COS320: Compiling Techniques

Zak Kincaid

January 29, 2026



Parsing II1: LR parsing



Bottom-up parsing

Stack holds a word in (NU X)* such that it is possible to derive the part of the input string that has
been consumed from its reverse.

At any time, may read a letter from input string and push it on top of the stack

At any time, may non-deterministically choose arule 4 ::= v;...v,, and apply it in reverse: pop
~n-.-y1 Off the top of the stack, and push A.

Accept when stack just contains start non-terminal Ge—(
), e—=)
+ € — +
X, € —> X

- + e, e —>$ AE,<S>$4}E
<S> 1= <B>+<S> | <B> start _)@ >%j >(( o

<B> = (<S>) | x

€, <S>+<B> — <S>
€,<B> — <S>
€,)<S>( — <B>
€,x — <B>



<S>:
<B>:

= <B>+<S> | <B>
= (<8>) | x

Ge—=(
), € =)
€ — +
X, € = X

€,e—$ €,<5>% — €
start =»( 90 )%/ >

€,<S>+<B> — <S>
€,<B> — <S>
€,)<S>( — <B>
€, X — <B>

State Stack | Input
q0 € | (xtx)+x
q1 $ | (x+x)+x
q1 ($ | x+x)+x
q1 x($ | +x)+x
q <B>($ | +x)+x
Q1 +<B>($ | x)+x
Q1 x+<B>($ | )+x
Q1 <B>+<B>($ | )+x
q1 <S>+<B>($ | )+x
q1 <S>($ | )+x
q )<S>($ | +x
q <B>$ | +x
q1 +<B>$ | x
Q1 x+<B>$ | €
Q1 <B>+<B>$ | €
q1 <S>+<B>$ | €
q1 <S$>$ | €
€ €

9




LL vs LR

® LL parsers are top-down, LR parsers are bottom-up
e Easier to write LR grammars

¢ Every LL(k) grammar is also LR(k), but not vice versa.
* No need to eliminate left (or right) recursion
* No need to left-factor

* Harder to write LR parsers
® But parser generators will do it for us!



Bottom-up PDA has two kinds of actions:
e Shift: move lookahead token to the top of the stack
® Reduce: remove 7y, ..., v1 from the top of the stack, replace with A (where A4 ::= 7;...y, is
a rule of the grammar)
e Just as for LL parsing, the trick is to resolve non-determinism.
® When should the parser shift?

® When should the parser reduce?
Ge—(

), e—=)
+,E—)+
X, € = X

<S> = <B>+<S> ] <B> €,e—$ /Q €,<5>$ — €

<B> = (<S>) | x

€,<S>+<B> — <S>
€,<B> — <S>
€,)<S>( — <B>
€,X — <B>



Roadmap to LR parsing

© “Greedy” determinization: warm-up (not examinable material)

® LR(O): LR parsing with O tokens of lookahead - not used in practice.
© SLR (Simple LR): LR(O) + lookahead to resolve some nondeterminism
@ LR(1): Add one token of lookahead to LR construction

© LALR(1): simple, practical optimization of LR(1) (but less powerful!)



Determinizing the bottom-up PDA

¢ Intuition: reduce greedily
* |If any reduce action applies, then apply it

® Actually, a bit more nuanced: only apply reduction action if it is “relevant” (can eventually lead to
the input word being accepted)

® If no reduce action applies, then shift
¢ Can use the states of the PDA to implement greedy strategy
® State tracks top few symbols of the stack - enough to know if a reduction rule applies.



