
COS320: Compiling Techniques

Zak Kincaid

January 29, 2026



Oat v2

• Specified by a (fairly large) type system
• ∼20 judgements, ∼80 inference rules
• Invest some time in making sure you understand how to read them

• Adds several features to the Oat language:
• Memory safety

• nullable and non-null references. Type system enforces no null pointer dereferences.
• Run-time array bounds checking (like Java, OCaml)

• Mutable record types
• Subtyping



Subtyping



Extrinsic (sub)types
• Extrinsic view (Curry-style): a type is a property of a term. Think:

• There is some set of values
type value =

| VInt of int
| VBool of bool

• Each type corresponds to a subset of values
let typ_int = function

| VInt _ -> true
| _ -> false

let typ_bool = function
| VBool _ -> true
| _ -> false

• A term has type t if it evaluates to a value of type t

• Types may overlap.
let typ_nat = function
| VInt x -> x >= 0
| _ -> false



Extrinsic (sub)types
• Extrinsic view (Curry-style): a type is a property of a term. Think:

• There is some set of values
type value =

| VInt of int
| VBool of bool

• Each type corresponds to a subset of values
let typ_int = function

| VInt _ -> true
| _ -> false

let typ_bool = function
| VBool _ -> true
| _ -> false

• A term has type t if it evaluates to a value of type t
• Types may overlap.

let typ_nat = function
| VInt x -> x >= 0
| _ -> false



Subtyping

• Call s a subtype of type t if the values of type s is a subset of values of type t
• A subtyping judgement takes the form ` s <: t

• “The type s is a subtype of t”
• Liskov substitution priciple: if s is a subtype of t, then terms of type t can be replaced with

terms of type s without breaking type safety. Barbara Liskov

NatInt

` nat <: int

Subsumption
Γ ` e : s ` s <: t

Γ ` e : t

Transitivity
` t1 <: t2 ` t2 <: t3

` t1 <: t3

Reflexivity

` t <: t

• Subsumption: if s is a subtype of t, then terms of type s can be used as if they were terms
of type t



Subtyping

• Call s a subtype of type t if the values of type s is a subset of values of type t
• A subtyping judgement takes the form ` s <: t

• “The type s is a subtype of t”
• Liskov substitution priciple: if s is a subtype of t, then terms of type t can be replaced with

terms of type s without breaking type safety.

Barbara Liskov

NatInt

` nat <: int

Subsumption
Γ ` e : s ` s <: t

Γ ` e : t

Transitivity
` t1 <: t2 ` t2 <: t3

` t1 <: t3

Reflexivity

` t <: t

• Subsumption: if s is a subtype of t, then terms of type s can be used as if they were terms
of type t



Casting

• Upcasting: Suppose s <: t and e has type s. May safety cast e to type t.
• Subsumption rule: upcast implicitly (C, C++, Java, ...)

• Not necessarily a no-op (e.g., upcast int to float)
• In OCaml: upcast e to t with (e :> t) (important for type inference!)

• Downcasting: Suppose s <: t and e has type t. May not safety cast e to type s.
• Checked downcasting: check that downcasts are safe at runtime (Java, dynamic_cast in C++)

• Type safe – throwing an exception is not the same as a type error
• Unchecked downcasting: static_cast in C++
• No downcasting: OCaml



Extending the subtype relation

Tuple
` t1 <: s1 . . . ` tn <: sn

` t1 ∗ · · · ∗ tn <: s1 ∗ · · · ∗ sn

List
` s <: t

` s list <: t list

Array
` s <: t

` s array <: t array

• Array subtyping rule is unsound (Java!)
Let Γ = [x 7→ nat array]

Assn

Sub

Var
Γ ⊢ x : nat array

Array

NatInt
nat <: int

nat array <: int array

Γ ⊢ x : int array
Nat

Γ ⊢ 0 : nat
Int

Γ ⊢ −1 : int

Γ ⊢ x[0] := −1



Extending the subtype relation

Tuple
` t1 <: s1 . . . ` tn <: sn

` t1 ∗ · · · ∗ tn <: s1 ∗ · · · ∗ sn

List
` s <: t

` s list <: t list

Array
` s <: t

` s array <: t array

• Array subtyping rule is unsound (Java!)
Let Γ = [x 7→ nat array]

Assn

Sub

Var
Γ ⊢ x : nat array

Array

NatInt
nat <: int

nat array <: int array

Γ ⊢ x : int array
Nat

Γ ⊢ 0 : nat
Int

Γ ⊢ −1 : int

Γ ⊢ x[0] := −1



Width subtying

type point2d { x : int, y : int }
type point3d { x : int, y : int, z : int }

• point2d <: point3d or point3d <: point2d?

