

COS320: Compiling Techniques

Zak Kincaid

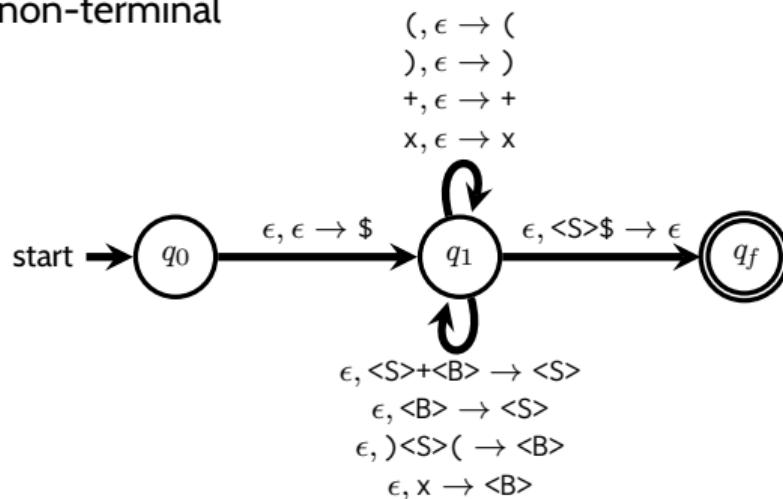
January 29, 2026

Parsing III: LR parsing

Bottom-up parsing

- Stack holds a word in $(N \cup \Sigma)^*$ such that it is possible to derive the part of the input string that has been consumed **from its reverse**.
- At any time, may read a letter from input string and push it on top of the stack
- At any time, may non-deterministically choose a rule $A ::= \gamma_1 \dots \gamma_n$ and apply it **in reverse**: pop $\gamma_n \dots \gamma_1$ off the top of the stack, and push A .
- Accept when stack just contains start non-terminal

$\langle S \rangle ::= \langle B \rangle + \langle S \rangle \mid \langle B \rangle$
 $\langle B \rangle ::= (\langle S \rangle) \mid x$



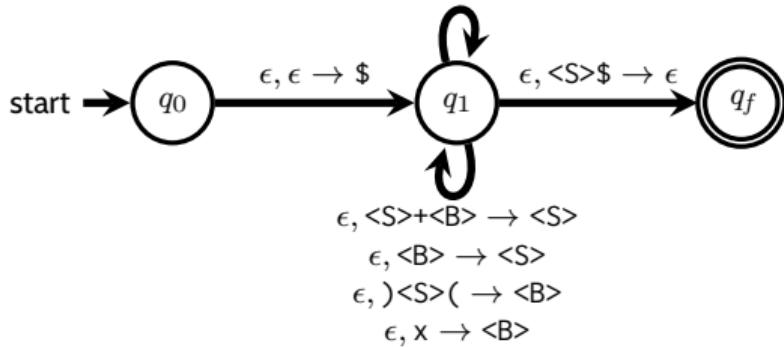
$$\langle S \rangle ::= \langle B \rangle + \langle S \rangle \mid \langle B \rangle$$

