COS320: Compiling Techniques

Zak Kincaid

January 29, 2026



Logistics

* HW3 due today

* HW4 released today, due April 11th. You will implement a typechecker and translator for
an extension of Oat.



Oat v2

¢ Specified by a (fairly large) type system
® ~20 judgements, ~80 inference rules
® |nvest some time in making sure you understand how to read them
® Adds several features to the Oat language:
® Memory safety
® nullable and non-null references. Type system enforces no null pointer dereferences.
® Run-time array bounds checking (like Java, OCaml)
® Mutable record types
® Subtyping
® ref <: ref?: non-null references are a subtype of nullable references
® Record subtyping: width but not depth (why?)



Compiling with Types



* Intrinsic view: an ill-typed program is not a program at all
e Compiler translates programs in the source language to programs in the target language
® Well-typed source programs translate to well-typed target programs



* Intrinsic view: an ill-typed program is not a program at all
e Compiler translates programs in the source language to programs in the target language

® Well-typed source programs translate to well-typed target programs
® Compiler may reject ill-typed source programs



* Intrinsic view: an ill-typed program is not a program at all
e Compiler translates programs in the source language to programs in the target language

® Well-typed source programs translate to well-typed target programs
® Compiler may reject ill-typed source programs
® Compiler must ensure that target program is well-typed



* Intrinsic view: an ill-typed program is not a program at all
e Compiler translates programs in the source language to programs in the target language

® Well-typed source programs translate to well-typed target programs
® Compiler may reject ill-typed source programs
® Compiler must ensure that target program is well-typed

* IR may also have its own type system (LLVM)

® Your backend does not check types, but does throw exceptions for (some) ill-typed programs
® LLVM does check types: use --clang to check that your front-end produces type-correct
code



We can think of compilation as translation of derivations of judgements from a source
language to a target language
e Each kind of judgement has a different translation category. E.g.,

* Well-formed types in source become well-formed types in target

® Expressions in source become (operand, instruction list) pairs in target
[ ]

¢ Each inference rule corresponds to a case within that category



Oat vl (HW3) - well-formed types

Judgements take the form:
e + t “tis a well-formed type” (ty)
* , ref: “ref is a well-formed reference type” (rty)
® b, rt: “rtis a well-formed return type” (ret_ty)

TINT TBooL TREF
. ref

Fint F bool F ref

RSTRING RARRAY RFUN
-t it .. Rty bt
k. string - tL] Fr(t,. .., ty) =1t
RTVoID RTTyp
Ft

F,: void ot



LLVMIite well-formed types

Judgements take the form:

e Tt t: With named types 7, tis a well-formed type

® T, t: With named types T, tis a well-formed simple type

® Tt, t: With named types T, tis a well-formed reference type
® T, t: With named types T, tis a well-formed return type

LLBooL LLINT LLPTR
T, ref
Theil ThHs i64 T, refx
LLSIMPLE
ot LLRTVoID
Ft _—
T+, void
LLRFUN
T }_rt rt T }_s tl

LLTUPLE LLARRAY
THt TE t, TH¢t
———neN
TH{t1,...,ta} THn x t]
LLRTSIMPLE LLRCHAR LLRTYPE
Thst Tt
Thet ThH,-18 ThH,t
LLNAMED
Thrs tn _ ; T
T+ %uid huid €

TF,- l’t(tl, RN t")



Translating well-formed types

* Each well-formed Oat type is translated to a well-formed LLVM type

® types — simple types (cmp_ty)
¢ reference types — reference types (cmp_rty)
® return types — return types (cmp_ret_ty)

e Use ~~ to denote translation of derivations



Translating well-formed types

Suppose we have a well-formed type Oat type, I- t. There are three inference rules:

TINT TBooL TREF
. ref
Fint F bool F ref

Each has a corresponding case:

TINT — LLINT -
° Fint | ~ b, 164

TBooL LLBooL -
° F bool | ~~ Fgil




Translating well-formed types

Suppose we have a well-formed type Oat type, I- t. There are three inference rules:

TINT TBooL TREF
. ref
Fint F bool F ref

Each has a corresponding case:

TINT — LLINT -
° Fint | ~ b, 164
TBooL LLBooL
° F bool | ~ F, il
-, ref
REF LLPTR
o Fref | ~~ ks tx |, where (-, ref) ~ (F, t)




Translating well-formed array types

* In Oat v2, arrays accesses are checked at runtime

¢ Recall: Can implement run-time array access checking by allocating additional memory at
the beginning of the array to store its size

* In Oat v1, arrays accesses are unchecked, but for forwards-compatibility we represent
arrays in the same way.



Translating well-formed array types

* In Oat v2, arrays accesses are checked at runtime

¢ Recall: Can implement run-time array access checking by allocating additional memory at
the beginning of the array to store its size

* In Oat v1, arrays accesses are unchecked, but for forwards-compatibility we represent
arrays in the same way.

