• See fractionprelim.py,
fractionprelimclient.py

29

$ python fractionprelimclient.py
Numerator 1: 1
Denominator 1: 2
Numerator 2: 3
Denominator 2: 4
frac1: 1/2
frac2: 3/4
frac1 does not equal frac2
frac1 is less than frac2
frac1 is less than or equal to frac2
-frac1: -1/2
frac1 + frac2: 5/4
frac1 - frac2: -1/4
frac1 * frac2: 3/8
frac1 / frac2: 2/3
$

Aside: Name Mangling

• Incidentally:
– Use of leading double underscores causes

name mangling
• Example: In Fraction, compiler turns __num into
_Fraction__num

30

Lecture Summary

• In this lecture we covered these aspects
of Python:
– Throwing exceptions
– Modules
– Packages
– Object-oriented programming

• See also:
– Appendix: Duck Typing

31

Appendix: Duck Typing

Duck Typing

• Observation:
– Python uses duck typing

33

“When I see a bird that walks like a
duck and swims like a duck and
quacks like a duck, I call that bird a
duck.”

-- James Whitcomb Riley

Duck Typing

• Example: Recall euclid.py
– i and j parameters of gcd() can reference

objects of any class, as long as they can be:
• Operands of ==
• Arguments to abs()
• Operands of !=
• Operands of %

34

Duck Typing

35

Language Object
references
(variables,
parameters,
fields) have
types?

Objects (as
they exist in
memory)
have types?

Language
classification

C yes no weakly
typed

Java yes yes strongly
typed

Python no yes dynamically
(duck) typed

Duck Typing

• Is duck typing good or bad (vs. strong
typing) ?

• See euclidstrong.py
– Which is better, euclid.py or euclidstrong.py?

36

Duck Typing

• Style 1: Don’t validate parameter types
– Validating parameter types is constraining

and slow
– So euclid.py is better

• Style 2: Validate parameter types
– Validating parameter types is safe
– So euclidstrong.py is better

• We’ll use Style 1

37

Duck Typing

• Commentary
– Small projects:

• Maybe need not validate parameter types
– Large projects:

• Maybe should validate parameter types

38

Duck Typing

• Commentary
– But if you feel the need to validate parameter

types, then why are you using Python?

39