$$\langle B \rangle ::= (\langle S \rangle) \mid x$$

$$(), \epsilon \rightarrow ()$$

$$), \epsilon \rightarrow)$$

$$+, \epsilon \rightarrow +$$

$$x, \epsilon \rightarrow x$$


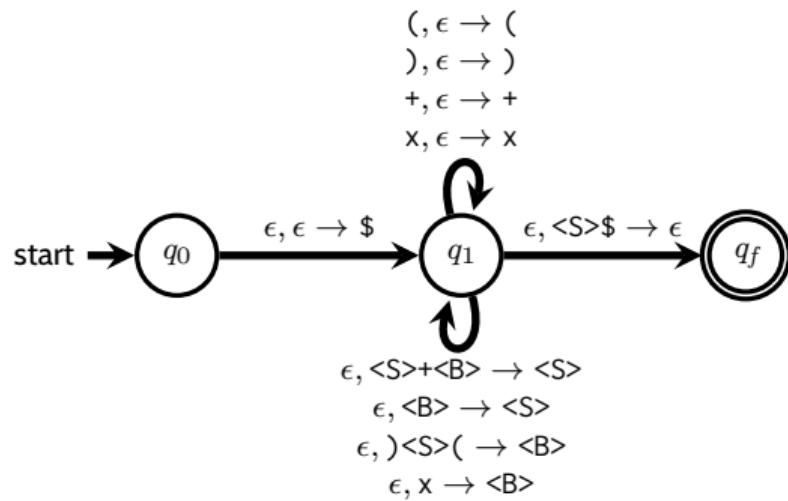
State	Stack	Input
q_0	ϵ	$(x+x)+x$
q_1	$\$$	$(x+x)+x$
q_1	$(\$$	$x+x)+x$
q_1	$x(\$$	$+x)+x$
q_1	$\langle B \rangle (\$$	$+x)+x$
q_1	$+ \langle B \rangle (\$$	$x)+x$
q_1	$x + \langle B \rangle (\$$	$) + x$
q_1	$\langle B \rangle + \langle B \rangle (\$$	$) + x$
q_1	$\langle S \rangle + \langle B \rangle (\$$	$) + x$
q_1	$\langle S \rangle (\$$	$) + x$
q_1	$) \langle S \rangle (\$$	$+x$
q_1	$\langle B \rangle \$$	$+x$
q_1	$+ \langle B \rangle \$$	x
q_1	$x + \langle B \rangle \$$	ϵ
q_1	$\langle B \rangle + \langle B \rangle \$$	ϵ
q_1	$\langle S \rangle + \langle B \rangle \$$	ϵ
q_1	$\langle S \rangle \$$	ϵ
q_f	ϵ	ϵ

LL vs LR

- LL parsers are top-down, LR parsers are bottom-up
- Easier to write LR grammars
 - Every LL(k) grammar is also LR(k), but not vice versa.
 - No need to eliminate left (or right) recursion
 - No need to left-factor
- Harder to write LR parsers
 - But parser generators will do it for us!

Bottom-up PDA has two kinds of actions:

- **Shift**: move lookahead token to the top of the stack
- **Reduce**: remove $\gamma_n, \dots, \gamma_1$ from the top of the stack, replace with A (where $A ::= \gamma_1 \dots \gamma_n$ is a rule of the grammar)
- Just as for LL parsing, the trick is to resolve non-determinism.
 - When should the parser shift?
 - When should the parser reduce?

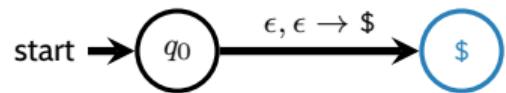
$$\begin{aligned} <S> &::= +<S> \mid \\ &::= (<S>) \mid x \end{aligned}$$


