COS320: Compiling Techniques

Zak Kincaid

January 29, 2026

Logistics

e Midterm scores released - please submit regrade requests by Friday 3/22
¢ HW3 due next Monday

Compiler phases (simplified)

Lexing
A\ 4

Parsing

i
Y

Abstract syntax tree

. (Translation

Intermediate representation) Optimization

. (Code generation

Semantic Analysis

Semantic analysis

® The semantic analysis phase is responsible for:
® Connecting symbol occurrences to their definitions (i.e., implement scoping rules)
® Checking that the AST is well-typed
® Various other well-formedness checks not captured by the grammar (e.g., break must appear
inside a for, while, or switch)

Semantic analysis

® The semantic analysis phase is responsible for:
® Connecting symbol occurrences to their definitions (i.e., implement scoping rules)
® Checking that the AST is well-typed
® Various other well-formedness checks not captured by the grammar (e.g., break must appear
inside a for, while, or switch)

¢ Semantic analysis phase can report warnings (potential problems) or errors (severe
problems that must be resolved in order to compile)
® ex.c:4:5: warning: assignment makes integer from pointer without a cast
® ex.c:3:11: error: ‘i’ undeclared (first use in this function)

Semantic analysis

® The semantic analysis phase is responsible for:
® Connecting symbol occurrences to their definitions (i.e., implement scoping rules)
® Checking that the AST is well-typed
® Various other well-formedness checks not captured by the grammar (e.g., break must appear
inside a for, while, or switch)

¢ Semantic analysis phase can report warnings (potential problems) or errors (severe
problems that must be resolved in order to compile)
® ex.c:4:5: warning: assignment makes integer from pointer without a cast
® ex.c:3:11: error: ‘i’ undeclared (first use in this function)
* Main data structure manipulated by semantic analysis: symbol table
® Mapping from symbols to information about those symbols (type, location in source text, ...)
® Symbol table is used to help translation into IR

® Semantic analysis may also decorate AST (e.g., attach type information to expressions, or
replace symbols with references to their symbol table entry)

Types

* Type checking catches errors at compile time, eliminating a class of mistakes that would
otherwise lead to run-time errors
* Type information is sometimes necessary for code generation
® Floating-point + is not the same instruction as integer + is not the same as pointer/integer +
® pointer/integer compiled differently depending on pointer type
® Assignment x = y compiled differently if y is an int ora struct

What is a type?

® Intrinsic view (Church-style): a type is syntactically part of a term.
® Aterm that cannot be typed is not a term at all :
® Types do not have inherent meaning - they are just used 1
e Extrinsic view (Curry-style): a type is a property of a term.
® For any term and every type, either the term has that type

® A term may have multiple types
® A term may have no types

Alonzo Church Haskell Curry

What is a type system?

A type system consists of a system of judgements and inference rules
e (Extrinsic view) A judgement is a claim, which may or may not be valid
® F3:int-"3 has type integer”
® (14 2):bool - “(1+2) has type boolean”
® A type system might involve many different kinds of judgement (well-typed expressions,
well-formed types, well-formed statements, ...)

e Inference rules are used to derive valid judgements from other valid judgements.
ADD
F e :int F ey :int
Fe + e :int

Read: “If ¢; and ey have type int, so does ¢; + e

Inference rules, generally

An inference rule consists of a list of premises Ji, ..., J,, and one conclusion J (and optionally a
side-condition), typically written as:

J1 J2 n
SIDE-CONDITION

¢ Side-condition: additional premise, but not a judgement

® Read top-down: If J; and J; and ... and J,, are valid (and the side condition holds) then Jis
valid.

® Read bottom-up: To prove Jis valid, sufficient to prove .J;, Js, ... J,, are valid (+ side
condition)

A simple expression language

* Syntax of expressions

<Exp> ::=<Var> | <Int>
| <Exp>+<Exp> | <Exp>*<Exp>
| <Exp>A<Exp> | <Exp>V<Exp>
| <Exp><<Exp> | <Exp>=<Exp>
| if <Exp> then <Exp> else <Exp>

® 3 + (2 A) issyntactically well-formed, but not well-typed
® Isx + 1 well-typed?

Type judgements

e A type environment is a symbol table mapping symbols to types.

® Eg,[x+— int,y — bool,z — int]: xand z are ints, y is a bool
® Notation: type environment denoted by I"
® Notation: I'{z — t} is a functional update

t ifz=1y
I'(y) otherwise

Mz tH(y) = {

® Eg,[x+— int,y — int]{x — bool} = [x — bool,y > int]

Type judgements

e A type environment is a symbol table mapping symbols to types.

