
COS320: Compiling Techniques

Zak Kincaid

January 29, 2026

Compiler phases (simplified)

Source text

Token stream

Abstract syntax tree

Intermediate representation

Assembly

Lexing

Parsing

Translation

Code generation

Optimization

HW1: assembly language & below

Assembly (.s) Assembly (.s)Assembly (.s)

Machine language (.o) Machine language (.o)Machine language (.o)

Linker

Executable (a.out)

Execution

Assembler

Loader

• Assember (as): translate assembly to object file (.o)
• Re-arrange assembly into text and data segments
• Encode instructions
• Resolve symbolic references to (absolute or relative) memory addresses
• Construct relocation table and symbol table

• Linker (ld): combine object files into an executable
• Concatenate data and text sections
• (Partial) symbol resolution: replace symbolic references with addresses
• Relocation: fix references to relocated addresses

• Loader (exec family): load executable into memory and transfer control
• Dynamic linking

Today: x86Lite

X86

• X86 is very complicated
• 8-, 16-, 32-, 64-bit values, floats, ...
• Hundreds or thousands of instructions (depending on how they’re counted)
• Variable-length encoding for instructions (1-17 bytes)

• X86 vs ARM
• CISC vs RISC
• Variable-length encoding vs all instructions are 32 bits
• Remainder of lecture: purple denotes comparison with ARM

• X86lite is a simple subset, still suitable as a compilation target
• Values are 64-bit integers
• About 20 instructions
• Fixed-length encoding for instructions

X86

• X86 is very complicated
• 8-, 16-, 32-, 64-bit values, floats, ...
• Hundreds or thousands of instructions (depending on how they’re counted)
• Variable-length encoding for instructions (1-17 bytes)

• X86 vs ARM
• CISC vs RISC
• Variable-length encoding vs all instructions are 32 bits
• Remainder of lecture: purple denotes comparison with ARM

• X86lite is a simple subset, still suitable as a compilation target
• Values are 64-bit integers
• About 20 instructions
• Fixed-length encoding for instructions

X86

• X86 is very complicated
• 8-, 16-, 32-, 64-bit values, floats, ...
• Hundreds or thousands of instructions (depending on how they’re counted)
• Variable-length encoding for instructions (1-17 bytes)

• X86 vs ARM
• CISC vs RISC
• Variable-length encoding vs all instructions are 32 bits
• Remainder of lecture: purple denotes comparison with ARM

• X86lite is a simple subset, still suitable as a compilation target
• Values are 64-bit integers
• About 20 instructions
• Fixed-length encoding for instructions

X86lite machine state
• Memory, consisting of 264 bytes

• Quadword at addr is stored little-endian in Mem[addr] ... Mem[addr+7]
(least significant byte least address)

0102030405060708

01

02

03

04

05

06

07

08 high address

low address

• 16 64-bit registers
• rax: general purpose accumulator

• rbx: base pointer, pointer to data

• rcx: counter register for strings & loops

• rdx: data register for I/O

• rsi: pointer register, string source register

• rdi: pointer register, string destination register

• rbp: base pointer, points to the stack frame

• rsp: stack pointer, points to the top of the stack

• r08-r15: general-purpose registers

• 3 flags (bits)
• OF: (“overflow”) set when result is too big/small to fit in 64 bits
• SF: (“sign”) set to the sign of the result (0=positive, 1=negative)
• ZF: (“zero”) set when the result is 0

• rip: “virtual” register, points to current instruction
• rip is manipulated only by jumps and return

X86lite machine state

• Memory, consisting of 264 bytes
• Quadword at addr is stored little-endian in Mem[addr] ... Mem[addr+7]

(least significant byte least address)
• 16 64-bit registers

• rax: general purpose accumulator

• rbx: base pointer, pointer to data

• rcx: counter register for strings & loops

• rdx: data register for I/O

• rsi: pointer register, string source register

• rdi: pointer register, string destination register

• rbp: base pointer, points to the stack frame

• rsp: stack pointer, points to the top of the stack

• r08-r15: general-purpose registers

• 3 flags (bits)
• OF: (“overflow”) set when result is too big/small to fit in 64 bits
• SF: (“sign”) set to the sign of the result (0=positive, 1=negative)
• ZF: (“zero”) set when the result is 0