/

S

LLINT - LLSIMPLE ,
s 164 F ¢
LLSIMPLE —————— LLARRAY ————————
LT - i64 F Loxt']
UPLE
RARRAY - {i64, [oxt']}
Ht LLRTYPE

F. {164, [oxt'1}

o

where -t~ . 7



Summary of type translation

Succint notation: [~ J] = J denotes that a derivation with root .J translates to a derivation
with root .J

e [k int] =+, i64

¢ [ bool] =k4 il

o [+ ref] =k tx, where I, t = [, ref]

e [, string] =+, i8

[k, t01] =+, {i64, [ox¥ 1}, where ¢ ¢ = [ {]
I (t, .. tn) = rt] =k (8, ..., 1), where

° l_rt rt = [“_'r‘t ’f't]],
o bty =[Ft] o bs by = [F ta]

[Fr¢ void] =k, void
[Fre 8] =F t, where ¢ t = [ 1]
(see: cmp_ty, cmp_rty, cmp_ret_ty in HW3)



Well-formed codestreams

Judgements take the form
® '+ s=TI": “under type environment I, code stream sis well-formed and results in type
environment "

e I' - opn: t “under type environment I', operand opn has type ¢’
ID Num

T(id) = ¢

_ ———— n€Zl
I'kid:t I'n:i64

ADD
I'~opn, :i64 I't-opn, : 164

I' - %uid = add 164 opn,,opn, = I'{%uid — 164}

%uid ¢ dom(T)

SEQ BASE
F|—81:>F/ F/|_82:>F”

L'Fsy,s0=1" 'Fe=T ... lots more




Well-typed expressions

VAR ADD
I'ke:int I'kes:int

F'kz:T(2) ke +e:int

Expression compilation (cmp_exp) translates a type judgement I - ¢ : ¢ to
* A codestream judgement I'; - s = T}, and
® Anoperand judgement T} - opn : #



How can translateI" - z : t(i.e., VAR)?



How can translateI" - z : t(i.e., VAR)?
* Need a symbol table ctxt, which maps Oat identifiers to LLVMlite operand judgements
® The operand associated with a variable z is a pointer to the memory location associated with =



How can translateI" - z : t(i.e., VAR)?
* Need a symbol table ctxt, which maps Oat identifiers to LLVMlite operand judgements
® The operand associated with a variable z is a pointer to the memory location associated with =
® Tocompute [I' - z: t](ctxt), first let (id, tx) = ctxt(z), then:
® Define [ctxt] to be the (LLVM) type environment associated with ctxt
® [e] = e (empty context translates to empty context)
® [ctxt,z— (id, t)] = Ty, id — t, where [ctxt] =Ty
¢ Codestream: [ctxt] - %uid = load t, t*x id = [ctxt]{%uid— t}
® Operand: [ctxt]{%uid — t} - %uid : ¢



How can translateI" - z : t(i.e., VAR)?
* Need a symbol table ctxt, which maps Oat identifiers to LLVMlite operand judgements
® The operand associated with a variable z is a pointer to the memory location associated with =
® Tocompute [I' - z: t](ctxt), first let (id, tx) = ctxt(z), then:
® Define [ctxt] to be the (LLVM) type environment associated with ctxt
® [e] = e (empty context translates to empty context)
® [ctxt,z— (id, t)] = Ty, id — t, where [ctxt] =Ty
¢ Codestream: [ctxt] - %uid = load t, t*x id = [ctxt]{%uid— t}
® Operand: [ctxt]{%uid — t} - %uid : ¢

How can we translate " - e; + e; : int (i.e., ADD)?



How can translateI" - z : t(i.e., VAR)?
* Need a symbol table ctxt, which maps Oat identifiers to LLVMlite operand judgements
® The operand associated with a variable z is a pointer to the memory location associated with =
® Tocompute [I' - z: t](ctxt), first let (id, tx) = ctxt(z), then:
® Define [ctxt] to be the (LLVM) type environment associated with ctxt

® [e] = e (empty context translates to empty context)
® [ctxt,z— (id, t)] = Ty, id — t, where [ctxt] =Ty

¢ Codestream: [ctxt] - %uid = load t, t*x id = [ctxt]{%uid— t}
® Operand: [ctxt]{%uid — t} - %uid : ¢

How can we translate " - e; + e; : int (i.e., ADD)?
o Let ([etxt] F sy =T,y F opny : 164) = [er](ctxt)
o Let(I'y F so = 'y, T'o F opng : 164) = [ea](ctxt)
® Codestream: [ctxt] - s1, s2, %uid = add 164 opn,,opn,) = I'y{%uid — i64}
e Operand: To{%uid — 164} & %uid : 164



Summary

e Semantic analysis phase takes AST as input, constructs symbol table and performs
well-formedness checks



Summary

e Semantic analysis phase takes AST as input, constructs symbol table and performs
well-formedness checks
¢ Well-formedness derivations can impact compilation. E.g.,

® x.field gets compiled differently depending on the type of x
® We may have to emit bitcasts for uses of subsumption



Summary

e Semantic analysis phase takes AST as input, constructs symbol table and performs
well-formedness checks
¢ Well-formedness derivations can impact compilation. E.g.,
® x.field gets compiled differently depending on the type of x
® We may have to emit bitcasts for uses of subsumption
¢ Compiler translates derivations of well-formedness judgements in the source language to
derivations of well-formedness judgements in the target language
® |n an implementation, this viewpoint implicit
® Don't need to do all the bookkeeping involved in manipulating derivations
® But it is helpful for understanding how to organize the translation

® Eg,cmp_expreturnsatripleL1.ty x L1l.operand * stream
In a sense: infers derivations in the source language “on the way down”
builds derivations in the target language “on the way up”
Only remembers the type of the operand (used in some compilation rules).