® Eg,[x+— int,y — bool,z — int]: xand z are ints, y is a bool
® Notation: type environment denoted by I"
® Notation: I'{z — t} is a functional update

t ifz=1y
I{z—t =
{em 8) {F(y) otherwise
® Eg,[x+— int,y — int]{x — bool} = [x — bool,y > int]
e Atype judgement takes the formI'Fe: ¢
® Read “Under the type environment T, the expression ¢ has type ¢’

Inference rules

INT VAR
ADD
- pef{.,-1,0,1,.. T(z) =t T'hke :int Ik e :int
Fl—n:intn {) 'zt (@) ! - 2
I'Fe 4+ e:int
AND LEQ
' e; : bool ' ey : bool I'Fe :int I'Fes:int
I'F eg A ey bool 'k e < ey :bool

IF
Fl—el:bool Fl—eQ:t F|—€3:t

I'Hife;theneyelsees: t

Derivations

¢ A derivation or proof tree is a tree where each node is labelled by a judgement, and edges
connect premises to a conclusion according to some inference rule.

* Leaves of the tree are axioms (inference rules w/o premises)
Derivationof z: int - 2 4 2 < 10 : bool:

INT

- — VAR — -
r:inthk 2:int z:intk z:int
ADD - - INT 5 5
z:intF 24+ 2:int z:intkF 10: int

z:intF 2+ 2<10: bool

LEQ

Derivationfor z: int Fif z < 0thenzelse —1xz: int:

VAR INT INT VAR
z:int bk z:int z:intF —1:int z:intF —1:int z:int bk z:int
LEa VAR MuL

| z:int 2 < 0 : bool z:int bk z:int z:intkF —1xz:int
F

z:int Fifz < Othenzelse — 1 z: int

Type checking

* Goal of a type checker: given a context I, expression e, and type ¢, determine whether a
derivation of the judgement I |- e : ¢ exists.

® Method: recurse on the structure of the AST, applying inference rules “bottom-up”

Binders & functions: scope logic

LET FUN
I'kFe:tg F{Z"—)tl}l_eglt F{x'—>t1}|—elt2
IF'Fletz=¢c1iney:t FHfun(z: t)->e: t; — b
ApPP

F|—61:t1—>t2 F"Gg:tl
I'Fee:ty

Type inference

® Goal of type inference: given a context I and expression ¢, determine a type ¢ for which
there is a derivation of the judgementI' - ¢: ¢
¢ Method: (again) recurse on the structure of the AST, applying inference rules “bottom-up”

e This only works because we have a very simple type system
® OCaml type inference (Hindley-Milner): recurse on the structure of the AST to produce a
constraint system, then solve the constraints

Type soundness

Well typed programs cannot “go wrong’>

Robin Milner

® More formally: if - e : tis derivable, then evaluating e either fails to terminate or yields a
value of type ¢
® Note: for our language (extension of simply-typed lambda calculus with integers and
booleans), we have something stronger: evaluating e always yields a value of type ¢

Well-formed types

* In languages with type definitions, need additional rules to define well-formed types
¢ Judgements take the form H+ ¢

® His set of type names
® tisatype
® HI t-"Assuming H names well-formed types, tis a well-formed type”

Well-formed types

¢ In languages with type definitions, need additional rules to define well-formed types
¢ Judgements take the form H+ ¢
® His set of type names

® tisatype
® HI t-"Assuming H names well-formed types, tis a well-formed type”
NAMED
INT BooL ARROW
HE t HE to se H
HE s

HbE int H bool HEH — 6

Well-formed types

¢ In languages with type definitions, need additional rules to define well-formed types
¢ Judgements take the form H+ ¢
® His set of type names

® tisatype
® HI t-"Assuming H names well-formed types, tis a well-formed type”
NAMED
INT BooL ARROW
HE t HE to se H
HE s
HbE int H bool HEH — 6

* Note: also need to modify the typing rules & judgements. E.g.,

FUN
HE 4 H,F{Z‘Htl}}—eilb

HTFfun (z:t)->e: t1 = t

Statements

¢ In languages with statements, need additional rules to defined well-formed statements
e E.g,judgements may take the form I'; rt - s
® Tis a type environment (variables — types)
® rtisatype
® T rtk s-"“assuming type environment I, sis a well-formed statement within a function that
returns a value of type rt’

Statements

¢ In languages with statements, need additional rules to defined well-formed statements
e Eg.,judgements may take the form I'; rt I s
® Tis a type environment (variables — types)
® rtisatype
® T rtk s-"“assuming type environment I, sis a well-formed statement within a function that
returns a value of type rt’
ASSIGN RETURN DEcCL
F'ke:T(2) Fke:rt Fke:t T{x—t}rtk s

Iirtkz:=e I';rt+ return e I';rtEvarxz = e; 59

Additional aspects

¢ In OCaml, can have a variable and a type with the same name
® Multiple namespaces = multiple environments / symbol tables
® Parametric polymorphism
® Eg, fun x -> xinocamlhastype’a -> ’a
* Finite representation of infinitely many typings
* Subtyping (e.g., object-oriented languages) - next time
® Related: casting, coersion

