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Objectives

• We will cover:
– A subset of Python...
– That is appropriate for COS 333...
– Through example programs
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Agenda

• Statements
• Throwing exceptions
• Modules
• Packages
• Object-oriented programming
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Statements

• See euclidclient1.py
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$ python euclidclient1.py
Enter the first integer: 8
Enter the second integer: 12
gcd: 4
lcm: 24
$ 



Statements

• See euclidclient1.py (cont.)
– Unpacking assignment statement
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temp = i%j
i = j
j = temp

Traditional

i, j = j, i%j

Python
temp1 = j
temp2 = i%j
i = temp1
j = temp2

Verbose

x, y = 1, 2



Assignment statements
   var = expr
   var += expr
   var -= expr
   var *= expr
   var /= expr
   var //= expr
   var %= expr
   var **= expr 
   var &= expr
   var |= expr
   var ^= expr
   var >>= expr
   var <<= expr

Statements
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Unpacking assignment statement
   var1,var2,... = iterable

No-op statement
   pass

assert statement
   assert expr, message

Statements
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Function call statement
   f(expr, name=expr, ...)

return statement
   return
   return expr

Statements
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if statement
   if expr:
       statement(s)
   elif expr:
       statement(s)
   …
   else:
       statement(s)
      
      False, 0, None, '', "",  [], (), and {}
      indicate logical FALSE
      Any other value indicates logical TRUE

Statements
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while statement
   while expr:
      statement(s)
 
   False, 0, None, '', "",  [], (), and {}
       indicate logical FALSE
       Any other value indicates logical TRUE

Statements

10



for statement
   for var in iterable: 
      statement(s)

break statement
   break

continue statement
   continue

Statements
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for i in range(0, 5):
    … i …
for i in range(5):
    … i …



try statement
   try: 
       statement(s)
   except [ExceptionClass [as var]]: 
       statement(s)

raise statement
   raise ExceptionClass(str)

Statements
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Agenda

• Statements
• Throwing exceptions
• Modules
• Packages
• Object-oriented programming
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Throwing Exceptions

• Recall euclidclient1.py
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$ python euclidclient1.py
Enter the first integer: 0
Enter the second integer: 12
gcd: 12
lcm: 0
$ python euclidclient1.py
Enter the first integer: 0
Enter the second integer: 0
gcd: 0
Traceback (most recent call last):
  File "euclidclient1.py", line 53, in <module>
    main()
  File "euclidclient1.py", line 42, in main
    my_lcm = lcm(i, j)
  File "euclidclient1.py", line 26, in lcm
    return (i // gcd(i, j)) * j
ZeroDivisionError: integer division or modulo by zero
$ 



Throwing Exceptions

• See euclidclient2.py
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$ python euclidclient2.py
Enter the first integer: 8
Enter the second integer: 12
gcd: 4
lcm: 24
$ python euclidclient2.py
Enter the first integer: 0
Enter the second integer: 12
gcd: 12
lcm(i,j) is undefined if i or j is 0
$ python euclidclient2.py
Enter the first integer: 0
Enter the second integer: 0
gcd(i,j) is undefined if i and j are 0
$ 



Throwing Exceptions
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BaseException
   Exception
      ArithmeticError
         FloatingPointError
         OverflowError (legacy)
         ZeroDivisionError
      AssertionError
      AttributeError
      BufferError
      EOFError
      ImportError
         ModuleNotFoundError
      LookupError
         IndexError
         KeyError
      MemoryError
      NameError
         UnboundLocalError

Python
standard
exception
classes



Throwing Exceptions
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BaseException (cont.)
   Exception (cont.)
      OSError
         BlockingIOError
         ChildProcessError
         ConnectionError
            BrokenPipeError
            ConnectionAbortedError
            ConnectionRefusedError
            ConnectionResetError
         FileExistsError
         FileNotFoundError
         InterruptedError
         IsADirectoryError
         NotADirectoryError
         PermissionError
         ProcessLookupError
         TimeoutError

Python
standard
exceptions
(cont.)



Throwing Exceptions
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BaseException (cont.)
   Exception (cont.)
      ReferenceError
      RuntimeError
         NotImplementedError
         RecursionError
      StopIteration
      StopAsyncIteration
      SyntaxError
         IndentationError
            TabError
      SystemError
      TypeError
      ValueError
         UnicodeError
            UnicodeDecodeError
            UnicodeEncodeError
            UnicodeTranslateError

Python
standard
exceptions
(cont.)



