

COS320: Compiling Techniques

Zak Kincaid

January 29, 2026

Static Single Assignment form

SSA

- Each %uid appears on the left-hand-side of at most one assignment in a CFG

```
if (x < 0) {  
    y := y - x;  
} else {  
    y := y + x;  
}  
return y
```

→

```
if (x0 < 0) {  
    y1 := y0 - x0;  
} else {  
    y2 := y0 + x0;  
}  
y3 :=  $\phi(y_1, y_2)$   
return y3
```

- Recall: $y_3 := \phi(y_1, y_2)$ picks either y_1 or y_2 (whichever one corresponds to the branch that is actually taken) and stores it in y_3
- Well-formedness condition: uids must be defined before they are used.
 - Formal definition to follow!

Register allocation

- SSA form reduces register pressure
 - Each variable x is replaced by potentially many “subscripted” variables x_1, x_2, x_3, \dots
 - (At least) one for each definition of x
 - Each x_i can potentially be stored in a different memory location

Register allocation

- SSA form reduces register pressure
 - Each variable x is replaced by potentially many “subscripted” variables x_1, x_2, x_3, \dots
 - (At least) one for each definition of x
 - Each x_i can potentially be stored in a different memory location

Register allocation

- SSA form reduces register pressure
 - Each variable x is replaced by potentially many “subscripted” variables x_1, x_2, x_3, \dots
 - (At least) one for each definition of x
 - Each x_i can potentially be stored in a different memory location
- Interference graphs for SSA programs are *chordal* (every cycle contains a chord)
 - Chordal graphs can be colored optimally in polytime
 - (But optimal translation out of SSA form is intractable)

Dead assignment elimination

Simple algorithm for eliminating assignment¹ instructions that are never used:

while some $\%x$ has no uses do

 | Remove definition of $\%x$ from CFG;

- SSA conversion \Rightarrow more assignments are eliminated

```
x := 0
      |
x := 1
      |
return 2 * x
```

¹does not eliminate dead stores

Dead assignment elimination

Simple algorithm for eliminating assignment¹ instructions that are never used:

while some $\%x$ has no uses do

 | Remove definition of $\%x$ from CFG;

- SSA conversion \Rightarrow more assignments are eliminated

¹does not eliminate dead stores

Dead assignment elimination

Simple algorithm for eliminating assignment¹ instructions that are never used:

while some $\%x$ has no uses do

 | Remove definition of $\%x$ from CFG;

- SSA conversion \Rightarrow more assignments are eliminated

¹does not eliminate dead stores

Dead assignment elimination

Simple algorithm for eliminating assignment¹ instructions that are never used:

while some $\%x$ has no uses do

 | Remove definition of $\%x$ from CFG;

- SSA conversion \Rightarrow more assignments are eliminated

¹does not eliminate dead stores

Recall: constant propagation

- The goal of constant propagation: determine at each instruction I a *constant environment*
 - A **constant environment** is a symbol table mapping each variable x to one of:
 - an integer n (indicating that x 's value is n whenever the program is at I)
 - \top (indicating that x might take more than one value at I)
 - \perp (indicating that x may take no values at run-time – I is unreachable)
- Say that the assignment **IN**, **OUT** is **conservative** if
 - ① $\mathbf{IN}[s]$ assigns each variable \top
 - ② For each node $bb \in N$,
$$\mathbf{OUT}[bb] \sqsupseteq \mathit{post}_{CP}(bb, \mathbf{IN}[bb])$$
 - ③ For each edge $src \rightarrow dst \in E$,
$$\mathbf{IN}[dst] \sqsupseteq \mathbf{OUT}[src]$$

(Dense) constant propagation performance

- Memory requirements: $\Theta(|N| \cdot |Var|)$
 - Constant environment has size $\Theta(|Var|)$, need to track $\Theta(1)$ per node
- Time requirements: $\Theta(|E| \cdot |Var|) = \Theta(|N| \cdot |Var|)$
 - Processing a single node takes $\Theta(1)$ time
 - Each edge is processed $\Theta(|Var|)$ times
 - Height of the abstract domain (length of longest strictly ascending sequence): $|Var| + 1$
- Can we do better?

