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Static Single Assignment form



SSA

• Each %uid appears on the left-hand-side of at most one assignment in a CFG

if (x < 0) {
y := y - x;

} else {
y := y + x;

}
return y

→

if (x0 < 0) {
y1 := y0 - x0;

} else {
y2 := y0 + x0;

}
y3 := ϕ(y1, y2)
return y3

• Recall: y3 := ϕ(y1, y2) picks either y1 or y2 (whichever one corresponds to the branch that is
actually taken) and stores it in y3

• Well-formedness condition: uids must be defined before they are used.
• Formal definition to follow!



Register allocation

• SSA form reduces register pressure
• Each variable x is replaced by potentially many “subscripted” variables x1, x2, x3,...

• (At least) one for each definition of of x
• Each xi can potentially be stored in a different memory location

• Interference graphs for SSA programs are chordal (every cycle contains a chord)
• Chordal graphs can be colored optimally in polytime
• (But optimal translation out of SSA form is intractable)
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Dead assignment elimination

Simple algorithm for eliminating assignment1 instructions that are never used:
while some %x has no uses do

Remove definition of %x from CFG;

• SSA conversion ⇒ more assignments are eliminated

x := 0

x := 1

return 2 * x

x0 := 0

x1 := 1

return 2 * x1

SSA conversion

1does not eliminate dead stores
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Recall: constant propagation

• The goal of constant propagation: determine at each instruction I a constant environment
• A constant environment is a symbol table mapping each variable x to one of:

• an integer n (indicating that x’s value is n whenever the program is at I)
• ⊤ (indicating that x might take more than one value at I)
• ⊥ (indicating that x may take no values at run-time – I is unreachable)

• Say that the assignment IN,OUT is conservative if
1 IN[s] assigns each variable ⊤
2 For each node bb ∈ N,

OUT[bb] ⊒ postCP(bb, IN[bb])

3 For each edge src → dst ∈ E,
IN[dst] ⊒ OUT[src]



(Dense) constant propagation performance

• Memory requirements: Θ(|N| · |Var|)
• Constant environment has size Θ(|Var|), need to track Θ(1) per node

• Time requirements: Θ(|E| · |Var|) = Θ(|N| · |Var|)
• Processing a single node takes Θ(1) time
• Each edge is processed Θ(|Var|) times

• Height of the abstract domain (length of longest strictly ascending sequence): |Var|+ 1

• Can we do better?



Sparse constant propagation

• Idea: SSA connects variable definitions directly to their uses
• Don’t need to store the value of every variable at every program point
• Don’t need to propagate changes through irrelevant blocks

• Can think of SSA as a graph, where edges correspond to data flow rather than control flow
• Define rhs(%x) to be the right hand side of the unique assignment to %x
• Define succ(%x) = {%y : rhs(%y) reads %x}

• Local specification for constant propagation:
• scp is the smallest function Uid → Z ∪ {⊤,⊥} such that

• If G contains no assignments to %x, then scp(%x) = ⊤
• For each instruction %x = e, scp(%x) = eval(e, scp)
• For each instruction %x =ϕ(%y,%z), scp(%x) = scp(%y) ⊔ scp(%z)



Sparse constant propagation

• Idea: SSA connects variable definitions directly to their uses
• Don’t need to store the value of every variable at every program point
• Don’t need to propagate changes through irrelevant blocks

• Can think of SSA as a graph, where edges correspond to data flow rather than control flow
• Define rhs(%x) to be the right hand side of the unique assignment to %x
• Define succ(%x) = {%y : rhs(%y) reads %x}

• Local specification for constant propagation:
• scp is the smallest function Uid → Z ∪ {⊤,⊥} such that

• If G contains no assignments to %x, then scp(%x) = ⊤
• For each instruction %x = e, scp(%x) = eval(e, scp)
• For each instruction %x =ϕ(%y,%z), scp(%x) = scp(%y) ⊔ scp(%z)



