

COS320: Compiling Techniques

Zak Kincaid

January 29, 2026

- HW3 on course webpage later today. Due March 25. **Start early!**
 - You will implement a compiler for a simple imperative programming language (Oat), targeting LLVMlite.
 - You may work individually or in pairs
- Midterm next Thursday
 - Covers material in lectures up to February 29th (this Thursday)
 - Interpreters, program transformation, X86, IRs, lexing, parsing
 - How to prepare:
 - Sample exams on Canvas later today
 - Start on HW3
 - Review slides
 - Review example code from lectures (try re-implementing!)
 - Review next Tuesday: come prepared with questions

Parsing II: LL parsing

Recall: Context-free grammars

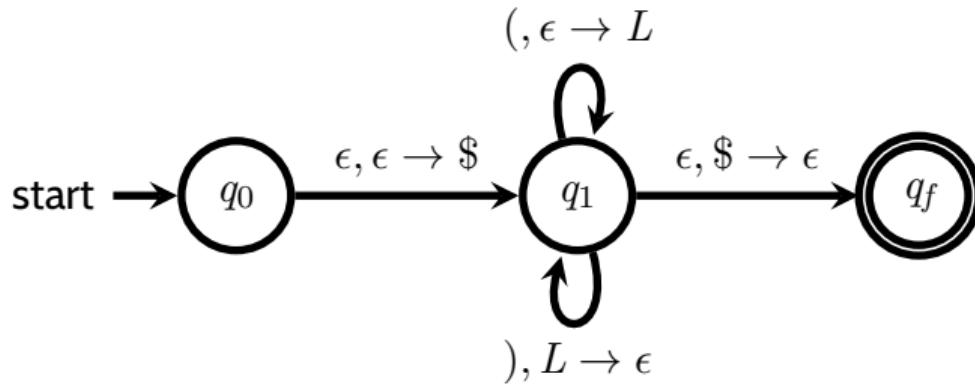
- A **context-free grammar** $G = (N, \Sigma, R, S)$ consists of:
 - N : a finite set of *non-terminal symbols*
 - Σ : a finite alphabet (or set of *terminal symbols*)
 - $R \subseteq N \times (N \cup \Sigma)^*$ a finite set of *rules* or *productions*
 - $S \in N$: the starting non-terminal.

Recall: Context-free grammars

- A *context-free grammar* $G = (N, \Sigma, R, S)$ consists of:
 - N : a finite set of *non-terminal symbols*
 - Σ : a finite alphabet (or set of *terminal symbols*)
 - $R \subseteq N \times (N \cup \Sigma)^*$ a finite set of *rules* or *productions*
 - $S \in N$: the starting non-terminal.
- A word w is accepted by G if it is derivable in zero or more steps from the starting non-terminal
 - Write $\gamma \Rightarrow \gamma'$ if γ' is obtained from γ by replacing a non-terminal symbol in γ with the right-hand-side of one of its rules
 - Write $\gamma \Rightarrow^* \gamma'$ if γ' can be obtained from γ using 0 or more derivation steps
 - A word $w \in \Sigma^*$ is accepted by G if $S \Rightarrow^* w$

Parsing

- Context-free grammars are *generative*: easy to find strings that belongs to $\mathcal{L}(G)$, not so easy determine whether a *given* string belongs to $\mathcal{L}(G)$
- *Pushdown automata* (PDA) are a kind of automata that recognize context-free languages
- Pushdown automaton recognizing $\langle S \rangle ::= \langle S \rangle \langle S \rangle \mid (\langle S \rangle) \mid \epsilon$:
 - *Stack alphabet*: $\$$ marks bottom of the stack, L marks unbalanced left paren



Recall: pushdown automata

- A **push-down automaton** $A = (Q, \Sigma, \Gamma, \Delta, s, F)$ consists of
 - Q : a finite set of states
 - Σ : an (input) alphabet
 - Γ : a (stack) alphabet
 - $\Delta \subseteq \underbrace{Q}_{\text{source}} \times \underbrace{(\Sigma \cup \{\epsilon\})}_{\text{read input}} \times \underbrace{\Gamma^*}_{\text{read stack}} \times \underbrace{Q}_{\text{dest}} \times \underbrace{\Gamma^*}_{\text{write stack}}$, the transition relation
 - $s \in Q$: start state
 - $F \subseteq Q$: set of final (accepting) states