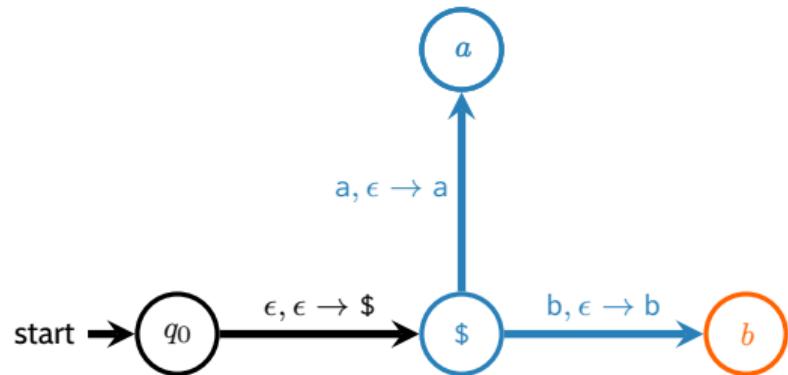
Roadmap to LR parsing

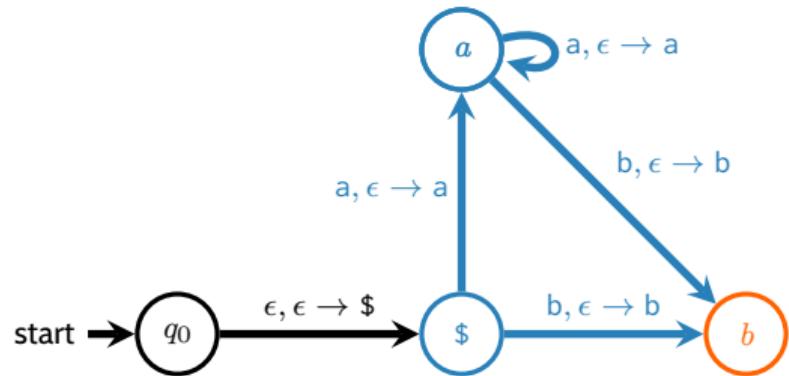
- ① “Greedy” determinization: warm-up (not examinable material)
- ② LR(0): LR parsing with 0 tokens of lookahead – not used in practice.
- ③ SLR (Simple LR): LR(0) + lookahead to resolve some nondeterminism
- ④ LR(1): Add one token of lookahead to LR construction
- ⑤ LALR(1): simple, practical optimization of LR(1) (but less powerful!)

