

COS320: Compiling Techniques

Zak Kincaid

January 29, 2026

Oat v2

- Specified by a (fairly large) type system
 - ~20 judgements, ~80 inference rules
 - Invest some time in making sure you understand how to read them
- Adds several features to the Oat language:
 - Memory safety
 - *nullable* and *non-null* references. Type system enforces no null pointer dereferences.
 - Run-time array bounds checking (like Java, OCaml)
 - Mutable record types
 - Subtyping

Subtyping

Extrinsic (sub)types

- *Extrinsic view* (Curry-style): a type is a *property* of a term. Think:

- There is some set of *values*

```
type value =
  | VInt of int
  | VBool of bool
```

- Each type corresponds to a subset of values

```
let typ_int = function
  | VInt _ -> true
  | _ -> false
let typ_bool = function
  | VBool _ -> true
  | _ -> false
```

- A term has type t if it evaluates to a value of type t

Extrinsic (sub)types

- *Extrinsic view* (Curry-style): a type is a *property* of a term. Think:

- There is some set of *values*

```
type value =
  | VInt of int
  | VBool of bool
```

- Each type corresponds to a subset of values

```
let typ_int = function
  | VInt _ -> true
  | _ -> false
let typ_bool = function
  | VBool _ -> true
  | _ -> false
```

- A term has type t if it evaluates to a value of type t
- *Types may overlap.*

```
let typ_nat = function
  | VInt x -> x >= 0
  | _ -> false
```

Subtyping

- Call s a **subtype** of type t if the values of type s is a subset of values of type t
- A subtyping judgement takes the form $\vdash s <: t$
 - “The type s is a subtype of t ”
 - Liskov substitution principle: if s is a subtype of t , then terms of type t can be replaced by terms of type s without breaking type safety.

Barbara Liskov

Subtyping

- Call s a **subtype** of type t if the values of type s is a subset of values of type t
- A subtyping judgement takes the form $\vdash s <: t$
 - “The type s is a subtype of t ”
 - Liskov substitution principle: if s is a subtype of t , then terms of type t can be replaced with terms of type s without breaking type safety.

NATINT

$$\frac{}{\vdash \text{nat} <: \text{int}}$$

SUBSUMPTION

$$\frac{\Gamma \vdash e : s \quad \vdash s <: t}{\Gamma \vdash e : t}$$

TRANSITIVITY

$$\frac{\vdash t_1 <: t_2 \quad \vdash t_2 <: t_3}{\vdash t_1 <: t_3}$$

REFLEXIVITY

$$\frac{}{\vdash t <: t}$$

- Subsumption: if s is a subtype of t , then terms of type s can be used as if they were terms of type t

Casting

- **Upcasting:** Suppose $s <: t$ and e has type s . May safety cast e to type t .
 - Subsumption rule: upcast implicitly (C, C++, Java, ...)
 - Not necessarily a no-op (e.g., upcast int to float)
 - In OCaml: upcast e to t with $(e :> t)$ (important for type inference!)
- **Downcasting:** Suppose $s <: t$ and e has type t . May not safety cast e to type s .
 - *Checked downcasting:* check that downcasts are safe at runtime (Java, `dynamic_cast` in C++)
 - Type safe - throwing an exception is not the same as a type error
 - *Unchecked downcasting:* `static_cast` in C++
 - *No downcasting:* OCaml

Extending the subtype relation

TUPLE

$$\frac{\vdash t_1 <: s_1 \quad \dots \quad \vdash t_n <: s_n}{\vdash t_1 * \dots * t_n <: s_1 * \dots * s_n}$$

LIST

$$\frac{\vdash s <: t}{\vdash s \text{ list} <: t \text{ list}}$$

ARRAY

$$\frac{\vdash s <: t}{\vdash s \text{ array} <: t \text{ array}}$$

Extending the subtype relation

TUPLE

$$\frac{\vdash t_1 <: s_1 \quad \dots \quad \vdash t_n <: s_n}{\vdash t_1 * \dots * t_n <: s_1 * \dots * s_n}$$

LIST

$$\frac{\vdash s <: t}{\vdash s \text{ list} <: t \text{ list}}$$

ARRAY

$$\frac{\vdash s <: t}{\vdash s \text{ array} <: t \text{ array}}$$

- Array subtyping rule is **unsound** (Java!)