Sparse constant propagation

- Idea: SSA connects variable *definitions* directly to their *uses*
 - Don't need to store the value of *every* variable at *every* program point
 - Don't need to propagate changes through irrelevant blocks

Sparse constant propagation

- Idea: SSA connects variable *definitions* directly to their *uses*
 - Don't need to store the value of *every* variable at *every* program point
 - Don't need to propagate changes through irrelevant blocks
- Can think of SSA as a graph, where edges correspond to *data flow* rather than *control flow*
 - Define $rhs(\%x)$ to be the right hand side of the **unique** assignment to $\%x$
 - Define $succ(\%x) = \{\%y : rhs(\%y) \text{ reads } \%x\}$

Sparse constant propagation

- Idea: SSA connects variable *definitions* directly to their *uses*
 - Don't need to store the value of *every* variable at *every* program point
 - Don't need to propagate changes through irrelevant blocks
- Can think of SSA as a graph, where edges correspond to *data flow* rather than *control flow*
 - Define $rhs(\%x)$ to be the right hand side of the **unique** assignment to $\%x$
 - Define $succ(\%x) = \{\%y : rhs(\%y) \text{ reads } \%x\}$
- Local specification for constant propagation:
 - scp is the smallest function $Uid \rightarrow \mathbb{Z} \cup \{\top, \perp\}$ such that
 - If G contains no assignments to $\%x$, then $scp(\%x) = \top$
 - For each instruction $\%x = e$, $scp(\%x) = eval(e, scp)$
 - For each instruction $\%x = \phi(\%y, \%z)$, $scp(\%x) = scp(\%y) \sqcup scp(\%z)$

Worklist algorithm

$$scp(\%x) = \begin{cases} \perp & \text{if } \%x \text{ has an assignment} \\ \top & \text{otherwise} \end{cases}$$

$work \leftarrow \{\%x \in Uid : \%x \text{ is defined}\};$

while $work \neq \emptyset$ **do**

 Pick some $\%x$ from $work$;

$work \leftarrow work \setminus \{\%x\}$;

if $rhs(\%x) = \phi(\%y, \%z)$ **then**

$v \leftarrow scp(\%y) \sqcup scp(\%z)$

else

$v \leftarrow eval(rhs(\%x), scp)$

if $v \neq scp(\%x)$ **then**

$scp(\%x) \leftarrow v;$

$work \leftarrow work \cup succ(\%x)$

Computational complexity of constant propagation

	Dense	Sparse
Memory	$\Theta(N \cdot Var)$	$\Theta(N) = \Theta(Var)$
Time	$\Theta(N \cdot Var)$	$\Theta(N) = \Theta(Var)$

- *However, observe that we only find constants for uids, not stack slots.*
 - Again, advantageous to use uids to represent variable whenever possible

Computing SSA

(High-level) SSA conversion

- Replace each definition $x = e$ with a $x_i = e$ for some unique subscript i
- Replace each *use* of a variable y with y_i , where the i th definition of y is the unique reaching definition

(High-level) SSA conversion

- Replace each definition $x = e$ with a $x_i = e$ for some unique subscript i
- Replace each *use* of a variable y with y_i , where the i th definition of y is the unique reaching definition
- If multiple definitions reach a single use, then they must be merged using a ϕ (phi) statement

```
y := 0;  
while (x >= 0) {  
    x := x - 1;  
    y := y + x;  
}  
return y
```

→

```
y0 := 0;  
while (true) {  
    x2 =  $\phi$ (x0, x1)  
    y2 =  $\phi$ (y0, y1)  
    if (x2 < 0) break;  
    x1 := x2 - 1;  
    y1 := y2 + x1;  
}  
return y2
```

Placing ϕ statements

- Easy, inefficient solution: place a ϕ statement for each variable location at each *join point*
 - A *join point* is a node in the CFG with more than one predecessor

²The entry node of the CFG is considered to be an implicit definition of every variable

Placing ϕ statements

- Easy, inefficient solution: place a ϕ statement for each variable location at each *join point*
 - A *join point* is a node in the CFG with more than one predecessor
- Better solution: place a ϕ statement for variable x at location n exactly when the following **path convergence criterion** holds: there exist a pair of non-empty paths P_1, P_2 ending at n such that
 - 1 The start node of both P_1 and P_2 defines x^2
 - 2 The only node shared by P_1 and P_2 is n
- The path convergence criterion can be implemented using the concept of *iterated dominance frontiers*

²The entry node of the CFG is considered to be an implicit definition of every variable

Dominance

- Let $G = (N, E, s)$ be a control flow graph
- We say that a node $d \in N$ **dominates** a node $n \in N$ if every path from s to n contains d
 - Every node dominates itself
 - d **strictly dominates** n if d is not n
 - d **immediately dominates** n if d strictly dominates n and does not strictly dominate any strict dominator of n .