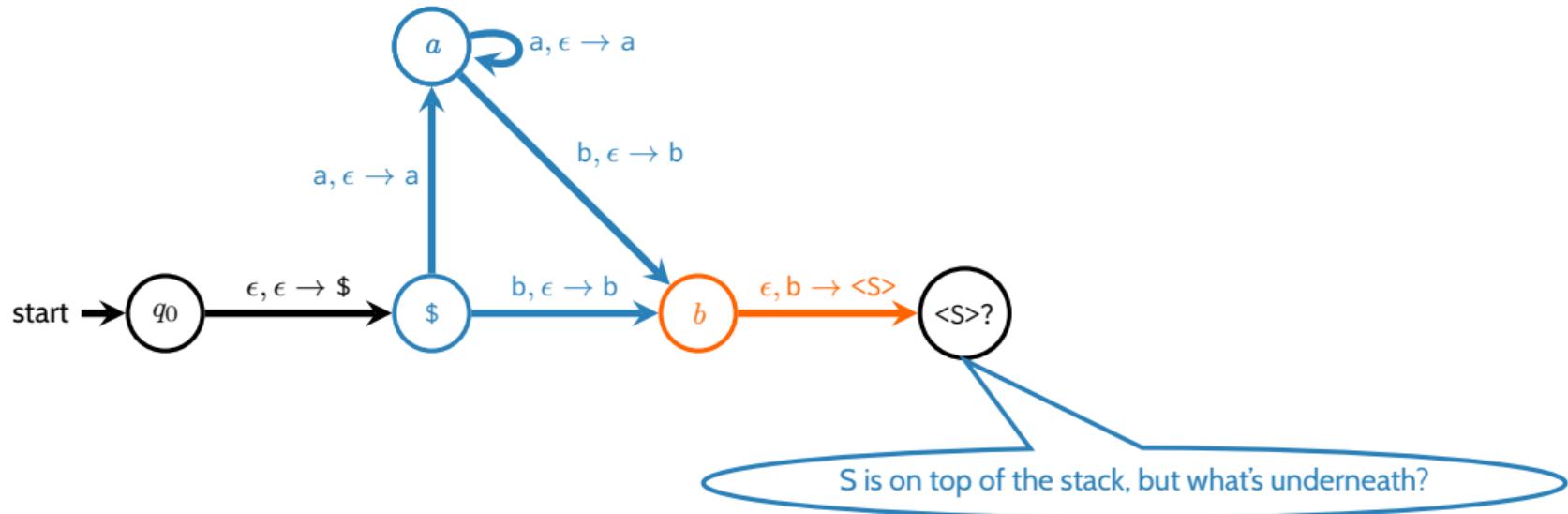
Determinizing the bottom-up PDA

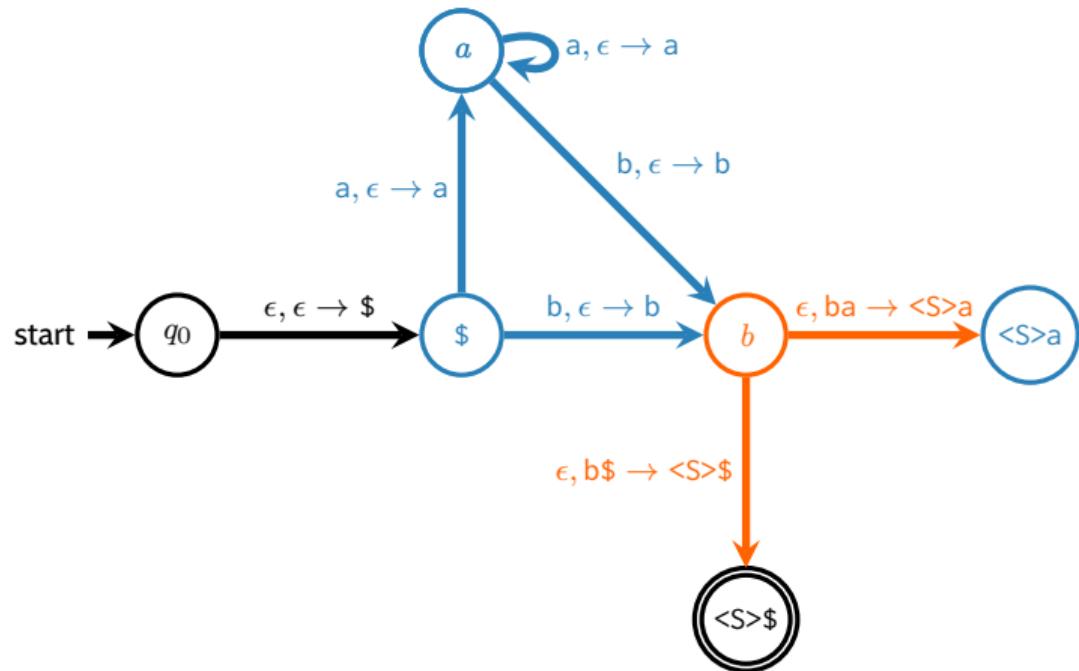
- **Intuition:** reduce greedily
 - If any reduce action applies, then apply it
 - Actually, a bit more nuanced: only apply reduction action if it is “relevant” (can eventually lead to the input word being accepted)
 - If no reduce action applies, then shift
- Can use the states of the PDA to implement greedy strategy
 - State tracks top few symbols of the stack – enough to know if a reduction rule applies.

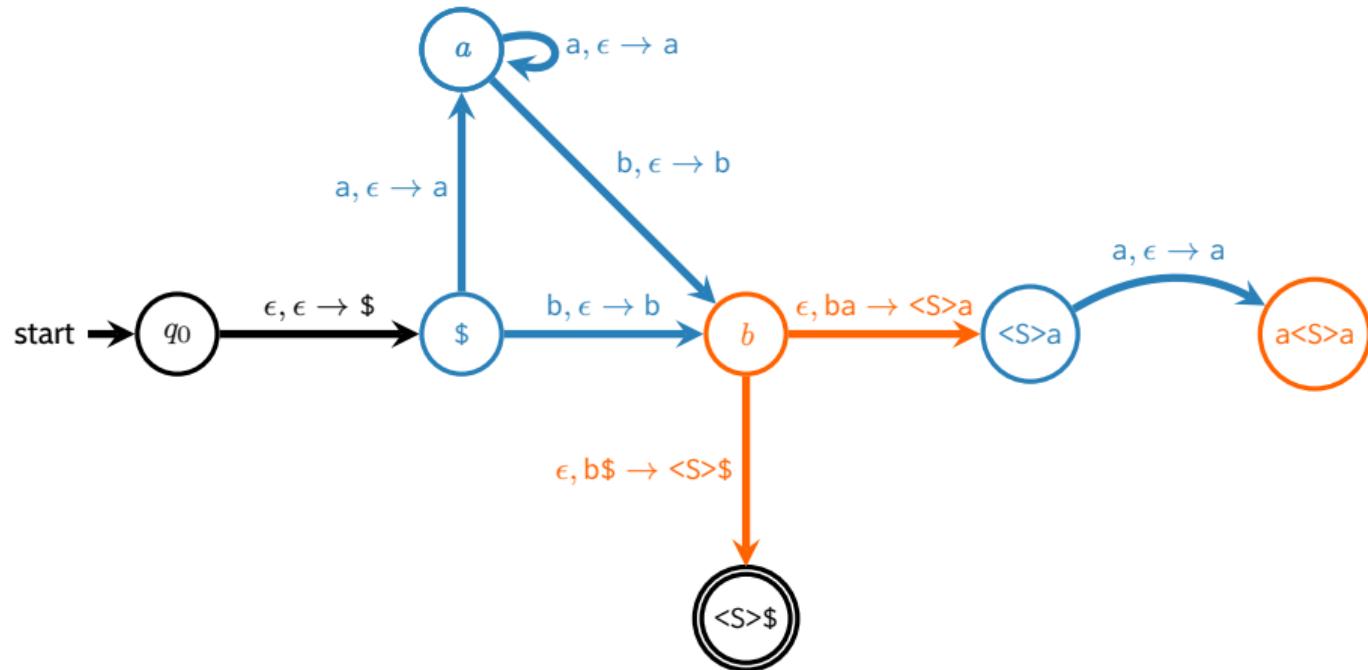
$$\langle S' \rangle ::= \langle S \rangle \$$$
$$\langle S \rangle ::= a \langle S \rangle a \mid b$$