• Liskov: Every 3-dimensional point can be used as a 2-dimensional point (point3d <:
point2d)

RecordWidth

` {lab1 : s1; . . . ; labm : sm} <: {lab1 : s1; . . . ; labn : sn}
n < m



Width subtying

type point2d { x : int, y : int }
type point3d { x : int, y : int, z : int }

• point2d <: point3d or point3d <: point2d?
• Liskov: Every 3-dimensional point can be used as a 2-dimensional point (point3d <:

point2d)

RecordWidth

` {lab1 : s1; . . . ; labm : sm} <: {lab1 : s1; . . . ; labn : sn}
n < m



Width subtying

type point2d { x : int, y : int }
type point3d { x : int, y : int, z : int }

• point2d <: point3d or point3d <: point2d?
• Liskov: Every 3-dimensional point can be used as a 2-dimensional point (point3d <:

point2d)
RecordWidth

` {lab1 : s1; . . . ; labm : sm} <: {lab1 : s1; . . . ; labn : sn}
n < m



Compiling width subtyping

Easy!
• s <: t means sizeof(t) ≤ sizeof(s), but field positions are the same (e.lab compiled the

same way, whether e has type s or type t)

x
y

z

x
y

point3d point2d

• e.g., pt->y is *(pt + sizeof(int)), regardless of whether pt is 2d or 3d



Depth subtyping

type nat_point { x : nat, y : nat }
type int_point { x : int, y : int }

• nat_point <: int_point or int_point <: nat_point?

• Liskov: nat_point <: int_point but only for immutable records!
RecordDepth

` s1 <: t1 . . . ` sn <: tn

` {lab1 : s1; . . . ; labn : sn} <: {lab1 : t1; . . . ; labn : tn}



Depth subtyping

type nat_point { x : nat, y : nat }
type int_point { x : int, y : int }

• nat_point <: int_point or int_point <: nat_point?
• Liskov: nat_point <: int_point but only for immutable records!

RecordDepth
` s1 <: t1 . . . ` sn <: tn

` {lab1 : s1; . . . ; labn : sn} <: {lab1 : t1; . . . ; labn : tn}



Depth subtyping

type nat_point { x : nat, y : nat }
type int_point { x : int, y : int }

• nat_point <: int_point or int_point <: nat_point?
• Liskov: nat_point <: int_point but only for immutable records!

RecordDepth
` s1 <: t1 . . . ` sn <: tn

` {lab1 : s1; . . . ; labn : sn} <: {lab1 : t1; . . . ; labn : tn}



Compiling depth subtyping

Easy!
• s <: t means sizeof(s) = sizeof(t), so field positions are the same.

x
y

x
y

nat_point int_point

• pt is a nat_point: pt->y is *(pt + sizeof(nat))

• pt is an int_point: pt->y is *(pt + sizeof(int))

• sizeof(int) = sizeof(nat)



Compiling width+depth subtyping

type point2d { x : int, y : int }
type point3d { x : int, y : int, z : int }
type rectangle = { tl : point2d, br : point2d }
type pyramid = { tl : point3d, br : point3d, top: point3d }

• Width + depth: pyramid <: rectangle (with immutable records)

tl.x
tl.y

tl.z
br.x
br.y

br.z
top.x
top.y
top.z

tl.x
tl.y

br.x
br.y

pyramid rectangle

incompatible!

• Add an indirection layer!



Compiling width+depth subtyping

type point2d { x : int, y : int }
type point3d { x : int, y : int, z : int }
type rectangle = { tl : point2d, br : point2d }
type pyramid = { tl : point3d, br : point3d, top: point3d }

• Width + depth: pyramid <: rectangle (with immutable records)

tl.x
tl.y

tl.z
br.x
br.y

br.z
top.x
top.y
top.z

tl.x
tl.y

br.x
br.y

tl
br

top

pyramid

tl
br

rectangle

• Add an indirection layer!



Function subtyping

Fun
`? <:? `? <:?

` t1 → t2 <: s1 → s2

• In the function subtyping rule, we say that the argument type is contravariant, and the
output type is covariant

• Some languages (Eiffel, Dart) have covariant argument subtyping. Not type-safe!