Sparse constant propagation

• Idea: SSA connects variable definitions directly to their uses
• Don’t need to store the value of every variable at every program point
• Don’t need to propagate changes through irrelevant blocks

• Can think of SSA as a graph, where edges correspond to data flow rather than control flow
• Define rhs(%x) to be the right hand side of the unique assignment to %x
• Define succ(%x) = {%y : rhs(%y) reads %x}

• Local specification for constant propagation:
• scp is the smallest function Uid → Z ∪ {⊤,⊥} such that

• If G contains no assignments to %x, then scp(%x) = ⊤
• For each instruction %x = e, scp(%x) = eval(e, scp)
• For each instruction %x =ϕ(%y,%z), scp(%x) = scp(%y) ⊔ scp(%z)



Worklist algorithm

scp(%x) =
{
⊥ if %x has an assignment
⊤ otherwise

work← {%x ∈ Uid : %x is defined};
while work ̸= ∅ do

Pick some %x from work;
work← work \ {%x} ;
if rhs(%x) = ϕ(%y,%z) then

v← scp(%y) ⊔ scp(%z)
else

v← eval(rhs(%x), scp)
if v ̸= scp(%x) then

scp(%x)← v;
work← work ∪ succ(%x)



Computational complexity of constant propagation

Dense Sparse
Memory Θ(|N| · |Var|) Θ(|N|) = Θ(|Var|)
Time Θ(|N| · |Var|) Θ(|N|) = Θ(|Var|)

• However, observe that we only find constants for uids, not stack slots.
• Again, advantageous to use uids to represent variable whenever possible



Computing SSA



(High-level) SSA conversion

• Replace each definition x = e with a xi = e for some unique subscript i
• Replace each use of a variable y with yi, where the ith definition of y is the unique reaching

definition

• If multiple definitions reach a single use, then they must be merged using a ϕ (phi)
statement

y := 0;
while (x >= 0) {
x := x - 1;
y := y + x;

}
return y

→

y0 := 0;
while (true) {
x2 = ϕ(x0, x1)
y2 = ϕ(y0, y1)
if (x2 < 0) break;
x1 := x2 - 1;
y1 := y2 + x1;

}
return y2
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Placing ϕ statements

• Easy, inefficient solution: place a ϕ statement for each variable locaction at each join point
• A join point is a node in the CFG with more than one predecessor

• Better solution: place a ϕ statement for variable x at location n exactly when the following
path convergence criterion holds: there exist a pair of non-empty paths P1,P2 ending at
n such that

1 The start node of both P1 and P2 defines x2

2 The only node shared by P1 and P2 is n
• The path convergence criterion can be implemented using the concept of iterated

dominance frontiers

2The entry node of the CFG is considered to be an implicit definition of every variable
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Dominance

• Let G = (N,E, s) be a control flow graph
• We say that a node d ∈ N dominates a node n ∈ N if every path from s to n contains d

• Every node dominates itself
• d strictly dominates n if d is not n
• d immediately dominates n if d strictly dominates n and but does not strictly dominate any

strict dominator of n.

• Observe: dominance is a partial order on N
• Every node dominates itself (reflexive)
• If n1 dominates n2 and n2 dominates n3 then n1 dominates n3 (transitive)
• If n1 dominates n2 and n2 dominates n1 then n1 must be n2 (anti-symmetric)
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If we draw an edge from every node to its immediate dominator, we get a data structure called
the dominator tree.
• (Essentially the Haase diagram of the dominated-by order)
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Dominance and SSA

• SSA well-formedness criteria
• If %x is used in a non-ϕ statement in block n, then the definition of %x must dominate n
• If %x is the ith argument of a ϕ function in a block n, then the definition of %x must dominate

the ith predecessor of n.