<S> :=<5>%

<S>:u=a<S>a|b

e,e—$
W Etiey



<§’> =<5>%

<S>:u=a<S>a|b

©

a,e —a

e,e —+$ b,e - b
start =»( 90 > $ > b




start ==

q0

<S’>::
<S> ::

<S>$
a<S>a | b



start ==

q0

<S’>::
<S> ::

<S>$
a<S>a|b

S is on top of the stack, but what's underneD




start ==

q0

<§’> =<5>%

<S>:n=a<S>a|b

€,ba — <S>a
>( <S>a

€,b$ — <S>$



start ==

q0

<S> n=<5>%

<S>:n=a<S>a|b

€,ba — <S>a

> <S>a

€,b$ — <S>$

a,e —a



<S’>::

<S>$
<S>:u=a<S>a|b

start =»{ 90

€,a<S>aa — <S>3

€,a<S$>a$ — <S>$



LR parsing

* Greedy strategy matches right-hand-sides of all rules against the top of the stack
® Consider <S> ::= <A><B>, <A> ::= a, <B> ::= a
® aon top of stack = conflict between reductions <A> ::= aand<B> ::= a

e LR parsing is partially greedy: only apply reduction action if it is “relevant” (can eventually
lead to the input word being accepted)

® E.g, apply <A> ::= areduction to the first a that we push on the stack, but not the second.
* LR(k) = LR with k-symbol lookahead



LR(O) parsing

<S> = (<L>) | x
<L> = <S> | <L>;<S>

® An LR(O)item of agrammar G = (N, X, R, S) is of the form A ::= ~v...7;  Yir1... 70,
where A ::=~;-- -y, isarule of G
® ~...7y; derives part of the word that has already been read
® ~i11...7n derives part of the word that remains to be read
® LR(O) items ~ states of an NFA that determines when a reduction applies to the top of the

stack
¢ LR(O) items for the above grammar:
® <S> = eo(<L>),<S> ::= (e<L>),<S> ::= (<L>e),<S> ::= (<L>)e,
® <S> ::= ex,<S> ::= Xe,
® <[> ::= e<S> <L> ::= <S>e,
® <> ::= e<L>;<S> <KL> ::= <L>e;<S> <L> ::= <L>;e<S> <[> ::= <L>;<S>e,



closure and goto

® For any set of items , define closure([) to be the least set of items such that
¢ closure(I) contains I
e [f closure(I) contains an item of the form A ::= « ¢ B where Bis a non-terminal, then
closure([) contains B ::= ey forall B::=~v € R
e closure(J) saturates [ with all items that may be relevant to reducing via /
® Eg, closure({<S> ::= (e<L>)}) =
{<S> ::= (e<L>),<L> ::= o<S> <L> ::= e<L>;<S> <S> ::= o(<L>)<S> ::= ex}
® Part of the not-quite greedy strategy: don't try to reduce using all rules all the time, track only
a relevant subset



closure and goto

® For any set of items , define closure([) to be the least set of items such that
¢ closure(I) contains I
e [f closure(I) contains an item of the form A ::= « ¢ B where Bis a non-terminal, then
closure([) contains B ::= ey forall B::=~v € R
e closure(J) saturates [ with all items that may be relevant to reducing via /
® Eg, closure({<S> ::= (e<L>)}) =
{<S> ::= (e<L>),<L> ::= o<S> <L> ::= e<L>;<S> <S> ::= o(<L>)<S> ::= ex}
® Part of the not-quite greedy strategy: don't try to reduce using all rules all the time, track only
a relevant subset
® For any item set /, and (terminal or non-terminal) symboly € N U X define
goto(l,y) = closure({A::=aye | A:=caeqyp € I})
® |e, goto(,) is the result of “moving e across "
* Eg.,goto(closure({<S> ::= (e<L>)}),<L>) = {<S> ::= (<L>e),<L> ::= <L>e;<S> }



Mechanical construction of LR(0) parsers

© Add a new production S’ ::= S$ to the grammar.

