COS320: Compiling Techniques

Zak Kincaid

January 29, 2026

Compiler phases (simplified)

Lexing
A\ 4

Parsing

i
Y

Abstract syntax tree

. (Translation

Intermediate representation) Optimization

. (Code generation

HWT1: assembly language & below

Assembly (.s) Assembly (.s) Assembly (.s)

l lAssembler l

Machine language (.0) Machine language (.0) Machine language (.0)

Linker

Executable (a.out)

l Loader

Execution

® Assember (as): translate assembly to object file (.0)

® Re-arrange assembly into text and data segments

® Encode instructions

® Resolve symbolic references to (absolute or relative) memory addresses
® Construct relocation table and symbol table

® Linker (1d): combine object files into an executable
e Concatenate data and text sections
® (Partial) symbol resolution: replace symbolic references with addresses
® Relocation: fix references to relocated addresses
¢ Loader (exec family): load executable into memory and transfer control
® Dynamic linking

Today: x86Lite

X86

® X86 is very complicated
® 8-,16-, 32-, 64-bit values, floats, ...
® Hundreds or thousands of instructions (depending on how they're counted)
® Variable-length encoding for instructions (1-17 bytes)

X86

® X86 is very complicated
® 8-,16-, 32-, 64-bit values, floats, ...
® Hundreds or thousands of instructions (depending on how they're counted)
® Variable-length encoding for instructions (1-17 bytes)
e X86 vs ARM
® CISCvsRISC
® Variable-length encoding vs all instructions are 32 bits
® Remainder of lecture: purple denotes comparison with ARM

X86

® X86 is very complicated
® 8-,16-, 32-, 64-bit values, floats, ...
® Hundreds or thousands of instructions (depending on how they're counted)
® Variable-length encoding for instructions (1-17 bytes)
e X86 vs ARM
® CISCvsRISC
® Variable-length encoding vs all instructions are 32 bits
® Remainder of lecture: purple denotes comparison with ARM
e X86lite is a simple subset, still suitable as a compilation target
® Values are 64-bit integers
¢ About 20 instructions
® Fixed-length encoding for instructions

X86lite machine state

* Memory, consisting of 2% bytes

® Quadword at addr is stored little-endian in Mem[addr] ... Mem[addr+7]

(least significant byte least address)
0807 060504030201

01

ﬁ

02

03

04

05

06

o7

08

4

3

low address

high address

e Memory, consisting of

X86lite machine state

264 bytes

® Quadword at addr is stored little-endian in Mem[addr] ... Mem[addr+7]

(least significant byte least address)

* 16 64-bit registers

rax: general purpose accumulator

rbx: base pointer, pointer to data

rcx: counter register for strings & loops
rdx: data register for I/O

rsi: pointer register, string source register

rdi: pointer register, string destination register
rbp: base pointer, points to the stack frame
rsp: stack pointer, points to the top of the stack

re8-ris: general-purpose registers

X86lite machine state

* Memory, consisting of 2°4 bytes
® Quadword at addr is stored little-endian in Mem[addr] ... Mem[addr+7]
(least significant byte least address)

* 16 64-bit registers

® rax: general purpose accumulator

® rdi: pointer register, string destination register
® rbx: base pointer, pointer to data

® rbp: base pointer, points to the stack frame
® rcx: counter register for strings & loops

® rsp: stack pointer, points to the top of the stack
® rdx: data register for /0O

® r@8-r15: general-purpose registers
® rsi: pointer register, string source register

* 3 flags (bits)
® OF: (“overflow”) set when result is too big/small to fit in 64 bits
® SF:(“sign”) set to the sign of the result (O=positive, 1=negative)
® 7F:(“zero’) set when the result is O

X86lite machine state
Memory, consisting of 264 bytes
® Quadword at addr is stored little-endian in Mem[addr] ... Mem[addr+7]
(least significant byte least address)
16 64-bit registers

® rax: general purpose accumulator

® rdi: pointer register, string destination register
® rbx: base pointer, pointer to data

® rbp: base pointer, points to the stack frame
® rcx: counter register for strings & loops

® rsp: stack pointer, points to the top of the stack
® rdx: data register for /0O

® r@8-r15: general-purpose registers
® rsi: pointer register, string source register

3 flags (bits)
® OF: (“overflow”) set when result is too big/small to fit in 64 bits
® SF:(“sign”) set to the sign of the result (O=positive, 1=negative)
® 7F:(“zero’) set when the result is O

rip: “virtual” register, points to current instruction
® ripis manipulated only by jumps and return