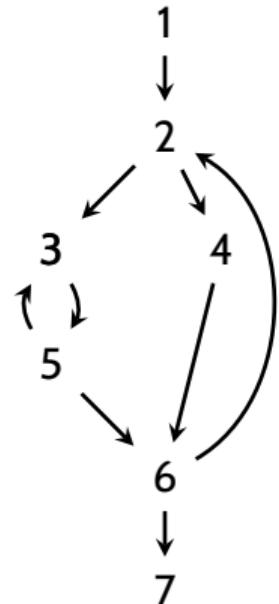
Dominance

- Let $G = (N, E, s)$ be a control flow graph
- We say that a node $d \in N$ **dominates** a node $n \in N$ if every path from s to n contains d
 - Every node dominates itself
 - d **strictly dominates** n if d is not n
 - d **immediately dominates** n if d strictly dominates n and does not strictly dominate any strict dominator of n .
- Observe: dominance is a partial order on N
 - Every node dominates itself (reflexive)
 - If n_1 dominates n_2 and n_2 dominates n_3 then n_1 dominates n_3 (transitive)
 - If n_1 dominates n_2 and n_2 dominates n_1 then n_1 must be n_2 (anti-symmetric)

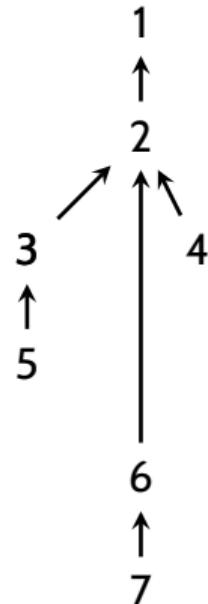
If we draw an edge from every node to its immediate dominator, we get a data structure called the *dominator tree*.

- (Essentially the Haase diagram of the dominated-by order)

Control Flow Graph



Dominator tree



Dominance and SSA

- **SSA well-formedness criteria**

- If $\%x$ is used in a non- ϕ statement in block n , then the definition of $\%x$ must dominate n
- If $\%x$ is the i th argument of a ϕ function in a block n , then the definition of $\%x$ must dominate the i th predecessor of n .

Dominator analysis

- Let $G = (N, E, s)$ be a control flow graph.
- Define dom to be a function mapping each node $n \in N$ to the set $\text{dom}(n) \subseteq N$ of nodes that dominate it

Dominator analysis

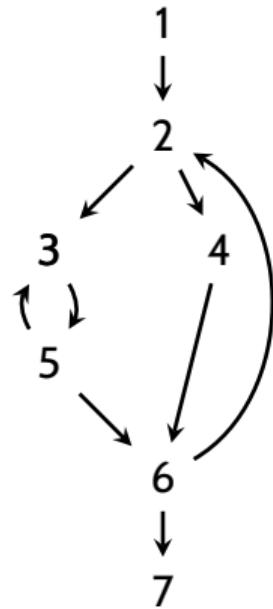
- Let $G = (N, E, s)$ be a control flow graph.
- Define dom to be a function mapping each node $n \in N$ to the set $\text{dom}(n) \subseteq N$ of nodes that dominate it
- *Local specification:* dom is the largest (equiv. least in superset order) function such that
 - $\text{dom}(s) = \{s\}$
 - For each $p \rightarrow n \in E$, $\text{dom}(n) \subseteq \{n\} \cup \text{dom}(p)$

Dominator analysis

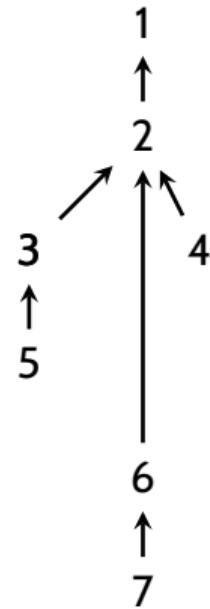
- Let $G = (N, E, s)$ be a control flow graph.
- Define dom to be a function mapping each node $n \in N$ to the set $\text{dom}(n) \subseteq N$ of nodes that dominate it
- *Local specification:* dom is the largest (equiv. least in superset order) function such that
 - $\text{dom}(s) = \{s\}$
 - For each $p \rightarrow n \in E$, $\text{dom}(n) \subseteq \{n\} \cup \text{dom}(p)$
- Can be solved using dataflow analysis techniques
 - In practice: nearly linear time algorithm due to Lengauer & Tarjan

- Recall: If $\%x$ is the i th argument of a ϕ function in a block n , then the definition of $\%x$ must dominate the i th predecessor of n .
- The **dominance frontier** of a node n is the set of all nodes m such that n dominates a predecessor of m , but does not strictly dominate m itself.
 - $DF(n) = \{m : (\exists p \in Pred(m).n \in dom(p)) \wedge (m = n \vee n \notin dom(m))\}$
- Whenever a node n contains a definition of some uid $\%x$, then any node m in the dominance frontier of n needs a ϕ function for $\%x$.