Throwing Exceptions
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BaseException (cont.)
   Exception (cont.)
      Warning
         BytesWarning
         DeprecationWarning
         FutureWarning
         ImportWarning
         PendingDeprecationWarning
         ResourceWarning
         RuntimeWarning
         SyntaxWarning
         UnicodeWarning
         UserWarning
   GeneratorExit
   KeyboardInterrupt
   SystemExit

Python
standard
exceptions
(cont.)



Agenda

• Statements
• Throwing exceptions
• Modules
• Packages
• Object-oriented programming
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Modules

• Module
– A .py file that is designed to be included into 

a client .py file

21



Modules

• Building and running

• Automatically compiles/interprets included 
modules
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$ python toplevelmodule.py



Modules

• See euclid.py, euclidclient3.py
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$ python euclidclient3.py
Enter the first integer: 8
Enter the second integer: 12
gcd: 4
lcm: 24
$ python euclidclient3.py
Enter the first integer: 8
Enter the second integer: 0
gcd: 8
lcm(i,j) is undefined if i or j is 0
$ python euclidclient3.py
Enter the first integer: 0
Enter the second integer: 0
gcd(i,j) is undefined if i and j are 0
$ 



Agenda

• Statements
• Throwing exceptions
• Modules
• Packages
• Object-oriented programming
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Packages

• Package
– A named group of modules (and other 

packages)
• A module is stored in a file
• A package is stored in a directory
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Packages

• See intmath/__init__.py
– Declares intmath as a package

• See intmath/euclid.py
– A module in the intmath package
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Packages

• See euclidclient4.py
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$ python euclidclient4.py
Enter the first integer: 8
Enter the second integer: 12
gcd: 4
lcm: 24
$ python euclidclient4.py
Enter the first integer: 8
Enter the second integer: 0
gcd: 8
lcm(i,j) is undefined if i or j is 0
$ python euclidclient4.py
Enter the first integer: 0
Enter the second integer: 0
gcd(i,j) is undefined if i and j are 0
$ 



Agenda

• Statements
• Throwing exceptions
• Modules
• Packages
• Object-oriented programming
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Object-Oriented Programming

• See fractionprelim.py, 
fractionprelimclient.py
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$ python fractionprelimclient.py
Numerator 1: 1
Denominator 1: 2
Numerator 2: 3
Denominator 2: 4
frac1: 1/2
frac2: 3/4
frac1 does not equal frac2
frac1 is less than frac2
frac1 is less than or equal to frac2
-frac1: -1/2
frac1 + frac2: 5/4
frac1 - frac2: -1/4
frac1 * frac2: 3/8
frac1 / frac2: 2/3
$ 



Aside: Name Mangling 

• Incidentally:
– Use of leading double underscores causes 

name mangling
• Example:  In Fraction, compiler turns __num into 
_Fraction__num
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Lecture Summary

• In this lecture we covered these aspects 
of Python:
– Throwing exceptions
– Modules
– Packages
– Object-oriented programming

• See also:
– Appendix: Duck Typing
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Appendix: Duck Typing



Duck Typing

• Observation:
– Python uses duck typing
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“When I see a bird that walks like a 
duck and swims like a duck and 
quacks like a duck, I call that bird a 
duck.”

-- James Whitcomb Riley



Duck Typing

• Example: Recall euclid.py
– i and j parameters of gcd() can reference 

objects of any class, as long as they can be:
• Operands of ==
• Arguments to abs()
• Operands of !=
• Operands of %
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Duck Typing
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Language Object 
references 
(variables, 
parameters, 
fields) have 
types?

Objects (as 
they exist in 
memory) 
have types?

Language
classification

C yes no weakly
typed

Java yes yes strongly 
typed

Python no yes dynamically 
(duck) typed



Duck Typing

• Is duck typing good or bad (vs. strong 
typing) ?

• See euclidstrong.py
– Which is better, euclid.py or euclidstrong.py?
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Duck Typing

• Style 1: Don’t validate parameter types
– Validating parameter types is constraining 

and slow
– So euclid.py is better

• Style 2: Validate parameter types
– Validating parameter types is safe
– So euclidstrong.py is better

• We’ll use Style 1
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Duck Typing

• Commentary
– Small projects:

• Maybe need not validate parameter types
– Large projects: 

• Maybe should validate parameter types
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Duck Typing

• Commentary
– But if you feel the need to validate parameter 

types, then why are you using Python?
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