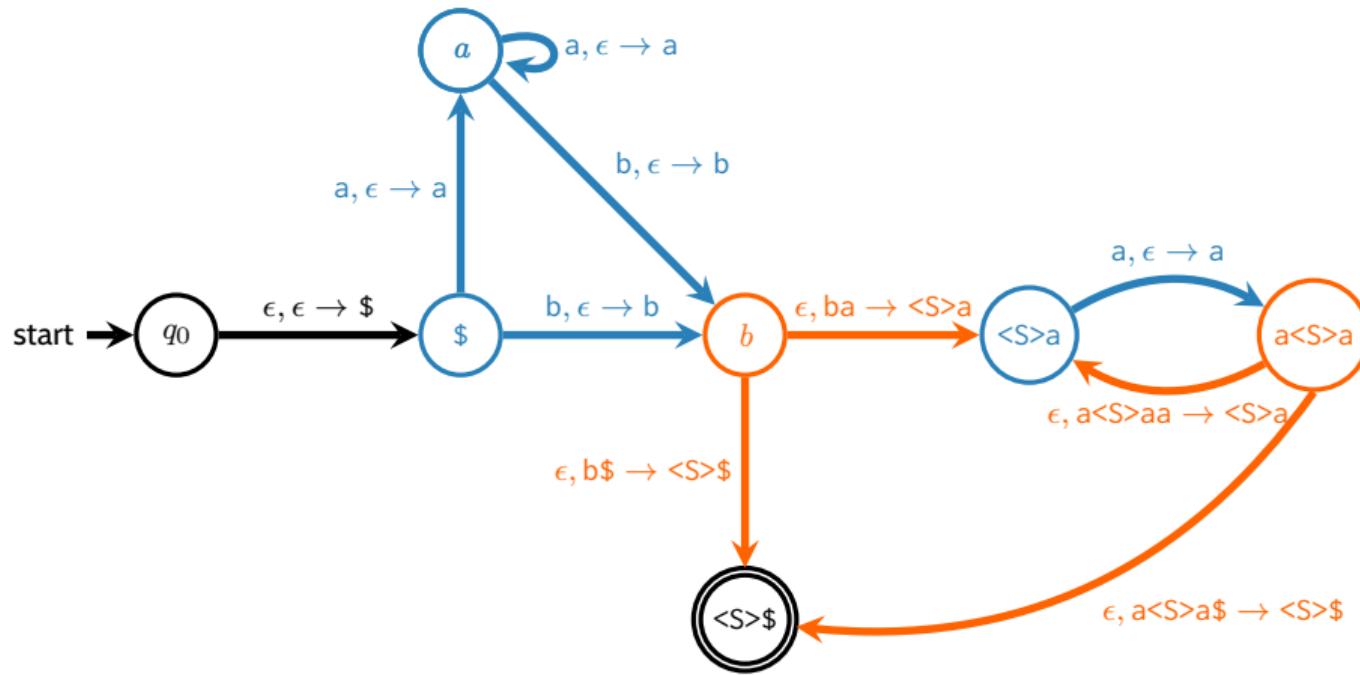
$$\langle S' \rangle ::= \langle S \rangle \$$$
$$\langle S \rangle ::= a \langle S \rangle a \mid b$$