Function subtyping

Fun
` s1 <: t1 ` t2 <: s2
` t1 → t2 <: s1 → s2

• In the function subtyping rule, we say that the argument type is contravariant, and the
output type is covariant

• Some languages (Eiffel, Dart) have covariant argument subtyping. Not type-safe!



Type inference with subtyping



Subsumption
Γ ` e : s ` s <: t

Γ ` e : t

• In the presence of the subsumption rule, a term may have more than one type. Which
type should we infer?

• Subtyping forms a preorder relation (Reflexivity and Transitivity)
• Typically (but not necessarily), subtyping is a partial order

• A partial order is a binary relation that is reflexive, transitive, and antisymmetric
If a <: b and b <: a, then a = b

• A preorder that is not a partial order: graph reachability (u ≤ v iff there is a path from u to v)

• Given a context Γ and expression e, goal is to infer least type t such that Γ ` e : t is
derivable.



Subsumption
Γ ` e : s ` s <: t

Γ ` e : t

• In the presence of the subsumption rule, a term may have more than one type. Which
type should we infer?

• Subtyping forms a preorder relation (Reflexivity and Transitivity)
• Typically (but not necessarily), subtyping is a partial order

• A partial order is a binary relation that is reflexive, transitive, and antisymmetric
If a <: b and b <: a, then a = b

• A preorder that is not a partial order: graph reachability (u ≤ v iff there is a path from u to v)

• Given a context Γ and expression e, goal is to infer least type t such that Γ ` e : t is
derivable.



• Subsumption is not syntax-directed
• Type inference can’t use program syntax to determine when to use subsumption rule

• Do not use subsumption! Integrate subsumption into other inference rules. E.g.,



• Subsumption is not syntax-directed
• Type inference can’t use program syntax to determine when to use subsumption rule

• Do not use subsumption! Integrate subsumption into other inference rules. E.g.,

Typ_CArr
Γ ` e1 : t . . . Γ ` en : t
Γ ` new t[]{e1, . . . , en} : t[]



• Subsumption is not syntax-directed
• Type inference can’t use program syntax to determine when to use subsumption rule

• Do not use subsumption! Integrate subsumption into other inference rules. E.g.,

Typ_CArr
Γ ` e1 : t1 . . . Γ ` en : tn ` t1 <: t . . . ` tn <: t

Γ ` new t[]{e1, . . . , en} : t[]



If
Γ ` e1 : bool Γ ` e2 : t Γ ` e3 : t

Γ ` if e1 then e2 else e3 : t

• Problem: what is t?
• Say that t is a least upper bound of t2 and t3 if

1 t2 <: t and t3 <: t
2 For any type t′ such that t2 <: t′ and t3 <: t′, we have t <: t′

(If <: is a partial order, least upper bound is unique)
• Take t to be the least upper bound of t2 and t3

• Java: every pair of types has a least upper bound
• Least upper bound is the least common ancestor in class hierarchy

• C++: with multiple inheritance, classes can have multiple upper bounds, none if which is least
• Require t2 <: t3 or t3 <: t2

• OCaml: no subsumption rule. Must explicitly upcast each side of the branch.



If
Γ ` e1 : bool Γ ` e2 : t2 Γ ` e3 : t3 ` t2 <: t ` t3 <: t

Γ ` if e1 then e2 else e3 : t

• Problem: what is t?
• Say that t is a least upper bound of t2 and t3 if

1 t2 <: t and t3 <: t
2 For any type t′ such that t2 <: t′ and t3 <: t′, we have t <: t′

(If <: is a partial order, least upper bound is unique)
• Take t to be the least upper bound of t2 and t3

• Java: every pair of types has a least upper bound
• Least upper bound is the least common ancestor in class hierarchy

• C++: with multiple inheritance, classes can have multiple upper bounds, none if which is least
• Require t2 <: t3 or t3 <: t2

• OCaml: no subsumption rule. Must explicitly upcast each side of the branch.



If
Γ ` e1 : bool Γ ` e2 : t2 Γ ` e3 : t3 ` t2 <: t ` t3 <: t

Γ ` if e1 then e2 else e3 : t

• Problem: what is t?

• Say that t is a least upper bound of t2 and t3 if
1 t2 <: t and t3 <: t
2 For any type t′ such that t2 <: t′ and t3 <: t′, we have t <: t′

(If <: is a partial order, least upper bound is unique)
• Take t to be the least upper bound of t2 and t3

• Java: every pair of types has a least upper bound
• Least upper bound is the least common ancestor in class hierarchy

• C++: with multiple inheritance, classes can have multiple upper bounds, none if which is least
• Require t2 <: t3 or t3 <: t2

• OCaml: no subsumption rule. Must explicitly upcast each side of the branch.



