COS320: Compiling Techniques

Zak Kincaid

January 29, 2026

Static Single Assignment form

SSA

® Each %uid appears on the left-hand-side of at most one assignment in a CFG

if (x <0) { if (xo <0) {
y 1=y - X; Y1 = Yo ~ Xo;
dolee ! — : iis'e—{)m + Xo;
) y :=y +tXx;)
return y ys = ¢(y1, Y2)
return ys

® Recall: y5 := ¢ly1, y2) picks either y; or ys (whichever one corresponds to the branch that is
actually taken) and stores itin y3

¢ Well-formedness condition: uids must be defined before they are used.
® Formal definition to follow!

Register allocation

e SSA form reduces register pressure
® Each variable zis replaced by potentially many “subscripted” variables z;, 25, z3,...
® (At least) one for each definition of of =
® Each z; can potentially be stored in a different memory location

Register allocation

e SSA form reduces register pressure
® Each variable zis replaced by potentially many “subscripted” variables z;, 25, z3,...
® (At least) one for each definition of of =
® Each z; can potentially be stored in a different memory location

Register allocation

e SSA form reduces register pressure
® Each variable zis replaced by potentially many “subscripted” variables z;, 25, z3,...
® (At least) one for each definition of of =
® Each z; can potentially be stored in a different memory location
e Interference graphs for SSA programs are chordal (every cycle contains a chord)

® Chordal graphs can be colored optimally in polytime
® (But optimal translation out of SSA form is intractable)

Dead assignment elimination

Simple algorithm for eliminating assignment' instructions that are never used:

while some %z has no uses do
\ Remove definition of %z from CFG;

® SSA conversion = more assignments are eliminated

X :=0
Qx::l

return 2 x x

'does not eliminate dead stores

Dead assignment elimination

Simple algorithm for eliminating assignment' instructions that are never used:

while some %z has no uses do
\ Remove definition of %z from CFG;

® SSA conversion = more assignments are eliminated

X :=0 Xg := 0

SSA conversion
X =1 == esssssssssssssses » X1 := 1
return 2 * x return 2 * x3

'does not eliminate dead stores

Dead assignment elimination

Simple algorithm for eliminating assignment' instructions that are never used:

while some %z has no uses do
\ Remove definition of %z from CFG;

® SSA conversion = more assignments are eliminated

X :=0 Xg := 0

SSA conversion
X =1 == esssssssssssssses X1 := 1
return 2 * x return 2 * x3

'does not eliminate dead stores

Dead assignment elimination

Simple algorithm for eliminating assignment' instructions that are never used:

while some %z has no uses do
\ Remove definition of %z from CFG;

® SSA conversion = more assignments are eliminated

X :=0

SSA conversion
X =1 == esssssssssssssses X1 := 1
return 2 * x return 2 * x3

'does not eliminate dead stores

Recall: constant propagation

* The goal of constant propagation: determine at each instruction Ia constant environment
® A constant environment is a symbol table mapping each variable z to one of:

® aninteger n (indicating that z's value is n whenever the program is at 1)
® T (indicating that z might take more than one value at /)
® | (indicating that z may take no values at run-time - I is unreachable)

¢ Say that the assignment IN, OUT is conservative if

© IN[s] assigns each variable T
@ Foreach node bb € N,
OUT(bb] J post - (bb, IN|bb])

© For each edge src — dst € E,
IN[dst] O OUT]src]

(Dense) constant propagation performance

* Memory requirements: O(|N| - |Var|)

¢ Constant environment has size O(|Var|), need to track ©(1) per node
¢ Time requirements: O(|E| - |Var|) = O(|N] - |Var|)

® Processing a single node takes ©(1) time

® Each edge is processed O(|Var|) times

® Height of the abstract domain (length of longest strictly ascending sequence): |Var| + 1

e Can we do better?

Sparse constant propagation

* |dea: SSA connects variable definitions directly to their uses

® Don't need to store the value of every variable at every program point
® Dont need to propagate changes through irrelevant blocks

Sparse constant propagation

* |dea: SSA connects variable definitions directly to their uses

® Don't need to store the value of every variable at every program point
® Dont need to propagate changes through irrelevant blocks

¢ Can think of SSA as a graph, where edges correspond to data flow rather than control flow

¢ Define rhs(%x) to be the right hand side of the unique assignment to %z«
¢ Define succ(%z) = {%y : rhs(%y) reads %z}

Sparse constant propagation

* |dea: SSA connects variable definitions directly to their uses
® Don't need to store the value of every variable at every program point
® Don't need to propagate changes through irrelevant blocks
¢ Can think of SSA as a graph, where edges correspond to data flow rather than control flow
¢ Define rhs(%x) to be the right hand side of the unique assignment to %z«
® Define succ(%z) = {%y : rhs(%y) reads %}
* Local specification for constant propagation:
® scp is the smallest function Uid — Z U {T, L } such that