® S is new start symbol
® $ marks end of word

@ Stack alphabet = closed item sets, starting with closure({.S' ::= ¢S$})
© Construct transitions as follows: for each closed item set ],
® For each item of the form A ::= ~;...7,e in I, add reduce transition

€, 1);...0_1K — K K,whereK' = goto(K, A)
® For each item of the form A ::= v e af in Iwith a € ¥, add a shift transition
a, [ — I'Iwhere I' = goto(I, a)

Resulting automaton is deterministic <= grammar is LR(O)



Conflicts

¢ Recall: Automaton is deterministic <= grammar is LR(O)

¢ Two different types of transitions:
® Reduce transitions, from items of the form A ::= ~e
® Shift transitions, from items of the form A ::= ~ e a3, where a is a terminal
® (No transitions generated by items of the formu A4 ::= v e A3 where A is a non-terminal)



Conflicts

¢ Recall: Automaton is deterministic <= grammar is LR(O)
¢ Two different types of transitions:
® Reduce transitions, from items of the form A ::= ~e
® Shift transitions, from items of the form A ::= ~ e a3, where a is a terminal
® (No transitions generated by items of the formu A4 ::= v e A3 where A is a non-terminal)
e Reduce/reduce conflict: state has two or more items of the form A ::= ~ye (choice of
reduction is non-deterministic!)



Conflicts

Recall: Automaton is deterministic <= grammar is LR(O)
Two different types of transitions:

® Reduce transitions, from items of the form A ::= ~e

® Shift transitions, from items of the form A ::= ~ e a3, where a is a terminal

® (No transitions generated by items of the formu A4 ::= v e A3 where A is a non-terminal)
Reduce/reduce conflict: state has two or more items of the form A ::= ~e (choice of
reduction is non-deterministic!)

Shift/reduce conflict: state has an item of the form A ::= e and one of the form
A ::= v e af (choice of whether to shift or reduce is non-deterministic!)



Simple LR (SLR)

¢ Simple LR is a straight-forward extension of LR(O) with a lookahead token
¢ Idea: proceed exactly as LR(O), but eliminate (some) conflicts using lookahead token
® For each item of the form A ::= ~;...7,e in I, add reduce transition

€ 1N1..Jn—1K — K'K,whereK' = goto(K, A)

with any lookahead token in follow(A)



Simple LR (SLR)

Simple LR is a straight-forward extension of LR(O) with a lookahead token
Idea: proceed exactly as LR(O), but eliminate (some) conflicts using lookahead token
® For each item of the form A ::= ~;...7,e in I, add reduce transition

€ 1N1..Jn—1K — K'K,whereK' = goto(K, A)

with any lookahead token in follow(A)

Example: the following grammar is SLR, but not LR(O)

<S> :=<T>b

<T>u=a<T> | e

Consider: closure({<S’> ::= e<S>$}) contains <T> ::= eand <T> ::= ea<T>.
SLR parser generators: Jison



LR(1) parser construction

LR(1) parser generators: Menhir, Bison
An LR(1) item of a grammar G = (N, X, R, S) is of the form (A ::= y1...7; ® Yir1...7n, @),
where A ::=~;---y,isaruleof Ganda € ¥
® ~;...y; derives part of the word that has already been read
® ~;i1...7n derives part of the word that remains to be read
® gis alookahead symbol
For any set of items I, define closure(1) to be the least set of items such that
¢ closure(I) contains I
e |f closure(I) contains an item of the form (A ::= a e B3, a) where Bis a non-terminal, then
closure(I) contains (B ::= e, b) forall B::=~v € Rand all b € first(5a).

Construct PDA as in LR(O)



LALR(1)

LR(1) transition tables can be very large

LALR(1) (“lookahead LR(1)”) make transition table smaller by merging states (that is, closed
itemsets) that are identical except for lookahead

Merging states can create reduce/reduce conflicts. Say that a grammar is LALR(1) if this
merging doesnt create conflicts.

LALR(1) parser generators: Bison, Yacc, ocamlyacc, Jison



Summary of parsing

® Forany k, LL(k) grammars are LR(k)
* SLRgrammars are LALR(1) are LR(1)

* In terms of language expressivity, there is an SLR (and therefore LALR(1) and LR(1) grammar
for any context-free language that can be accepted by a deterministic pushdown
automaton).

* Not every deterministic context free language is LL(k): {a"b" : n € N} U {a"c¢" : n € N}is
DCFL but not LL(k) for any %'

'John C. Beatty, Two iteration theorems for the LL(k) Languages