Dominator analysis

• Let G = (N,E, s) be a control flow graph.
• Define dom to be a function mapping each node n ∈ N to the set dom(n) ⊆ N of nodes

that dominate it

• Local specification: dom is the largest (equiv. least in superset order) function such that
• dom(s) = {s}
• For each p → n ∈ E, dom(n) ⊆ {n} ∪ dom(p)

• Can be solved using dataflow analysis techniques
• In practice: nearly linear time algorithm due to Lengauer & Tarjan



Dominator analysis

• Let G = (N,E, s) be a control flow graph.
• Define dom to be a function mapping each node n ∈ N to the set dom(n) ⊆ N of nodes

that dominate it
• Local specification: dom is the largest (equiv. least in superset order) function such that

• dom(s) = {s}
• For each p → n ∈ E, dom(n) ⊆ {n} ∪ dom(p)

• Can be solved using dataflow analysis techniques
• In practice: nearly linear time algorithm due to Lengauer & Tarjan



Dominator analysis

• Let G = (N,E, s) be a control flow graph.
• Define dom to be a function mapping each node n ∈ N to the set dom(n) ⊆ N of nodes

that dominate it
• Local specification: dom is the largest (equiv. least in superset order) function such that

• dom(s) = {s}
• For each p → n ∈ E, dom(n) ⊆ {n} ∪ dom(p)

• Can be solved using dataflow analysis techniques
• In practice: nearly linear time algorithm due to Lengauer & Tarjan



• Recall: If %x is the ith argument of a ϕ function in a block n, then the definition of %x
must dominate the ith predecessor of n.

• The dominance frontier of a node n is the set of all nodes m such that n dominates a
predecessor of m, but does not strictly dominate m itself.

• DF(n) = {m : (∃p ∈ Pred(m).n ∈ dom(p)) ∧ (m = n ∨ n /∈ dom(m))}
• Whenever a node n contains a definition of some uid %x, then any node m in the

dominance frontier of n needs a ϕ function for %x.
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• DF(1) = ∅

• DF(2) = {2}
• DF(3) = {3, 6}

• DF(4) = {6}
• DF(5) = {3, 6}
• DF(6) = {2}
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Dominance frontier is not enough!

• Whenever a node n contains a definition of some uid %x, then any node m in the
dominance frontier of n needs a ϕ statement for %x.

• But, that is not the only place where ϕ statements are needed

1

2 3

4: x4 = ... 5: x5 = ... 6: x6 = ... 7: x7 = ...

8 9

8: x8 = ϕ(x4, x5) 9: x9 = ϕ(x6, x7)

10

Not in dominance frontier of 4,5,6,7
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Placing ϕ statements

• Extend dominance frontier to sets of nodes by letting DF(M) =
∪

m∈M
DF(m)

• Define the iterated dominance frontier IDF(M) =
∪

i
IDFi(M), where

• IDF0(M) = DF(M)
• IDFi+1(M) = IDFi(M) ∪ IDF(IDFi(M))

• For any node x, let Def(x) be the set of nodes that define x
• Finally, we can characterize ϕ statement placement:

Insert a ϕ statement for x at every node in IDF(Def(x))
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Transforming out of SSA

• The ϕ statement is not executable, so it must be removed in order to generate code

• For each ϕ statement %x = ϕ(%x1, . . . ,%xk) in block n, n must have exactly k
predecessors p1, . . . , pk

• Insert a new block along each edge pi → n that executes %x = %xi (program no longer
satisfies SSA property!)

• Using a graph coalescing register allocator, often possible to eliminate the resulting move
instructions
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SSA overview

• SSA can make analysis and optimization
• simpler
• more efficient
• more accurate

• at the cost of
• having to compute SSA / maintain SSA invariants
• complicating code generation

• Most imperative compilers use SSA: LLVM, gcc, HotSpot, mono, v8, spidermonkey, go, ...
• Dominance is the key idea needed to efficiently transform into SSA

• Will also make an appearence next week when we talk about loop optimizations