Anatomy of an x86lite program

.text
(factorial
cmpq Y%rdi, $0
je .L4
movq $1,%rax
movq $0, %rdz
L3
imulq %rdz, Yorax
addq $1, %rdz
cmpq Yordx, Yordi
jne .L3
retq
Ly
movq $1, %rax
\ retq
.data
.str
Data segment .asciz ”FaCtOrialuiSu%ld\n”
.global__int:
.quad 42

Text segment <

Anatomy of an x86lite program

.text
(factorial:

cmpq Y%rdi, $0
i je L4

/ movq $1, %raz

y movq $0,%rdx
L3

\ imulq Y%rdz, Yorax

addq $1, %rdz
1 cmpq Yordx, Yordi
jne .L3

retq

v . L4

{ movq $1, %rax
retq

.data

.str

.asciz "Factorial s, %ld\n"
.global__int:

.quad 42

Blocks

Anatomy of an x86lite program

.text
factorial:
cmpq Y%rdi, $0
je .L4
movq $1,%rax
movq $0, %rdz
Labels 9
imulq %rdz, Yorax
addq $1, %rdz
cmpq Yordx, Yordi
jne .L3
retq
Ly
movq $1, %rax
retq
.data
.str
.asciz "Factorial s, %ld\n"
.global__int:
.quad 42

X86Lite instructions

* Instruction = opcode + operand list

® AT&T syntax: movq $42, %rax stores the number 42 in rax
® ¢ prefix denotes immediate (constant)
* % prefix denotes register
® g suffix denote quadword

® Intel notation: mov rax 42
® Swap source & destination
® No prefixes / suffixes

X86Lite instructions

* Instruction = opcode + operand list
® AT&T syntax: movq $42, %rax stores the number 42 in rax

® ¢ prefix denotes immediate (constant)
* % prefix denotes register
® g suffix denote quadword

® |ntel notation: mov rax 42
® Swap source & destination
® No prefixes / suffixes
¢ Opcodes (full specification on course webpage)
® Arithmetic: addg, imulg, subg, negqg, incq, decq
® adds x0, x0, 1~ addq $1, %rax
Logic: andq, org, notq, xorq
Bit-manipulation: sarq, shlg, shrg, setb
Data-movement: leaq, movg, pushq, popq
Control flow: cmpgq, jmp, callq, retg, j CC

X86Lite Operands

Imm (“immediate”) 64-bit literal signed integer
® 42, 0x3de7
Lbl (“label”) symbolic machine address (to be resolved by assembler/linker/loader)
® _factorial, .L2
Reg (“register”)
® %rax, %ro4
Ind (“indirect”) memory address
® (%rax), -8(%rbp)

X86 Addressing

* Three components of an indirect address: Disp(Base, Index, Scale)

® Base: a machine address stored in a register
® Index & Scale: a variable offset from the base (not in x86lite)
® Disp: displacement/offset (optional)

* Disp(Base, Index, Scale) ~ [Base, Disp, Index Isl 25]

e Refers to the location Mem[Base + Index * Scale + Disp]

® movq (%rsp), %rax retrieves Mem[rsp] and stores itin rax
® movq -8(%rsp), %rax retrieves Mem[rsp - 8] and storesitin rax
® movq %rax, (%rsp) storesvalue of raxin Mem[rspl.

Control flow

* Three condition flags:

® OF: (“overflow”) set when result is to big/small to fit in 64 bits
SF: (“sign”) set to the sign of the result (O=positive,1=negative)
ZF: (“zero’) set when the resultis O

OF~V,SF~N,ZF~Z

Control flow

* Three condition flags:
® OF: (“overflow”) set when result is to big/small to fit in 64 bits
® SF:(“sign”’) set to the sign of the result (O=positive,1=negative)
® 7F: (“zero’) set when the result is O
® OF~V,SF~N,ZF~Z

* Instruction cmpg SRC1, SRC2: compute SRC2-SRC1 and set flags

Control flow

* Three condition flags:

® OF: (“overflow”) set when result is to big/small to fit in 64 bits
® SF:(“sign”’) set to the sign of the result (O=positive,1=negative)
® 7F: (“zero’) set when the result is O
® OF~V,SF~N,ZF~Z
* Instruction cmpg SRC1, SRC2: compute SRC2-SRC1 and set flags
* Instruction j CC SRC: jump if to SRC if condition code CC is set
® e (“equality”): ZF set
ne (“inequality”): ZF clear
g (“greater than”): SF clear and ZF clear
1 (“less than”): SF not equal to OF

ge (“greater than or equal”): SF clear
le (“less than or equal”): SF not equal to OF or ZF set