Let $\Gamma = [x \mapsto \text{nat array}]$

$$\frac{\text{ASSN} \quad \text{SUB} \quad \text{VAR} \quad \text{ARRAY} \quad \text{NATINT}}{\Gamma \vdash x[0] := -1}$$

ASSN

SUB

VAR

ARRAY

NATINT

nat <: int

nat array <: int array

$\Gamma \vdash x : \text{nat array}$

$\Gamma \vdash x : \text{int array}$

$\Gamma \vdash 0 : \text{nat}$

$\Gamma \vdash -1 : \text{int}$

Width subtyping

```
type point2d { x : int, y : int }
type point3d { x : int, y : int, z : int }
```

- `point2d <: point3d` or `point3d <: point2d`?

Width subtyping

```
type point2d { x : int, y : int }
type point3d { x : int, y : int, z : int }
```

- `point2d <: point3d` or `point3d <: point2d`?
 - Liskov: Every 3-dimensional point can be used as a 2-dimensional point (`point3d <: point2d`)

Width subtyping

```
type point2d { x : int, y : int }
type point3d { x : int, y : int, z : int }
```

- $\text{point2d} <: \text{point3d}$ or $\text{point3d} <: \text{point2d}$?
 - Liskov: Every 3-dimensional point can be used as a 2-dimensional point ($\text{point3d} <: \text{point2d}$)

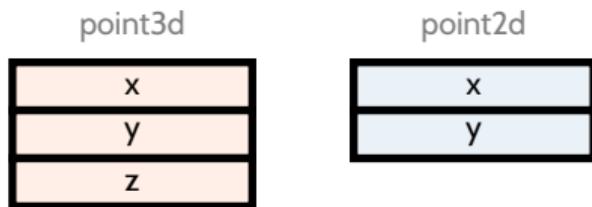
RECORDWIDTH

$$\frac{}{\vdash \{lab_1 : s_1; \dots; lab_m : s_m\} <: \{lab_1 : s_1; \dots; lab_n : s_n\}} \quad n < m$$

Compiling width subtyping

Easy!

- $s <: t$ means $\text{sizeof}(t) \leq \text{sizeof}(s)$, but field positions are the same ($e.\text{lab}$ compiled the same way, whether e has type s or type t)



- e.g., $\text{pt} \rightarrow \text{y}$ is $\ast(\text{pt} + \text{sizeof}(\text{int}))$, regardless of whether pt is 2d or 3d

Depth subtyping

```
type nat_point { x : nat, y : nat }
type int_point { x : int, y : int }
```

- `nat_point <: int_point` or `int_point <: nat_point?`

Depth subtyping

```
type nat_point { x : nat, y : nat }
type int_point { x : int, y : int }
```

- `nat_point <: int_point` or `int_point <: nat_point`?
 - Liskov: `nat_point <: int_point` *but only for immutable records!*

Depth subtyping

```
type nat_point { x : nat, y : nat }
type int_point { x : int, y : int }
```

- $\text{nat_point} <: \text{int_point}$ or $\text{int_point} <: \text{nat_point}$?
 - Liskov: $\text{nat_point} <: \text{int_point}$ *but only for immutable records!*

RECORDDEPTH

$$\frac{\vdash s_1 <: t_1 \quad \dots \quad \vdash s_n <: t_n}{\vdash \{ \text{lab}_1 : s_1; \dots; \text{lab}_n : s_n \} <: \{ \text{lab}_1 : t_1; \dots; \text{lab}_n : t_n \}}$$

Compiling depth subtyping

Easy!

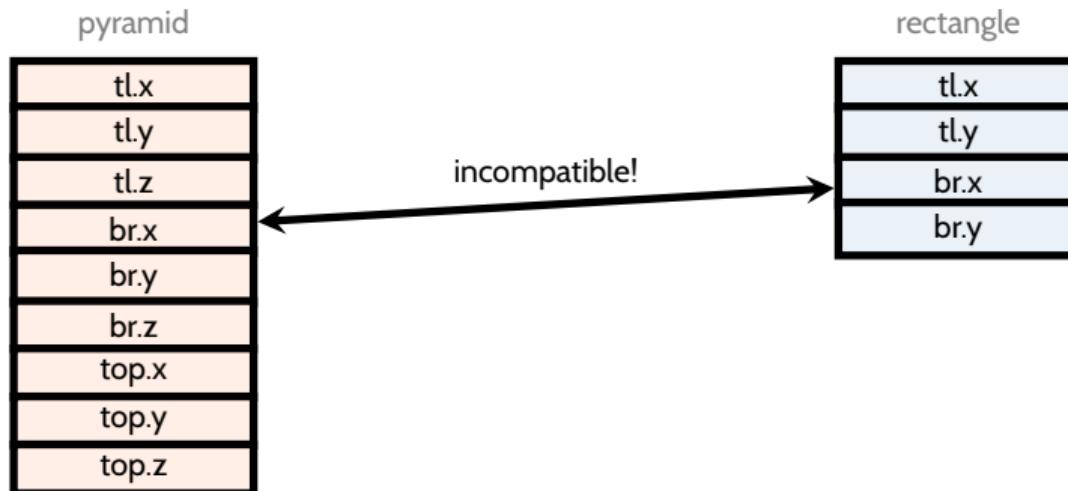
- $s <: t$ means $\text{sizeof}(s) = \text{sizeof}(t)$, so field positions are the same.