Control Flow Graph

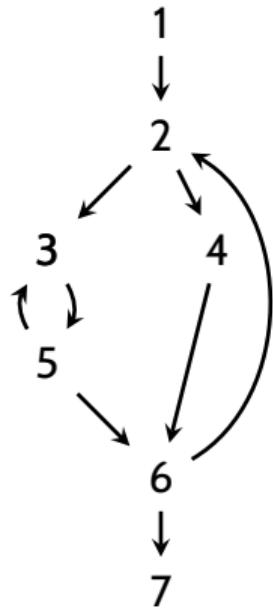


Dominator tree

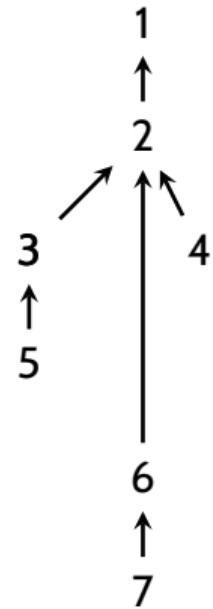


- $DF(1) = \emptyset$

Control Flow Graph

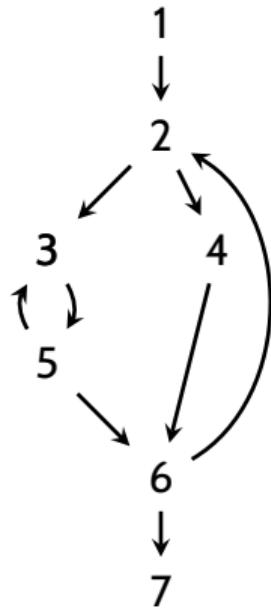


Dominator tree

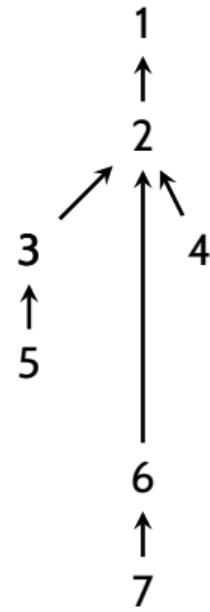


- $DF(1) = \emptyset$
- $DF(2) = \{2\}$

Control Flow Graph

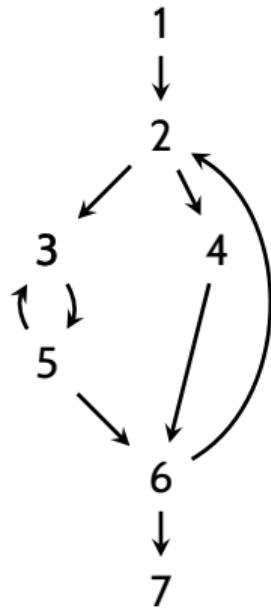


Dominator tree

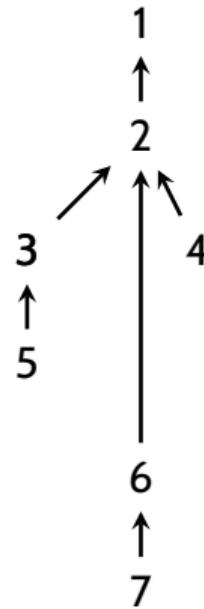


- $DF(1) = \emptyset$
- $DF(2) = \{2\}$
- $DF(3) = \{3, 6\}$