$$\langle S' \rangle ::= \langle S \rangle \$$$
$$\langle S \rangle ::= a \langle S \rangle a \mid b$$


$$\langle S' \rangle ::= \langle S \rangle \$$$
$$\langle S \rangle ::= a \langle S \rangle a \mid b$$


$$\langle S' \rangle ::= \langle S \rangle \$$$
$$\langle S \rangle ::= a \langle S \rangle a \mid b$$


$$\langle S' \rangle ::= \langle S \rangle \$$$
$$\langle S \rangle ::= a \langle S \rangle a \mid b$$


$$\langle S' \rangle ::= \langle S \rangle \$$$
$$\langle S \rangle ::= a \langle S \rangle a \mid b$$


LR parsing

- Greedy strategy matches right-hand-sides of *all* rules against the top of the stack
 - Consider $\langle S \rangle ::= \langle A \rangle \langle B \rangle$, $\langle A \rangle ::= a$, $\langle B \rangle ::= a$
 - a on top of stack \Rightarrow conflict between reductions $\langle A \rangle ::= a$ and $\langle B \rangle ::= a$
- *LR* parsing is *partially* greedy: only apply reduction action if it is “relevant” (can eventually lead to the input word being accepted)
 - E.g., apply $\langle A \rangle ::= a$ reduction to the *first* a that we push on the stack, but not the *second*.
- $LR(k)$ = LR with k -symbol lookahead

LR(0) parsing

$$\begin{aligned}\langle S \rangle &::= (\langle L \rangle) \mid x \\ \langle L \rangle &::= \langle S \rangle \mid \langle L \rangle ; \langle S \rangle\end{aligned}$$

- An **LR(0) item** of a grammar $G = (N, \Sigma, R, S)$ is of the form $A ::= \gamma_1 \dots \gamma_i \bullet \gamma_{i+1} \dots \gamma_n$, where $A ::= \gamma_1 \dots \gamma_n$ is a rule of G
 - $\gamma_1 \dots \gamma_i$ derives part of the word that has already been read
 - $\gamma_{i+1} \dots \gamma_n$ derives part of the word that remains to be read
 - LR(0) items \sim states of an NFA that determines when a reduction applies to the top of the stack
- LR(0) items for the above grammar:
 - $\langle S \rangle ::= \bullet(\langle L \rangle), \langle S \rangle ::= (\bullet\langle L \rangle), \langle S \rangle ::= (\langle L \rangle\bullet), \langle S \rangle ::= (\langle L \rangle)\bullet,$
 - $\langle S \rangle ::= \bullet x, \langle S \rangle ::= x\bullet,$
 - $\langle L \rangle ::= \bullet\langle S \rangle, \langle L \rangle ::= \langle S \rangle\bullet,$
 - $\langle L \rangle ::= \bullet\langle L \rangle ; \langle S \rangle, \langle L \rangle ::= \langle L \rangle\bullet ; \langle S \rangle, \langle L \rangle ::= \langle L \rangle ; \bullet\langle S \rangle, \langle L \rangle ::= \langle L \rangle ; \langle S \rangle\bullet,$

closure and goto

- For any set of items I , define **closure**(I) to be the least set of items such that
 - **closure**(I) contains I
 - If **closure**(I) contains an item of the form $A ::= \alpha \bullet B\beta$ where B is a non-terminal, then **closure**(I) contains $B ::= \bullet\gamma$ for all $B ::= \gamma \in R$
- **closure**(I) saturates I with all items that may be relevant to reducing via I
 - E.g., **closure**($\{\langle S \rangle ::= (\bullet \langle L \rangle)\} = \{\langle S \rangle ::= (\bullet \langle L \rangle), \langle L \rangle ::= \bullet \langle S \rangle, \langle L \rangle ::= \bullet \langle L \rangle; \langle S \rangle, \langle S \rangle ::= \bullet (\langle L \rangle) \langle S \rangle ::= \bullet x\}$
 - Part of the not-quite greedy strategy: don't try to reduce using all rules all the time, track only a relevant subset