Conventions

Memory layout

0x00000000

Code & Data

Heap

rsp

Grows up
(lower addresses)

OXFFFFFFFT

Stack operations

%rsp: pointer to the top of the stack

pushqg SRC
rsp :=rsp - 8

Mem[rsp] := SRC

popq DEST
DEST := Mem[rsp]
rsp := rsp + 8
callg SRC
pushg rip
rip := SRC
retq

popg rip

Calling conventions

* Implementation of function calls is up to the compiler
® How are parameters passed?
® How is return value passed back?
® How is the return address stored?
® Which registers is a function allowed to change?
® caller save: freely usable by called code
¢ callee save: must be restored by called code

Calling conventions

* Implementation of function calls is up to the compiler
® How are parameters passed?
How is return value passed back?

[]
® How is the return address stored?
® Which registers is a function allowed to change?

® caller save: freely usable by called code
¢ callee save: must be restored by called code
* A calling convention is a contract that specifies the structure of the stack and the interface
between function caller and callee

Calling conventions

* Implementation of function calls is up to the compiler
® How are parameters passed?
How is return value passed back?

[]
® How is the return address stored?
® Which registers is a function allowed to change?

® caller save: freely usable by called code
¢ callee save: must be restored by called code
* A calling convention is a contract that specifies the structure of the stack and the interface
between function caller and callee

¢ Useful to standardize on a single convention across the whole system

® x86-64 AMD System V ABI on 64-bit x86
® AARCH64 System V ABI on 64-bit ARM
® cdecl (“C declaration”) on 32-bit x86

The call stack

rsp-»
locals
4
¢ Function calls are implemented using a stack of
activation records (aka stack frames) rbp | frame pointer
e Each activation record contains: returiaddress
® Frame pointer (start address of previous frame)
o Local variables actual parameters
* Except for current frame, also contains: 4
® Actual parameters (arguments) locals
® Return address
frame pointer \

Caller protocol

Suppose we call function with parameters v, ..., v,
@ Save caller-save registers, if needed
@ Store first six actual parameters v, ..., vg in rdi, rsi, rdx, rcx, ros, ro9

¢ nth actual parameter is located at Mem[rbp + 8%(n-5)]

O Use callq to jump to the code for called function (& push return address)

Caller protocol

Suppose we call function with parameters v, ..., v,
@ Save caller-save registers, if needed
@ Store first six actual parameters v, ..., vg in rdi, rsi, rdx, rcx, ros, ro9

¢ nth actual parameter is located at Mem[rbp + 8%(n-5)]
O Use callq to jump to the code for called function (& push return address)
After call:
@ De-allocate pushed actual parameters
@ Restore caller-save registers, if needed

Callee protocol

On entry:
© Save old frame pointer (rbp is callee-save)
@ Set rbp to point to current frame
© Allocate local storage

Callee protocol

On entry:
© Save old frame pointer (rbp is callee-save)
@ Set rbp to point to current frame
© Allocate local storage
On exit:
© Store return value in rax
@ Deallocate local storage
© Restore previous rbp

Exercise: how do

variables map to registers?

factorial:
cmpq Yrdi, 30
jle L4

long factoriallong n) {
long
long result =1;
for (i=1; i< m; 3++) {
result x= 1
3

return result;

movq 31, %rax

movq $1, %rdz
.L3:

imulq %rdz, Yorax

addq $1, %rdz

cmpq Yordx, Yords
jne L3
retq

L

movq 31, %rax
retq

x86-64 System V AMD 64 ABI

Callee-save: rbp, rbx, r12-r15
Caller-save: all others

Store return value in rax (second return value in rdx)
Parameters:

® Parameters 1-6 in rdi, rsi, rdx, rcx, ro8, ro9

® Parameters 7-nin 16 (rbp), 24(rbp), ... (8*(n-5)) (rbp)
rsp is 16-byte aligned immediately before callq
128 byte “red zone” below rsp

* Not modified by signal / interrupt handlers
® Useful for storing local data of leaf functions

HWI1: X86lite

* In HW1, you will implement an x86 (machine code) simulator, assembler, and loader.
® Get started!

* Next lecture: Intermediate representations & code generation