• rip: “virtual” register, points to current instruction
• rip is manipulated only by jumps and return

X86lite machine state

• Memory, consisting of 264 bytes
• Quadword at addr is stored little-endian in Mem[addr] ... Mem[addr+7]

(least significant byte least address)
• 16 64-bit registers

• rax: general purpose accumulator

• rbx: base pointer, pointer to data

• rcx: counter register for strings & loops

• rdx: data register for I/O

• rsi: pointer register, string source register

• rdi: pointer register, string destination register

• rbp: base pointer, points to the stack frame

• rsp: stack pointer, points to the top of the stack

• r08-r15: general-purpose registers

• 3 flags (bits)
• OF: (“overflow”) set when result is too big/small to fit in 64 bits
• SF: (“sign”) set to the sign of the result (0=positive, 1=negative)
• ZF: (“zero”) set when the result is 0

• rip: “virtual” register, points to current instruction
• rip is manipulated only by jumps and return

X86lite machine state

• Memory, consisting of 264 bytes
• Quadword at addr is stored little-endian in Mem[addr] ... Mem[addr+7]

(least significant byte least address)
• 16 64-bit registers

• rax: general purpose accumulator

• rbx: base pointer, pointer to data

• rcx: counter register for strings & loops

• rdx: data register for I/O

• rsi: pointer register, string source register

• rdi: pointer register, string destination register

• rbp: base pointer, points to the stack frame

• rsp: stack pointer, points to the top of the stack

• r08-r15: general-purpose registers

• 3 flags (bits)
• OF: (“overflow”) set when result is too big/small to fit in 64 bits
• SF: (“sign”) set to the sign of the result (0=positive, 1=negative)
• ZF: (“zero”) set when the result is 0

• rip: “virtual” register, points to current instruction
• rip is manipulated only by jumps and return

Anatomy of an x86lite program

.text
factorial:

cmpq %rdi, $0
je .L4
movq $1, %rax
movq $0, %rdx

.L3:
imulq %rdx, %rax
addq $1, %rdx
cmpq %rdx, %rdi
jne .L3
retq

.L4:
movq $1, %rax
retq
.data

.str:
.asciz ”Factorial␣is␣%ld\n”

.global_int:
.quad 42

Text segment

Data segment

BlocksLabels

Anatomy of an x86lite program

.text
factorial:

cmpq %rdi, $0
je .L4
movq $1, %rax
movq $0, %rdx

.L3:
imulq %rdx, %rax
addq $1, %rdx
cmpq %rdx, %rdi
jne .L3
retq

.L4:
movq $1, %rax
retq
.data

.str:
.asciz ”Factorial␣is␣%ld\n”

.global_int:
.quad 42

Text segment

Data segment

Blocks

Labels

Anatomy of an x86lite program

.text
factorial:

cmpq %rdi, $0
je .L4
movq $1, %rax
movq $0, %rdx

.L3:
imulq %rdx, %rax
addq $1, %rdx
cmpq %rdx, %rdi
jne .L3
retq

.L4:
movq $1, %rax
retq
.data

.str:
.asciz ”Factorial␣is␣%ld\n”

.global_int:
.quad 42

Text segment

Data segment

Blocks

Labels

X86Lite instructions

• Instruction = opcode + operand list
• AT&T syntax: movq $42, %rax stores the number 42 in rax

• $ prefix denotes immediate (constant)
• % prefix denotes register
• q suffix denote quadword

• Intel notation: mov rax 42
• Swap source & destination
• No prefixes / suffixes

• Opcodes (full specification on course webpage)
• Arithmetic: addq, imulq, subq, negq, incq, decq

• adds x0, x0, 1∼ addq $1, %rax

• Logic: andq, orq, notq, xorq
• Bit-manipulation: sarq, shlq, shrq, setb
• Data-movement: leaq, movq, pushq, popq
• Control flow: cmpq, jmp, callq, retq, j CC

X86Lite instructions

• Instruction = opcode + operand list
• AT&T syntax: movq $42, %rax stores the number 42 in rax

• $ prefix denotes immediate (constant)
• % prefix denotes register
• q suffix denote quadword

• Intel notation: mov rax 42
• Swap source & destination
• No prefixes / suffixes