closure and goto

- For any set of items I , define **closure**(I) to be the least set of items such that
 - **closure**(I) contains I
 - If **closure**(I) contains an item of the form $A ::= \alpha \bullet B\beta$ where B is a non-terminal, then **closure**(I) contains $B ::= \bullet\gamma$ for all $B ::= \gamma \in R$
- **closure**(I) saturates I with all items that may be relevant to reducing via I
 - E.g., **closure**($\{\langle S \rangle ::= (\bullet \langle L \rangle)\} = \{\langle S \rangle ::= (\bullet \langle L \rangle), \langle L \rangle ::= \bullet \langle S \rangle, \langle L \rangle ::= \bullet \langle L \rangle; \langle S \rangle, \langle S \rangle ::= \bullet (\langle L \rangle) \langle S \rangle ::= \bullet x\}$
 - Part of the not-quite greedy strategy: don't try to reduce using all rules all the time, track only a relevant subset
- For any item set I , and (terminal or non-terminal) symbol $\gamma \in N \cup \Sigma$ define **goto**(I, γ) = **closure**($\{A ::= \alpha\gamma \bullet \beta \mid A ::= \alpha \bullet \gamma\beta \in I\}$)
 - I.e., **goto**(I, γ) is the result of “moving \bullet across γ ”
 - E.g., **goto**(**closure**($\{\langle S \rangle ::= (\bullet \langle L \rangle)\}), $\langle L \rangle$) = $\{\langle S \rangle ::= (\langle L \rangle \bullet), \langle L \rangle ::= \langle L \rangle \bullet; \langle S \rangle, \langle S \rangle ::= \bullet x\}$$

Mechanical construction of LR(0) parsers

- ① Add a new production $S' ::= S\$$ to the grammar.
 - S' is new start symbol
 - $\$$ marks end of word
- ② Stack alphabet = closed item sets, starting with **closure**($\{S' ::= \bullet S\$ \}$)
- ③ Construct transitions as follows: for each closed item set I ,
 - For each item of the form $A ::= \gamma_1 \dots \gamma_n \bullet$ in I , add *reduce* transition

$$\epsilon, IJ_1 \dots J_{n-1}K \rightarrow K'K, \text{ where } K' = \text{goto}(K, A)$$

- For each item of the form $A ::= \gamma \bullet a\beta$ in I with $a \in \Sigma$, add a *shift* transition

$$a, I \rightarrow I'I \text{ where } I' = \text{goto}(I, a)$$

Resulting automaton is deterministic \iff grammar is LR(0)

Conflicts

- Recall: Automaton is deterministic \iff grammar is LR(0)
- Two different types of transitions:
 - *Reduce* transitions, from items of the form $A ::= \gamma \bullet$
 - *Shift* transitions, from items of the form $A ::= \gamma \bullet a\beta$, where a is a terminal
 - (No transitions generated by items of the form $A ::= \gamma \bullet A\beta$ where A is a non-terminal)

Conflicts

- Recall: Automaton is deterministic \iff grammar is LR(0)
- Two different types of transitions:
 - *Reduce* transitions, from items of the form $A ::= \gamma \bullet$
 - *Shift* transitions, from items of the form $A ::= \gamma \bullet a\beta$, where a is a terminal
 - (No transitions generated by items of the form $A ::= \gamma \bullet A\beta$ where A is a non-terminal)
- **Reduce/reduce conflict:** state has two or more items of the form $A ::= \gamma \bullet$ (choice of reduction is non-deterministic!)