- pt is a nat_point: $pt \rightarrow y$ is $\star(pt + \text{sizeof}(\text{nat}))$
- pt is an int_point: $pt \rightarrow y$ is $\star(pt + \text{sizeof}(\text{int}))$
- $\text{sizeof}(\text{int}) = \text{sizeof}(\text{nat})$

Compiling width+depth subtyping

```
type point2d { x : int, y : int }
type point3d { x : int, y : int, z : int }
type rectangle = { tl : point2d, br : point2d }
type pyramid = { tl : point3d, br : point3d, top: point3d }
```

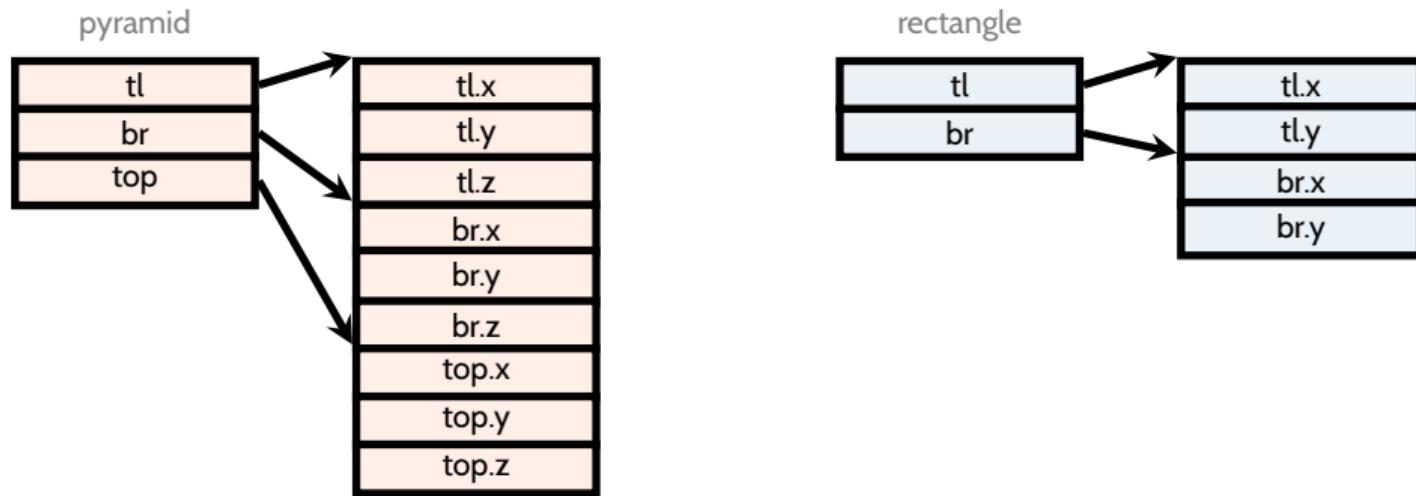
- Width + depth: pyramid <: rectangle (with immutable records)



Compiling width+depth subtyping

```
type point2d { x : int, y : int }
type point3d { x : int, y : int, z : int }
type rectangle = { tl : point2d, br : point2d }
type pyramid = { tl : point3d, br : point3d, top: point3d }
```

- Width + depth: pyramid <: rectangle (with immutable records)



- Add an indirection layer!