® If G contains no assignments to %x, then scp(%z) = T
® For each instruction %x = e, scp(%z) = eval(e, scp)
® For each instruction %x =¢(%y, %z), scp(%x) = scp(%y) U scp(%2)

Worklist algorithm

L if %z has an assignment
T otherwise

work < {%z € Uid : %z is defined};
while work # () do

Pick some %z from work;

work + work \ {%x} ;

if rhs(%z) = ¢(%y, %z) then

v scp(%oy) U scp(%z)

scp(%oz) =

else
| v« eval(rhs(%z),scp)
if v # scp(%z) then
scp(%ox) + v,
work < work U succ(%x)

Computational complexity of constant propagation

Dense | Sparse
Memory | O(|N] - |Var|) | ©(|N]) = ©(|Var])
Time | O(|N - [Varl) | ©(N) = ©(|Var])

* However, observe that we only find constants for uids, not stack slots.
® Again, advantageous to use uids to represent variable whenever possible

Computing SSA

(High-level) SSA conversion

* Replace each definition z = e with a 2; = e for some unique subscript i

* Replace each use of a variable y with y;, where the ith definition of y is the unique reaching
definition

(High-level) SSA conversion

* Replace each definition z = e with a 2; = e for some unique subscript i

* Replace each use of a variable y with y;, where the ith definition of y is the unique reaching
definition

e If multiple definitions reach a single use, then they must be merged using a ¢ (phi)

statement
Yo := 0;
while (true) {

y = 0; i
while (x >= @) { x2 = ¢(Xo, X1)
X o= ox - 1 y2 = (Yo, Y1)

. ’ — if (xo < 0) break;

y 1=y oEx

} X1 = X9 ~ 1;
= + o
return y }YI 1= y2 Xy

return ys

Placing ¢ statements

* Easy, inefficient solution: place a ¢ statement for each variable locaction at each join point
® Ajoin point is a node in the CFG with more than one predecessor

2The entry node of the CFG is considered to be an implicit definition of every variable

Placing ¢ statements

* Easy, inefficient solution: place a ¢ statement for each variable locaction at each join point
® Ajoin point is a node in the CFG with more than one predecessor
* Better solution: place a ¢ statement for variable z at location n exactly when the following

path convergence criterion holds: there exist a pair of non-empty paths P;, P, ending at
n such that

@ The start node of both P; and P, defines 22
@ The only node shared by P; and Py is n
¢ The path convergence criterion can be implemented using the concept of iterated
dominance frontiers

’The entry node of the CFG is considered to be an implicit definition of every variable

Dominance

® Let G = (N, E, s) be a control flow graph

* We say that a node d € N dominates anode n € Nif every path from s to n contains d
® Every node dominates itself
e (strictly dominates nif dis not n

® dimmediately dominates n if d strictly dominates n and but does not strictly dominate any
strict dominator of n.

Dominance

® Let G = (N, E, s) be a control flow graph
* We say that a node d € N dominates anode n € Nif every path from s to n contains d
® Every node dominates itself
e dstrictly dominates nif dis not n
® dimmediately dominates n if d strictly dominates n and but does not strictly dominate any
strict dominator of n.
¢ Observe: dominance is a partial order on N
® Every node dominates itself (reflexive)
® |f n; dominates ny and ny dominates n3 then n; dominates n; (transitive)
® If n; dominates ny and ny dominates n; then n; must be ny (anti-symmetric)

If we draw an edge from every node to its immediate dominator, we get a data structure called
the dominator tree.

¢ (Essentially the Haase diagram of the dominated-by order)

Control Flow Graph Dominator tree
1 1
! t
2 2
O\ an
3 4 3 4

) / t
5 5
N\
6
!
7

N — o0

Dominance and SSA

e SSA well-formedness criteria
® If %z is used in a non-¢ statement in block n, then the definition of %z must dominate n
° If %xis the ith argument of a ¢ function in a block n, then the definition of %z must dominate
the ith predecessor of n.

Dominator analysis

* Let G= (N, E, s) be a control flow graph.

* Define dom to be a function mapping each node n € N to the set dom(n) C N of nodes
that dominate it

Dominator analysis

* Let G= (N, E, s) be a control flow graph.