Conflicts

- Recall: Automaton is deterministic \iff grammar is LR(0)
- Two different types of transitions:
 - *Reduce* transitions, from items of the form $A ::= \gamma \bullet$
 - *Shift* transitions, from items of the form $A ::= \gamma \bullet a\beta$, where a is a terminal
 - (No transitions generated by items of the form $A ::= \gamma \bullet A\beta$ where A is a non-terminal)
- **Reduce/reduce conflict:** state has two or more items of the form $A ::= \gamma \bullet$ (choice of reduction is non-deterministic!)
- **Shift/reduce conflict:** state has an item of the form $A ::= \gamma \bullet$ and one of the form $A ::= \gamma \bullet a\beta$ (choice of whether to shift or reduce is non-deterministic!)

Simple LR (SLR)

- Simple LR is a straight-forward extension of LR(0) with a lookahead token
- Idea: proceed exactly as LR(0), but eliminate (some) conflicts using lookahead token
 - For each item of the form $A ::= \gamma_1 \dots \gamma_n \bullet$ in I , add *reduce* transition

$\epsilon, IJ_1 \dots J_{n-1}K \rightarrow K'K$, where $K' = \text{goto}(K, A)$

with any lookahead token in $\text{follow}(A)$

Simple LR (SLR)

- Simple LR is a straight-forward extension of LR(0) with a lookahead token
- Idea: proceed exactly as LR(0), but eliminate (some) conflicts using lookahead token
 - For each item of the form $A ::= \gamma_1 \dots \gamma_n \bullet$ in I , add *reduce* transition

$$\epsilon, IJ_1 \dots J_{n-1} K \rightarrow K' K, \text{ where } K' = \text{goto}(K, A)$$

with any lookahead token in $\text{follow}(A)$

- Example: the following grammar is SLR, but not LR(0)

$$\langle S \rangle ::= \langle T \rangle b$$

$$\langle T \rangle ::= a \langle T \rangle \mid \epsilon$$

Consider: $\text{closure}(\{\langle S \rangle ::= \bullet \langle S \rangle \$\})$ contains $\langle T \rangle ::= \bullet$ and $\langle T \rangle ::= \bullet a \langle T \rangle$.

- SLR parser generators: Jison

LR(1) parser construction

- LR(1) parser generators: Menhir, Bison
- An **LR(1) item** of a grammar $G = (N, \Sigma, R, S)$ is of the form $(A ::= \gamma_1 \dots \gamma_i \bullet \gamma_{i+1} \dots \gamma_n, a)$, where $A ::= \gamma_1 \dots \gamma_n$ is a rule of G and $a \in \Sigma$
 - $\gamma_1 \dots \gamma_i$ derives part of the word that has already been read
 - $\gamma_{i+1} \dots \gamma_n$ derives part of the word that remains to be read
 - a is a **lookahead symbol**
- For any set of items I , define **closure**(I) to be the least set of items such that
 - **closure**(I) contains I
 - If **closure**(I) contains an item of the form $(A ::= \alpha \bullet B\beta, a)$ where B is a non-terminal, then **closure**(I) contains $(B ::= \bullet\gamma, b)$ for all $B ::= \gamma \in R$ and all $b \in \text{first}(\beta a)$.
- Construct PDA as in LR(0)

LALR(1)

- LR(1) transition tables can be very large
- LALR(1) (“lookahead LR(1)”) make transition table smaller by merging states (that is, closed itemsets) that are identical except for lookahead
- Merging states can create reduce/reduce conflicts. Say that a grammar is LALR(1) if this merging *doesn't* create conflicts.
- LALR(1) parser generators: Bison, Yacc, ocamllyacc, Jison

Summary of parsing

- For any k , $LL(k)$ grammars are $LR(k)$
- SLR grammars are $LALR(1)$ are $LR(1)$
- In terms of *language expressivity*, there is an SLR (and therefore $LALR(1)$ and $LR(1)$) grammar for any context-free language that can be accepted by a deterministic pushdown automaton).
- Not every deterministic context free language is $LL(k)$: $\{a^n b^n : n \in \mathbb{N}\} \cup \{a^n c^n : n \in \mathbb{N}\}$ is DCFL but not $LL(k)$ for any k .¹

¹John C. Beatty, *Two iteration theorems for the $LL(k)$ Languages*