If
Γ ` e1 : bool Γ ` e2 : t2 Γ ` e3 : t3 ` t2 <: t ` t3 <: t

Γ ` if e1 then e2 else e3 : t

• Problem: what is t?
• Say that t is a least upper bound of t2 and t3 if

1 t2 <: t and t3 <: t
2 For any type t′ such that t2 <: t′ and t3 <: t′, we have t <: t′

(If <: is a partial order, least upper bound is unique)

• Take t to be the least upper bound of t2 and t3

• Java: every pair of types has a least upper bound
• Least upper bound is the least common ancestor in class hierarchy

• C++: with multiple inheritance, classes can have multiple upper bounds, none if which is least
• Require t2 <: t3 or t3 <: t2

• OCaml: no subsumption rule. Must explicitly upcast each side of the branch.



If
Γ ` e1 : bool Γ ` e2 : t2 Γ ` e3 : t3 ` t2 <: t ` t3 <: t

Γ ` if e1 then e2 else e3 : t

• Problem: what is t?
• Say that t is a least upper bound of t2 and t3 if

1 t2 <: t and t3 <: t
2 For any type t′ such that t2 <: t′ and t3 <: t′, we have t <: t′

(If <: is a partial order, least upper bound is unique)
• Take t to be the least upper bound of t2 and t3

• Java: every pair of types has a least upper bound
• Least upper bound is the least common ancestor in class hierarchy

• C++: with multiple inheritance, classes can have multiple upper bounds, none if which is least
• Require t2 <: t3 or t3 <: t2

• OCaml: no subsumption rule. Must explicitly upcast each side of the branch.



If
Γ ` e1 : bool Γ ` e2 : t2 Γ ` e3 : t3 ` t2 <: t ` t3 <: t

Γ ` if e1 then e2 else e3 : t

• Problem: what is t?
• Say that t is a least upper bound of t2 and t3 if

1 t2 <: t and t3 <: t
2 For any type t′ such that t2 <: t′ and t3 <: t′, we have t <: t′

(If <: is a partial order, least upper bound is unique)
• Take t to be the least upper bound of t2 and t3

• Java: every pair of types has a least upper bound
• Least upper bound is the least common ancestor in class hierarchy

• C++: with multiple inheritance, classes can have multiple upper bounds, none if which is least
• Require t2 <: t3 or t3 <: t2

• OCaml: no subsumption rule. Must explicitly upcast each side of the branch.



If
Γ ` e1 : bool Γ ` e2 : t2 Γ ` e3 : t3 ` t2 <: t ` t3 <: t

Γ ` if e1 then e2 else e3 : t

• Problem: what is t?
• Say that t is a least upper bound of t2 and t3 if

1 t2 <: t and t3 <: t
2 For any type t′ such that t2 <: t′ and t3 <: t′, we have t <: t′

(If <: is a partial order, least upper bound is unique)
• Take t to be the least upper bound of t2 and t3

• Java: every pair of types has a least upper bound
• Least upper bound is the least common ancestor in class hierarchy

• C++: with multiple inheritance, classes can have multiple upper bounds, none if which is least
• Require t2 <: t3 or t3 <: t2

• OCaml: no subsumption rule. Must explicitly upcast each side of the branch.



If
Γ ` e1 : bool Γ ` e2 : t2 Γ ` e3 : t3 ` t2 <: t ` t3 <: t

Γ ` if e1 then e2 else e3 : t

• Problem: what is t?
• Say that t is a least upper bound of t2 and t3 if

1 t2 <: t and t3 <: t
2 For any type t′ such that t2 <: t′ and t3 <: t′, we have t <: t′

(If <: is a partial order, least upper bound is unique)
• Take t to be the least upper bound of t2 and t3

• Java: every pair of types has a least upper bound
• Least upper bound is the least common ancestor in class hierarchy

• C++: with multiple inheritance, classes can have multiple upper bounds, none if which is least
• Require t2 <: t3 or t3 <: t2

• OCaml: no subsumption rule. Must explicitly upcast each side of the branch.



Looking ahead

• Compiling up:
• Compiling with types, start on optimization
• HW4: Oat v2

• Need to implement a type-checker (among other things)
• (Oat v2 has subtyping)

• A few weeks later: compiling object-oriented languages
• Subtyping plays a prominent role


