COS320: Compiling Techniques

Zak Kincaid

January 29, 2026

Oat v2

¢ Specified by a (fairly large) type system
® ~20 judgements, ~80 inference rules
® Invest some time in making sure you understand how to read them
e Adds several features to the Oat language:
® Memory safety
® nullable and non-null references. Type system enforces no null pointer dereferences.
® Run-time array bounds checking (like Java, OCaml)
® Mutable record types
® Subtyping

Subtyping

Extrinsic (sub)types

e Extrinsic view (Curry-style): a type is a property of a term. Think:
® There is some set of values

type value =
| VInt of int
| VBool of bool

® Each type corresponds to a subset of values

let typ_int = function
| VInt _ -> true
| _ -> false

let typ_ bool = function
| VBool __ -> true
| _ => false

® A term has type tif it evaluates to a value of type ¢

Extrinsic (sub)types

e Extrinsic view (Curry-style): a type is a property of a term. Think:
® There is some set of values

type value =
| VInt of int
| VBool of bool

® Each type corresponds to a subset of values

let typ_int = function
| VInt _ -> true
| _ -> false

let typ_ bool = function
| VBool __ -> true
| _ => false

® A term has type tif it evaluates to a value of type ¢
* Types may overlap.

let typ_nat = function
| ViInt z -> x>= 0
| _ => false

Subtyping

¢ Call sasubtype of type tif the values of type sis a subset of values of type 1
¢ A subtyping judgement takes the form s <: ¢

® “The type sis a subtype of ¢’
e Liskov substitution priciple: if sis a subtype of ¢, then terms of type ¢ can be re &
terms of type s without breaking type safety.

Subtyping

e Call sa subtype of type tif the values of type sis a subset of values of type ¢
* A subtyping judgement takes the formF s <: ¢
® “The type sis a subtype of ¢’

e Liskov substitution priciple: if sis a subtype of ¢, then terms of type ¢ can be replaced with
terms of type s without breaking type safety.

NATINT SUBSUMPTION TRANSITIVITY REFLEXIVITY
I'ke:s Fs<:t Ft <ty Fiy <:ts
F nat <:int I'ke:t i <t Fi<:t

e Subsumption: if sis a subtype of ¢, then terms of type s can be used as if they were terms
of type ¢

Casting

® Upcasting: Suppose s <: tand e has type s. May safety cast e to type ¢.
® Subsumeption rule: upcast implicitly (C, C++, Java, ...)
® Not necessarily a no-op (e.g., upcast int to float)
® |n OCaml: upcast e to t with (e :> ¢) (important for type inference!)
* Downcasting: Suppose s <: tand e has type t. May not safety cast e to type s.
® Checked downcasting: check that downcasts are safe at runtime (Java, dynamic_cast in C++)
® Type safe - throwing an exception is not the same as a type error

® Unchecked downcasting: static_cast in C++
® No downcasting: OCaml

Extending the subtype relation

TUPLE LisT ARRAY
Ft <5 F i, <: s, Fs<:t Fs<:t

Bodyskeookt, <81 %--- %8, Fs list <:t list F s array <:t array

Extending the subtype relation

TUPLE LisT ARRAY
Ft <5 F i, <: s, Fs<:t Fs<:t
Bodyskeookt, <81 %--- %8, Fs list <:t list F s array <:t array

¢ Array subtyping rule is unsound (Javal)
LetI' = [z + nat array]

NATINT ————
nat <:int
ARRAY
' x: nat array nat array <:int array
Sus - NAT —— INT —————
'k z:int array T'F0:nat 'k —1:int

't z[0] :== -1

VAR

AssN

Width subtying

type point2d { = : int, y : int }
type point3d { = : int, y : int, z : int }

® point2d <: point3dorpoint3d <: point2d?