Control Flow Graph



Dominator tree

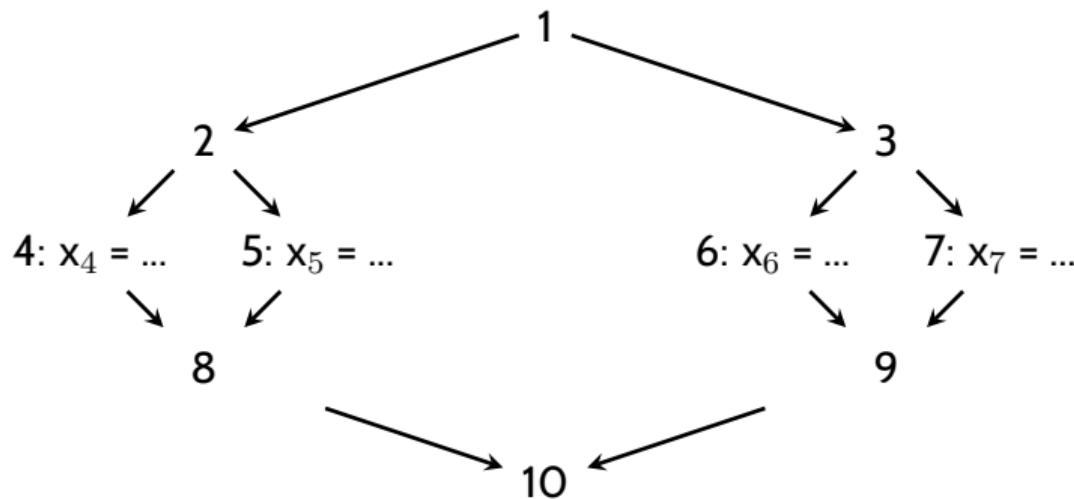


- $DF(1) = \emptyset$
- $DF(2) = \{2\}$
- $DF(3) = \{3, 6\}$

- $DF(4) = \{6\}$
- $DF(5) = \{3, 6\}$
- $DF(6) = \{2\}$

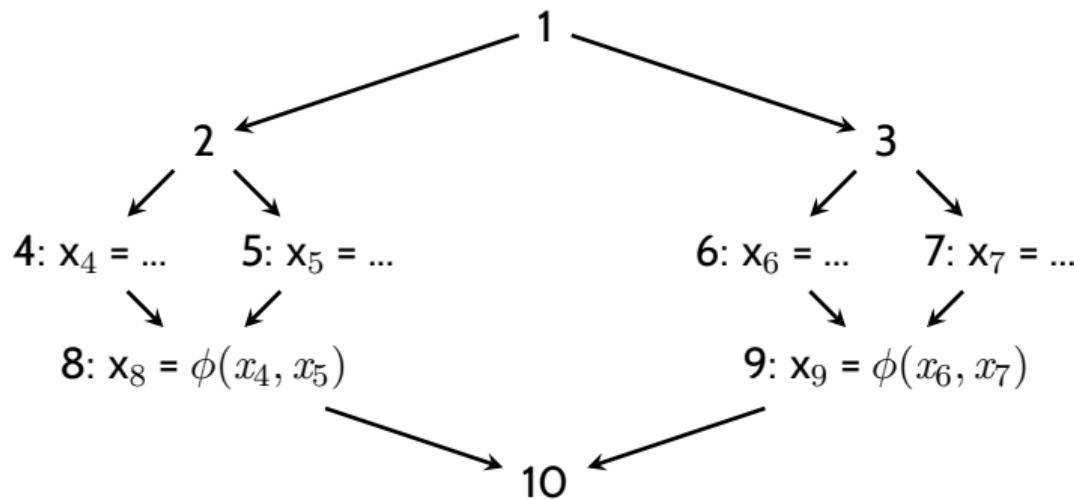
Dominance frontier is not enough!

- Whenever a node n contains a definition of some uid $\%x$, then any node m in the dominance frontier of n needs a ϕ statement for $\%x$.
- *But*, that is not the only place where ϕ statements are needed