Function subtyping

$$\begin{array}{c} \text{FUN} \\ \dfrac{\vdash ? <: ? \quad \vdash ? <: ?}{\vdash t_1 \rightarrow t_2 <: s_1 \rightarrow s_2} \end{array}$$

Function subtyping

$$\text{FUN} \quad \frac{\vdash s_1 <: t_1 \quad \vdash t_2 <: s_2}{\vdash t_1 \rightarrow t_2 <: s_1 \rightarrow s_2}$$

- In the function subtyping rule, we say that the argument type is *contravariant*, and the output type is *covariant*
- Some languages (Eiffel, Dart) have *covariant* argument subtyping. Not type-safe!

Type inference with subtyping

SUBSUMPTION

$$\frac{\Gamma \vdash e : s \quad \vdash s <: t}{\Gamma \vdash e : t}$$

- In the presence of the subsumption rule, a term may have more than one type. [Which type should we infer?](#)
 - Subtyping forms a *preorder* relation (REFLEXIVITY and TRANSITIVITY)
 - Typically (but not necessarily), subtyping is a *partial order*
 - A partial order is a binary relation that is reflexive, transitive, and *antisymmetric*
If $a <: b$ and $b <: a$, then $a = b$
 - A preorder that is not a partial order: graph reachability ($u \leq v$ iff there is a path from u to v)

SUBSUMPTION

$$\frac{\Gamma \vdash e : s \quad \vdash s <: t}{\Gamma \vdash e : t}$$

- In the presence of the subsumption rule, a term may have more than one type. [Which type should we infer?](#)
 - Subtyping forms a *preorder* relation (REFLEXIVITY and TRANSITIVITY)
 - Typically (but not necessarily), subtyping is a *partial order*
 - A partial order is a binary relation that is reflexive, transitive, and *antisymmetric*
If $a <: b$ and $b <: a$, then $a = b$
 - A preorder that is not a partial order: graph reachability ($u \leq v$ iff there is a path from u to v)
- Given a context Γ and expression e , goal is to infer **least** type t such that $\Gamma \vdash e : t$ is derivable.

- Subsumption is not syntax-directed
 - Type inference can't use program syntax to determine when to use subsumption rule

- Subsumption is not syntax-directed
 - Type inference can't use program syntax to determine when to use subsumption rule
- Do not use subsumption! Integrate subsumption into other inference rules. E.g.,

$$\begin{array}{c}
 \text{TYP_CARR} \\
 \dfrac{\Gamma \vdash e_1 : t \quad \dots \quad \Gamma \vdash e_n : t}{\Gamma \vdash \text{new } t[]\{e_1, \dots, e_n\} : t[]}
 \end{array}$$

- Subsumption is not syntax-directed
 - Type inference can't use program syntax to determine when to use subsumption rule
- Do not use subsumption! Integrate subsumption into other inference rules. E.g.,

$$\begin{array}{c}
 \text{TYP_CARR} \\
 \hline
 \Gamma \vdash e_1 : t_1 \quad \dots \quad \Gamma \vdash e_n : t_n \quad \vdash t_1 <: t \quad \dots \quad \vdash t_n <: t \\
 \hline
 \Gamma \vdash \text{new } t[]\{e_1, \dots, e_n\} : t[]
 \end{array}$$

$$\mathsf{If} \frac{\Gamma \vdash e_1 : \mathbf{bool} \quad \Gamma \vdash e_2 : t \quad \Gamma \vdash e_3 : t}{\Gamma \vdash \mathbf{if } e_1 \mathbf{ then } e_2 \mathbf{ else } e_3 : t}$$

|F

$$\frac{\Gamma \vdash e_1 : \text{bool} \quad \Gamma \vdash e_2 : t_2 \quad \Gamma \vdash e_3 : t_3 \quad \vdash t_2 <: t \quad \vdash t_3 <: t}{\Gamma \vdash \mathbf{if } e_1 \mathbf{ then } e_2 \mathbf{ else } e_3 : t}$$

if

$$\frac{\Gamma \vdash e_1 : \text{bool} \quad \Gamma \vdash e_2 : t_2 \quad \Gamma \vdash e_3 : t_3 \quad \vdash t_2 <: t \quad \vdash t_3 <: t}{\Gamma \vdash \text{if } e_1 \text{ then } e_2 \text{ else } e_3 : t}$$

- Problem: what is t ?