* Define dom to be a function mapping each node n € N to the set dom(n) C N of nodes
that dominate it

e Local specification: dom is the largest (equiv. least in superset order) function such that

® dom(s) = {s}
® Foreach p — n € F,dom(n) C {n} Udom(p)

Dominator analysis

Let G = (N, E, s) be a control flow graph.
Define dom to be a function mapping each node n € N to the set dom(n) C N of nodes
that dominate it
Local specification: dom is the largest (equiv. least in superset order) function such that
® dom(s) = {s}
® Foreach p — n € E,dom(n) C {n} Udom(p)
Can be solved using dataflow analysis techniques
® In practice: nearly linear time algorithm due to Lengauer & Tarjan

* Recall: If %z is the ith argument of a ¢ function in a block n, then the definition of %z
must dominate the ith predecessor of n.
® The dominance frontier of a node nis the set of all nodes m such that n dominates a
predecessor of m, but does not strictly dominate m itself.
® DF(n) = {m: (3p € Pred(m).n € dom(p)) A (m=nV n¢ dom(m))}
* Whenever a node n contains a definition of some uid %z, then any node m in the
dominance frontier of n needs a ¢ function for %z.

Control Flow Graph Dominator tree
1 1
! t
2 2
O\ an
3 4

) /)
5 5
N\

N <«— O
N — O

* DF(1)=10

Control Flow Graph
1
!

2
/\
3 4

) /
5
N\

N «— O

Dominator tree

1}
2
/NN

3 4
1
5

6

1}

7

Control Flow Graph
1
!

2
/\
3 4

) /
5
N\

N «— O

Dominator tree

1}
2
/NN

3 4
1
5

6

1}

7

Control Flow Graph
1
!

2

7\
3 4
)

/
N(—O\\

Dominator tree

N — o0

° DF(4) = {6}
o DF(5) = {3,6}
o DF(6) = {2}

Dominance frontier is not enough!

e Whenever a node n contains a definition of some uid %z, then any node m in the
dominance frontier of n needs a ¢ statement for %z.
® But, that is not the only place where ¢ statements are needed

2
VRN
4: x4 = ... 5:x5=.. 6: Xg = ... 7: X7 = ...

N/ N/
8 9

\/

10

Dominance frontier is not enough!

e Whenever a node n contains a definition of some uid %z, then any node m in the
dominance frontier of n needs a ¢ statement for %z.
® But, that is not the only place where ¢ statements are needed

1
2/\3
/. v\

4: x4 = ... 5: x5 =... 6: Xg = ... 7: %7 = ...
N/ N/
8: Xg = QZ)(.’E4’ .’L'5) 9: X9 = ¢(SC6, SC?)

\/

10

Dominance frontier is not enough!

e Whenever a node n contains a definition of some uid %z, then any node m in the
dominance frontier of n needs a ¢ statement for %z.
® But, that is not the only place where ¢ statements are needed

1

/\

2 3
RN RN

4: x4 = ... 5:x5=.. 6: X6 = ... 7: X7 = ...
N/ N/
8: Xg = ¢($4, $5) 9: X9 = ¢(SC6, SC?)

4
<Not in dominance frontier of 4,5,6,7)

Placing ¢ statements

¢ Extend dominance frontier to sets of nodes by letting DF(M) = U DF(m)
meM

¢ Define the iterated dominance frontier IDF(M) = U IDF;(M), where
i

® IDFy(M) = DF(M)
o IDFiy (M) = IDFy(M) U IDF(IDFs(M))

Placing ¢ statements

Extend dominance frontier to sets of nodes by letting DF(M) = U DF(m)
meM

Define the iterated dominance frontier IDF(M) = U IDF;(M), where
i

* IDFy(M) = DF(M)
 IDF;,1(M) = IDF;(M) U IDF(IDFy(M))

For any node z, let Def(x) be the set of nodes that define z
Finally, we can characterize ¢ statement placement:

Insert a ¢ statement for z at every node in IDF(Def(x))

Transforming out of SSA

* The ¢ statement is not executable, so it must be removed in order to generate code

Transforming out of SSA

* The ¢ statement is not executable, so it must be removed in order to generate code

* For each ¢ statement %z = ¢(%ux1, . . ., %) in block n, n must have exactly &
predecessors p1, ..., P

* Insert a new block along each edge p; — n that executes %z = %u; (program no longer
satisfies SSA property!)

Transforming out of SSA

The ¢ statement is not executable, so it must be removed in order to generate code

For each ¢ statement %z = ¢(%u1, . . ., %) in block n, n must have exactly
predecessors p1, ..., P

Insert a new block along each edge p; — n that executes %z = %z; (program no longer
satisfies SSA property!)

Using a graph coalescing register allocator, often possible to eliminate the resulting move
instructions

SSA overview

SSA can make analysis and optimization
® simpler
® more efficient
® more accurate

at the cost of
® having to compute SSA / maintain SSA invariants
® complicating code generation
Most imperative compilers use SSA: LLVM, gcc, HotSpot, mono, v8, spidermonkey, go, ...
Dominance is the key idea needed to efficiently transform into SSA
* Will also make an appearence next week when we talk about loop optimizations