Width subtying

type point2d { = : int, y : int }
type point3d { = : int, y : int, z : int }

® point2d <: point3dorpoint3d <: point2d?

e Liskov: Every 3-dimensional point can be used as a 2-dimensional point (point3d <:
point2d)

Width subtying

type point2d { = : int, y : int }
type point3d { = : int, y : int, z : int }

® point2d <: point3dorpoint3d <: point2d?
e Liskov: Every 3-dimensional point can be used as a 2-dimensional point (point3d <:
point2d)
RECORDWIDTH

- {laby : 51 laby, : sm} <: {laby : s :laby sy}

Compiling width subtyping

Easy!
® s <:tmeans sizeof(t) < sizeof(s), but field positions are the same (e.lab compiled the
same way, whether e has type s or type 1)

point3d point2d
X X
y
z

* eg,pt->yisx(pt + sizeof(int)), regardless of whether pt is 2d or 3d

Depth subtyping

type nat_point { = : nat, y : nat }
type int_point { = : int, y : int }

® nat_point <: int_pointorint_point <: nat_point?

Depth subtyping

type nat_point { = : nat, y : nat }
type int_point { = : int, y : int }

® nat_point <: int_pointorint_point <: nat_point?
e Liskov: nat_point <: int_point but only for immutable records!

Depth subtyping

type nat_point { = : nat, y : nat }
type int_point { = : int, y : int }

® nat_point <: int_pointorint_point <: nat_point?
e Liskov: nat_point <: int_point but only for immutable records!
RECORDDEPTH
Fs <ty Fs, <:t,

F{lab; : s1;...;lab, : s} <: {laby : t1;...;laby, : t,}

Compiling depth subtyping

Easy!
® s <:tmeans sizeof(s) = sizeof(?), so field positions are the same.
nat_point int_point
X X

® ptisanat_point: pt->yis *x(pt + sizeof(nat))
® ptisanint_point: pt->yis *(pt + sizeof(int))

® sizeof(int) = sizeof(nat)

Compiling width+depth subtyping

type point2d { = : int, y : int }

type point3d { = : int, y : int, z : int }

type rectangle = { tl : point2d, br : point2d }

type pyramid = { tl : point3d, br : point3d, top: point3d }

e Width + depth: pyramid <: rectangle (with immutable records)

pyramid rectangle

tlx L5
tly tly
iz incompatible! — brx
br.x < bry
bry
br.z

top.x

top.y

top.z

Compiling width+depth subtyping

type point2d { = : int, y : int }

type point3d { = : int, y : int, z : int }

type rectangle = { tl : point2d, br : point2d }

type pyramid = { tl : point3d, br : point3d, top: point3d }

e Width + depth: pyramid <: rectangle (with immutable records)

pyramid rectangle

tl — tlx tl — tlx

br tly br tly

top tlz br.x

br.x bry

bry

brz
top.x
topy
top.z

e Add an indirection laver!

Function subtyping

FUN
F? <7 F7 <7

Fit—t <:is1— s

Function subtyping

FUN
|—81 <t |—t2<252

it —to <81 — 5o

¢ In the function subtyping rule, we say that the argument type is contravariant, and the
output type is covariant

* Some languages (Eiffel, Dart) have covariant argument subtyping. Not type-safe!

Type inference with subtyping

SUBSUMPTION
I'kFe:s Fs<:t

I'ke:t

* In the presence of the subsumption rule, a term may have more than one type. \Which
type should we infer?
® Subtyping forms a preorder relation (REFLEXIVITY and TRANSITIVITY)
* Typically (but not necessarily), subtyping is a partial order
® A partial order is a binary relation that is reflexive, transitive, and antisymmetric
Ifa<:bandb <: g thena="5
® A preorder that is not a partial order: graph reachability (v < viff there is a path from u to v)

SUBSUMPTION
I'kFe:s Fs<:t

I'ke:t

* In the presence of the subsumption rule, a term may have more than one type. \Which
type should we infer?

® Subtyping forms a preorder relation (REFLEXIVITY and TRANSITIVITY)
* Typically (but not necessarily), subtyping is a partial order

® A partial order is a binary relation that is reflexive, transitive, and antisymmetric
Ifa<:band b <:a thena="b
® A preorder that is not a partial order: graph reachability (v < viff there is a path from u to v)

¢ Given a context I" and expression ¢, goal is to infer least type tsuch thatI' - e : tis
derivable.