IF

$$\frac{\Gamma \vdash e_1 : \text{bool} \quad \Gamma \vdash e_2 : t_2 \quad \Gamma \vdash e_3 : t_3 \quad \vdash t_2 <: t \quad \vdash t_3 <: t}{\Gamma \vdash \text{if } e_1 \text{ then } e_2 \text{ else } e_3 : t}$$

- Problem: what is t ?
- Say that t is a *least upper bound* of t_2 and t_3 if
 - ① $t_2 <: t$ and $t_3 <: t$
 - ② For any type t' such that $t_2 <: t'$ and $t_3 <: t'$, we have $t <: t'$

(If $<:$ is a partial order, least upper bound is unique)

IF

$$\frac{\Gamma \vdash e_1 : \text{bool} \quad \Gamma \vdash e_2 : t_2 \quad \Gamma \vdash e_3 : t_3 \quad \vdash t_2 <: t \quad \vdash t_3 <: t}{\Gamma \vdash \text{if } e_1 \text{ then } e_2 \text{ else } e_3 : t}$$

- Problem: what is t ?
- Say that t is a *least upper bound* of t_2 and t_3 if
 - ① $t_2 <: t$ and $t_3 <: t$
 - ② For any type t' such that $t_2 <: t'$ and $t_3 <: t'$, we have $t <: t'$
- (If $<:$ is a partial order, least upper bound is unique)
- Take t to be the least upper bound of t_2 and t_3

IF

$$\frac{\Gamma \vdash e_1 : \text{bool} \quad \Gamma \vdash e_2 : t_2 \quad \Gamma \vdash e_3 : t_3 \quad \vdash t_2 <: t \quad \vdash t_3 <: t}{\Gamma \vdash \text{if } e_1 \text{ then } e_2 \text{ else } e_3 : t}$$

- Problem: what is t ?
- Say that t is a *least upper bound* of t_2 and t_3 if
 - ① $t_2 <: t$ and $t_3 <: t$
 - ② For any type t' such that $t_2 <: t'$ and $t_3 <: t'$, we have $t <: t'$(If $<:$ is a partial order, least upper bound is unique)
- Take t to be the least upper bound of t_2 and t_3
 - Java: every pair of types has a least upper bound
 - Least upper bound is the least common ancestor in class hierarchy

IF

$$\frac{\Gamma \vdash e_1 : \text{bool} \quad \Gamma \vdash e_2 : t_2 \quad \Gamma \vdash e_3 : t_3 \quad \vdash t_2 <: t \quad \vdash t_3 <: t}{\Gamma \vdash \text{if } e_1 \text{ then } e_2 \text{ else } e_3 : t}$$

- Problem: what is t ?
- Say that t is a *least upper bound* of t_2 and t_3 if
 - ① $t_2 <: t$ and $t_3 <: t$
 - ② For any type t' such that $t_2 <: t'$ and $t_3 <: t'$, we have $t <: t'$(If $<:$ is a partial order, least upper bound is unique)
- Take t to be the least upper bound of t_2 and t_3
 - Java: every pair of types has a least upper bound
 - Least upper bound is the least common ancestor in class hierarchy
 - C++: with multiple inheritance, classes can have multiple upper bounds, none of which is *least*
 - Require $t_2 <: t_3$ or $t_3 <: t_2$

IF

$$\frac{\Gamma \vdash e_1 : \text{bool} \quad \Gamma \vdash e_2 : t_2 \quad \Gamma \vdash e_3 : t_3 \quad \vdash t_2 <: t \quad \vdash t_3 <: t}{\Gamma \vdash \text{if } e_1 \text{ then } e_2 \text{ else } e_3 : t}$$

- Problem: what is t ?
- Say that t is a *least upper bound* of t_2 and t_3 if
 - ① $t_2 <: t$ and $t_3 <: t$
 - ② For any type t' such that $t_2 <: t'$ and $t_3 <: t'$, we have $t <: t'$(If $<:$ is a partial order, least upper bound is unique)
- Take t to be the least upper bound of t_2 and t_3
 - Java: every pair of types has a least upper bound
 - Least upper bound is the least common ancestor in class hierarchy
 - C++: with multiple inheritance, classes can have multiple upper bounds, none of which is *least*
 - Require $t_2 <: t_3$ or $t_3 <: t_2$
 - OCaml: no subsumption rule. Must explicitly upcast each side of the branch.

Looking ahead

- Compiling up:
 - Compiling with types, start on optimization
 - HW4: Oat v2
 - Need to implement a type-checker (among other things)
 - (Oat v2 has subtyping)
- A few weeks later: compiling object-oriented languages
 - Subtyping plays a prominent role