
The Python Language
(Part 1)

Copyright © 2026 by
Robert M. Dondero, Ph.D.

Princeton University

1

Objectives

• We will cover:
– A subset of Python...
– That is appropriate for COS 333...
– Through example programs

2

Agenda

• Overview
• Simple programs
• Building and running
• Functions
• Standard library

3

Overview

4

Guido
Van Rossum

Overview

• Characteristics:
– Dynamically typed
– Rich standard library
– Expressive

5

“Python is the
most powerful
language you
can still read.”

-- Paul Dubois

Overview

• Why study Python?
– It’s elegant
– It’s popular
– It can illustrate much of the course’s material
– You are new to it?

• We’ll use Python 3.12

6

Agenda

• Overview
• Simple programs
• Building and running
• Functions
• Standard library

7

Simple Programs

• See hello1.py

8

$ python hello1.py
hello, world
$

Simple Programs

• See hello2.py

9

$ python hello2.py
hello, world
$

Agenda

• Overview
• Simple programs
• Building and running
• Functions
• Standard library

10

Building and Running

• Initially…
– Perform the instructions in the A COS 333

Computing Environment document

• Then…
– Activate your cos333 virtual environment

11

$ activate333

Building and Running

12

compile

hello.py

interpret

__pycache__/
 hello.cpython-312.pyc

output

python
 –m py_compile hello.py

python
 __pycache__/
 hello.cpython-312.pyc

python hello.py

(main module’s .pyc
file is stored in a temp
directory)

Building and Running

13

Procedure 1 (Mac/Linux/Windows):

$ python hello.py

Procedure 2 (Mac/Linux):

$ chmod 700 hello.py
$./hello.py

Procedure 3 (Windows):

C:\>hello.py

Building and Running

• Finally…
– Deactivate your cos333 virtual environment

14

$ deactivate

Agenda

• Overview
• Simple programs
• Building and running
• Functions
• Standard library

15

Functions

• See sub.py

16

$ python sub.py
3
5
3
$

Agenda

• Overview
• Simple programs
• Building and running
• Functions
• Standard library

17

Standard Library

• See squareroot1.py

18

$ python squareroot1.py
1.4142135623730951
$

Standard Library

• See squareroot2.py

19

$ python squareroot2.py
1.4142135623730951
$

Lecture Summary

• In this lecture we covered these aspects
of Python:
– Overview
– Simple programs
– Building and running
– Functions
– Standard library

• See also:
– Appendix: Interactive Python

20

Appendix:
Interactive Python

21

Interactive Python

22

$ python
Python 3.12.3 (main, Apr 10 2024, 05:33:47) [GCC
13.2.0] on linux
Type "help", "copyright", "credits" or "license" for
more information.
>>> print(1 + 2)
3
>>> 1 + 2
3
>>> quit()
$

Interactive Python

23

Interactive Python is valuable for learning

$ python
Python 3.12.3 (main, Apr 10 2024, 05:33:47) [GCC
13.2.0] on linux
Type "help", "copyright", "credits" or "license" for
more information.
>>> import math
>>> math.sqrt(2)
1.4142135623730951
>>> quit()
$

Interactive Python

24

Interactive Python is valuable for learning

$ python
Python 3.12.3 (main, Apr 10 2024, 05:33:47) [GCC
13.2.0] on linux
Type "help", "copyright", "credits" or "license" for
more information.
>>> from math import sqrt
>>> sqrt(2)
1.4142135623730951
>>> quit()
$

Interactive Python

25

Interactive Python is valuable for testing

$ python
Python 3.12.3 (main, Apr 10 2024, 05:33:47) [GCC
13.2.0] on linux
Type "help", "copyright", "credits" or "license" for
more information.
>>> import hello1
hello, world
>>> quit()
$

Interactive Python

26

Interactive Python is valuable for testing

$ python
Python 3.12.3 (main, Apr 10 2024, 05:33:47) [GCC
13.2.0] on linux
Type "help", "copyright", "credits" or "license" for
more information.
>>> import hello2
>>> hello2.main()
hello, world
>>> hello2.main()
hello, world
>>> quit()
$

Interactive Python

27

Interactive Python is valuable for testing

$ python
Python 3.12.3 (main, Apr 10 2024, 05:33:47) [GCC
13.2.0] on linux
Type "help", "copyright", "credits" or "license" for
more information.
>>> from hello2 import main
>>> main()
hello, world
>>> main()
hello, world
>>> quit()
$