• Opcodes (full specification on course webpage)
• Arithmetic: addq, imulq, subq, negq, incq, decq

• adds x0, x0, 1∼ addq $1, %rax

• Logic: andq, orq, notq, xorq
• Bit-manipulation: sarq, shlq, shrq, setb
• Data-movement: leaq, movq, pushq, popq
• Control flow: cmpq, jmp, callq, retq, j CC

X86Lite Operands

• Imm (“immediate”) 64-bit literal signed integer
• 42, 0x3de7

• Lbl (“label”) symbolic machine address (to be resolved by assembler/linker/loader)
• _factorial, .L2

• Reg (“register”)
• %rax, %r04

• Ind (“indirect”) memory address
• (%rax), -8(%rbp)

X86 Addressing

• Three components of an indirect address: Disp(Base, Index, Scale)
• Base: a machine address stored in a register
• Index & Scale: a variable offset from the base (not in x86lite)
• Disp: displacement/offset (optional)

• Disp(Base, Index, Scale) ∼ [Base, Disp, Index lsl 2Scale]
• Refers to the location Mem[Base + Index * Scale + Disp]

• movq (%rsp), %rax retrieves Mem[rsp] and stores it in rax
• movq -8(%rsp), %rax retrieves Mem[rsp - 8] and stores it in rax
• movq %rax, (%rsp) stores value of rax in Mem[rsp].

Control flow

• Three condition flags:
• OF: (“overflow”) set when result is to big/small to fit in 64 bits
• SF: (“sign”) set to the sign of the result (0=positive,1=negative)
• ZF: (“zero”) set when the result is 0
• OF ∼ V, SF ∼ N , ZF ∼ Z

• Instruction cmpq SRC1, SRC2: compute SRC2-SRC1 and set flags
• Instruction j CC SRC: jump if to SRC if condition code CC is set

• e (“equality”): ZF set
• ne (“inequality”): ZF clear
• g (“greater than”): SF clear and ZF clear
• l (“less than”): SF not equal to OF
• ge (“greater than or equal”): SF clear
• le (“less than or equal”): SF not equal to OF or ZF set

Control flow

• Three condition flags:
• OF: (“overflow”) set when result is to big/small to fit in 64 bits
• SF: (“sign”) set to the sign of the result (0=positive,1=negative)
• ZF: (“zero”) set when the result is 0
• OF ∼ V, SF ∼ N , ZF ∼ Z

• Instruction cmpq SRC1, SRC2: compute SRC2-SRC1 and set flags

• Instruction j CC SRC: jump if to SRC if condition code CC is set
• e (“equality”): ZF set
• ne (“inequality”): ZF clear
• g (“greater than”): SF clear and ZF clear
• l (“less than”): SF not equal to OF
• ge (“greater than or equal”): SF clear
• le (“less than or equal”): SF not equal to OF or ZF set

Control flow

• Three condition flags:
• OF: (“overflow”) set when result is to big/small to fit in 64 bits
• SF: (“sign”) set to the sign of the result (0=positive,1=negative)
• ZF: (“zero”) set when the result is 0
• OF ∼ V, SF ∼ N , ZF ∼ Z

• Instruction cmpq SRC1, SRC2: compute SRC2-SRC1 and set flags
• Instruction j CC SRC: jump if to SRC if condition code CC is set

• e (“equality”): ZF set
• ne (“inequality”): ZF clear
• g (“greater than”): SF clear and ZF clear
• l (“less than”): SF not equal to OF
• ge (“greater than or equal”): SF clear
• le (“less than or equal”): SF not equal to OF or ZF set

Conventions

Memory layout

Code & Data

Stack

Heap

0x00000000

0xffffffff

rsp

Grows up
(lower addresses)

Stack operations

• %rsp: pointer to the top of the stack
• pushq SRC

rsp := rsp - 8
Mem[rsp] := SRC

• popq DEST
DEST := Mem[rsp]
rsp := rsp + 8

• callq SRC
pushq rip
rip := SRC

• retq
popq rip

Calling conventions

• Implementation of function calls is up to the compiler
• How are parameters passed?
• How is return value passed back?
• How is the return address stored?
• Which registers is a function allowed to change?