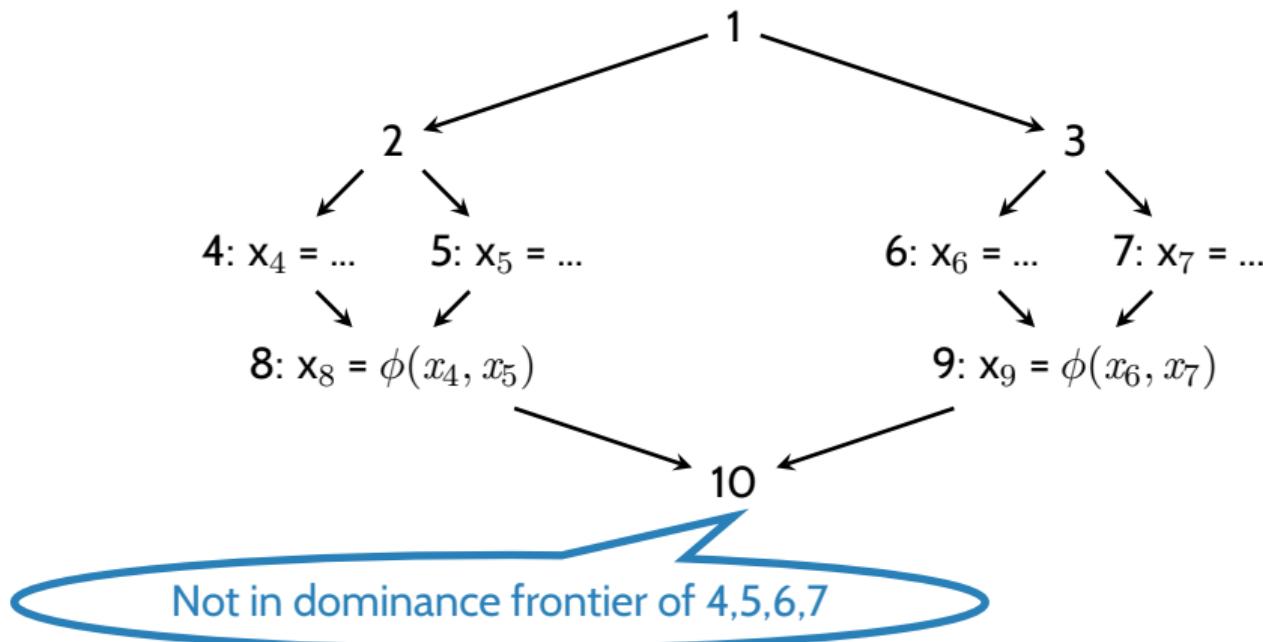
Dominance frontier is not enough!

- Whenever a node n contains a definition of some uid $\%x$, then any node m in the dominance frontier of n needs a ϕ statement for $\%x$.
- *But*, that is not the only place where ϕ statements are needed



Dominance frontier is not enough!

- Whenever a node n contains a definition of some uid $\%x$, then any node m in the dominance frontier of n needs a ϕ statement for $\%x$.
- *But*, that is not the only place where ϕ statements are needed



Placing ϕ statements

- Extend dominance frontier to sets of nodes by letting $DF(M) = \bigcup_{m \in M} DF(m)$
- Define the *iterated dominance frontier* $IDF(M) = \bigcup_i IDF_i(M)$, where
 - $IDF_0(M) = DF(M)$
 - $IDF_{i+1}(M) = IDF_i(M) \cup IDF(IDF_i(M))$

Placing ϕ statements

- Extend dominance frontier to sets of nodes by letting $DF(M) = \bigcup_{m \in M} DF(m)$
- Define the *iterated dominance frontier* $IDF(M) = \bigcup_i IDF_i(M)$, where
 - $IDF_0(M) = DF(M)$
 - $IDF_{i+1}(M) = IDF_i(M) \cup IDF(IDF_i(M))$
- For any node x , let $Def(x)$ be the set of nodes that define x
- Finally, we can characterize ϕ statement placement:

Insert a ϕ statement for x at every node in $IDF(Def(x))$

Transforming out of SSA

- The ϕ statement is not executable, so it must be removed in order to generate code

Transforming out of SSA

- The ϕ statement is not executable, so it must be removed in order to generate code
- For each ϕ statement $\%x = \phi(\%x_1, \dots, \%x_k)$ in block n , n must have exactly k predecessors p_1, \dots, p_k
- Insert a new block along each edge $p_i \rightarrow n$ that executes $\%x = \%x_i$ (program no longer satisfies SSA property!)

Transforming out of SSA

- The ϕ statement is not executable, so it must be removed in order to generate code
- For each ϕ statement $\%x = \phi(\%x_1, \dots, \%x_k)$ in block n , n must have exactly k predecessors p_1, \dots, p_k
- Insert a new block along each edge $p_i \rightarrow n$ that executes $\%x = \%x_i$ (program no longer satisfies SSA property!)
- Using a graph coalescing register allocator, often possible to eliminate the resulting move instructions

SSA overview

- SSA can make analysis and optimization
 - simpler
 - more efficient
 - more accurate
- at the cost of
 - having to compute SSA / maintain SSA invariants
 - complicating code generation
- Most imperative compilers use SSA: LLVM, gcc, HotSpot, mono, v8, spidermonkey, go, ...
- *Dominance* is the key idea needed to efficiently transform into SSA
 - Will also make an appearance next week when we talk about loop optimizations