¢ Subsumption is not syntax-directed
* Type inference can't use program syntax to determine when to use subsumption rule

¢ Subsumption is not syntax-directed
* Type inference can't use program syntax to determine when to use subsumption rule

* Do not use subsumption! Integrate subsumption into other inference rules. E.g,,

TypP_CARR
I'ke @t I'ke,:t

I'-new t[1{e1,..., e} : t[]

¢ Subsumption is not syntax-directed
* Type inference can't use program syntax to determine when to use subsumption rule

* Do not use subsumption! Integrate subsumption into other inference rules. E.g,,

TypP_CARR
I'kFe :tg I'ke,:t, Fto<:t i, <t

I'-new t[1{e1,..., e} : t[]

IF
T'F e1 : bool I'ke:t I'keg:t

I'Hife;theneselsees: t

IF
' e : bool I'kEey:ty I'Feg:t Fi <t Fiyg <t

I'Hife;theneselsees: t

IF
' e : bool I'kEey:ty I'Feg:t Fi <t Fiyg <t

I'Hife;theneselsees: t

® Problem: whatis ¢?

IF
' e : bool I'kEey:ty I'Feg:t Fi <t Fiyg <t

I'Hife;theneselsees: t

® Problem: what is #?
e Say that tis a [east upper bound of t, and t3 if

0 ty <: tand ity <:t
@ Forany type ¢ such that ¢, <: ¢ and #3 <: ¢, we have ¢ <: ¢/

(If <:is a partial order, least upper bound is unique)

IF
' e : bool I'kEey:ty I'Feg:t Fi <t Fiyg <t

I'Hife;theneselsees: t

® Problem: what is #?
e Say that tis a [east upper bound of t, and t3 if

0 ty <: tand ity <:t
@ Forany type ¢ such that ¢, <: ¢ and #3 <: ¢, we have ¢ <: ¢/

(If <:is a partial order, least upper bound is unique)
¢ Take tto be the least upper bound of ¢, and #3

IF
' e : bool I'kEey:ty I'Feg:t Fi <t Fiyg <t

I'Hife;theneselsees: t

* Problem: what is #?
e Say that tis a [east upper bound of t, and t3 if
0 ty <: tand ity <:t
@ Forany type ¢ such that ¢, <: ¢ and #3 <: ¢, we have ¢ <: ¢/
(If <:is a partial order, least upper bound is unique)

¢ Take tto be the least upper bound of ¢, and #3
® Java: every pair of types has a least upper bound
® Least upper bound is the least common ancestor in class hierarchy

IF
' e : bool I'kEey:ty I'Feg:t Fi <t Fiyg <t

I'Hife;theneselsees: t

* Problem: what is #?
e Say that tis a [east upper bound of t, and t3 if
0 ty <: tand ity <:t
@ Forany type ¢ such that ¢, <: ¢ and #3 <: ¢, we have ¢ <: ¢/
(If <:is a partial order, least upper bound is unique)

¢ Take tto be the least upper bound of ¢, and #3
® Java: every pair of types has a least upper bound
® Least upper bound is the least common ancestor in class hierarchy
e C++ with multiple inheritance, classes can have multiple upper bounds, none if which is least

® Require tp <: tzortz <: to

IF
' e : bool I'kEey:ty I'Feg:t Fi <t Fiyg <t

I'Hife;theneselsees: t

* Problem: what is #?
e Say that tis a [east upper bound of t, and t3 if
0 ty <: tand ity <:t
@ Forany type ¢ such that ¢, <: ¢ and #3 <: ¢, we have ¢ <: ¢/
(If <:is a partial order, least upper bound is unique)
¢ Take tto be the least upper bound of ¢, and #3
® Java: every pair of types has a least upper bound
® Least upper bound is the least common ancestor in class hierarchy
e C++ with multiple inheritance, classes can have multiple upper bounds, none if which is least
® Require tp <: tzortz <: to
¢ OCaml: no subsumption rule. Must explicitly upcast each side of the branch.

Looking ahead

¢ Compiling up:
® Compiling with types, start on optimization
* HW4: Oat v2

® Need to implement a type-checker (among other things)
® (Oat v2 has subtyping)

¢ Afew weeks later: compiling object-oriented languages
® Subtyping plays a prominent role