• caller save: freely usable by called code
• callee save: must be restored by called code

• A calling convention is a contract that specifies the structure of the stack and the interface
between function caller and callee

• Useful to standardize on a single convention across the whole system
• x86-64 AMD System V ABI on 64-bit x86
• AARCH64 System V ABI on 64-bit ARM
• cdecl (“C declaration”) on 32-bit x86

Calling conventions

• Implementation of function calls is up to the compiler
• How are parameters passed?
• How is return value passed back?
• How is the return address stored?
• Which registers is a function allowed to change?

• caller save: freely usable by called code
• callee save: must be restored by called code

• A calling convention is a contract that specifies the structure of the stack and the interface
between function caller and callee

• Useful to standardize on a single convention across the whole system
• x86-64 AMD System V ABI on 64-bit x86
• AARCH64 System V ABI on 64-bit ARM
• cdecl (“C declaration”) on 32-bit x86

Calling conventions

• Implementation of function calls is up to the compiler
• How are parameters passed?
• How is return value passed back?
• How is the return address stored?
• Which registers is a function allowed to change?

• caller save: freely usable by called code
• callee save: must be restored by called code

• A calling convention is a contract that specifies the structure of the stack and the interface
between function caller and callee

• Useful to standardize on a single convention across the whole system
• x86-64 AMD System V ABI on 64-bit x86
• AARCH64 System V ABI on 64-bit ARM
• cdecl (“C declaration”) on 32-bit x86

The call stack

• Function calls are implemented using a stack of
activation records (aka stack frames)

• Each activation record contains:
• Frame pointer (start address of previous frame)
• Local variables

• Except for current frame, also contains:
• Actual parameters (arguments)
• Return address

...

rsp

rbp
frame pointer

frame pointer

return address

actual parameters

locals

locals

Caller protocol

Suppose we call function with parameters v1, ..., vn

1 Save caller-save registers, if needed
2 Store first six actual parameters v1, ..., v6 in rdi, rsi, rdx, rcx, r08, r09
3 Push vn,...,v7

• nth actual parameter is located at Mem[rbp + 8*(n-5)]

4 Use callq to jump to the code for called function (& push return address)

After call:
1 De-allocate pushed actual parameters
2 Restore caller-save registers, if needed

Caller protocol

Suppose we call function with parameters v1, ..., vn

1 Save caller-save registers, if needed
2 Store first six actual parameters v1, ..., v6 in rdi, rsi, rdx, rcx, r08, r09
3 Push vn,...,v7

• nth actual parameter is located at Mem[rbp + 8*(n-5)]

4 Use callq to jump to the code for called function (& push return address)
After call:

1 De-allocate pushed actual parameters
2 Restore caller-save registers, if needed

Callee protocol

On entry:
1 Save old frame pointer (rbp is callee-save)
2 Set rbp to point to current frame
3 Allocate local storage

On exit:
1 Store return value in rax

2 Deallocate local storage
3 Restore previous rbp

Callee protocol

On entry:
1 Save old frame pointer (rbp is callee-save)
2 Set rbp to point to current frame
3 Allocate local storage

On exit:
1 Store return value in rax

2 Deallocate local storage
3 Restore previous rbp

Exercise: how do variables map to registers?

factorial:
cmpq %rdi, $0
jle .L4
movq $1, %rax
movq $1, %rdx

.L3:
imulq %rdx, %rax
addq $1, %rdx
cmpq %rdx, %rdi
jne .L3
retq

.L4:
movq $1, %rax
retq

long factorial(long n) {
long i;
long result = 1;
for (i = 1; i < n; i++) {
result *= i;

}
return result;

}

x86-64 System V AMD 64 ABI

• Callee-save: rbp, rbx, r12-r15
• Caller-save: all others
• Store return value in rax (second return value in rdx)
• Parameters:

• Parameters 1-6 in rdi, rsi, rdx, rcx, r08, r09
• Parameters 7-n in 16(rbp), 24(rbp), ... (8*(n-5))(rbp)

• rsp is 16-byte aligned immediately before callq
• 128 byte “red zone” below rsp

• Not modified by signal / interrupt handlers
• Useful for storing local data of leaf functions

HW1: X86lite

• In HW1, you will implement an x86 (machine code) simulator, assembler, and loader.
• Get started!

• Next lecture: Intermediate representations & code generation