Recall: pushdown automata

- A **push-down automaton** $A = (Q, \Sigma, \Gamma, \Delta, s, F)$ consists of
 - Q : a finite set of states
 - Σ : an (input) alphabet
 - Γ : a (stack) alphabet
 - $\Delta \subseteq \underbrace{Q}_{\text{source}} \times \underbrace{(\Sigma \cup \{\epsilon\})}_{\text{read input}} \times \underbrace{\Gamma^*}_{\text{read stack}} \times \underbrace{Q}_{\text{dest}} \times \underbrace{\Gamma^*}_{\text{write stack}}$, the transition relation
 - $s \in Q$: start state
 - $F \subseteq Q$: set of final (accepting) states
- A word w is accepted by A if there is a w -labeled accepting path in A
 - A **configuration** of A is a pair (q, v) consisting of a state $q \in Q$ and a stack $v \in \Gamma^*$
 - Write $(q, v) \xrightarrow{w} (q', v')$ if there is some $t \in \Gamma^*$ such that $v = at$, $v' = bt$, and $(q, w, a, q', b) \in \Delta$
 - Write $(q, v) \xrightarrow{w^*} (q', v')$ if there is some w_1, \dots, w_n and $(q_1, v_1), \dots, (q_{n-1}, v_{n-1})$ such that $w = w_1 \cdots w_n$ and

$$(q, v) \xrightarrow{w_1} (q_1, v_1) \xrightarrow{w_2} (q_2, v_2) \xrightarrow{w_3} \dots \xrightarrow{w_{n-1}} (q_{n-1}, v_{n-1}) \xrightarrow{w_n} (q', v')$$

- A word w is accepted iff $(s, \epsilon) \xrightarrow{w^*} (q, v)$ for some $q \in F$, $v \in \Gamma^*$.

Context free languages

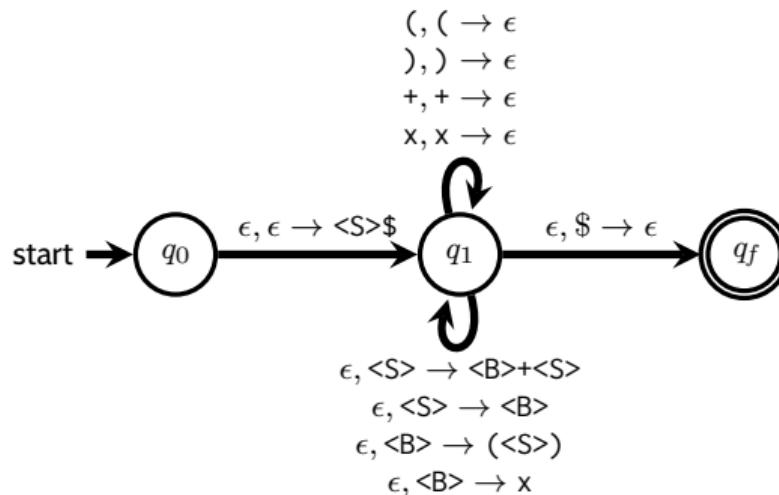
- Claim: a language is recognized by a context-free grammar if and only if it is recognized by a pushdown automaton
 - Say that a language is *context free* if it is recognized by a context-free grammar (equiv. pushdown automaton).
- Consequence: can “compile” context-free grammars to pushdown automata in order to implement parsers

Context free languages

- Claim: a language is recognized by a context-free grammar if and only if it is recognized by a pushdown automaton
 - Say that a language is *context free* if it is recognized by a context-free grammar (equiv. pushdown automaton).
- Consequence: can “compile” context-free grammars to pushdown automata in order to implement parsers
- Two strategies, which correspond to different ways to implement parsers:
 - Top-down (LL parsing)
 - Bottom-up (LR parsing)

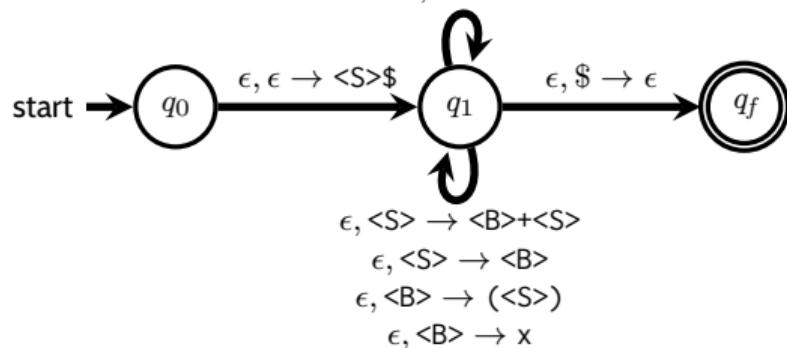
Top-down parsing

- Stack represents intermediate state of a derivation, minus the consumed part of the input string.
- Start with S on the stack
- Any time top of the stack is a non-terminal A , non-deterministically choose a rule $A ::= \gamma \in R$. Pop A off the stack, and push γ
- If the top of the stack is a terminal a , consume a from the input string and pop a off the stack
- Accept when stack is empty

$$\begin{aligned}\langle S \rangle &::= \langle B \rangle + \langle S \rangle \mid \langle B \rangle \\ \langle B \rangle &::= (\langle S \rangle) \mid x\end{aligned}$$


$$\langle S \rangle ::= \langle B \rangle + \langle S \rangle \mid \langle B \rangle$$

$$\langle B \rangle ::= (\langle S \rangle) \mid x$$

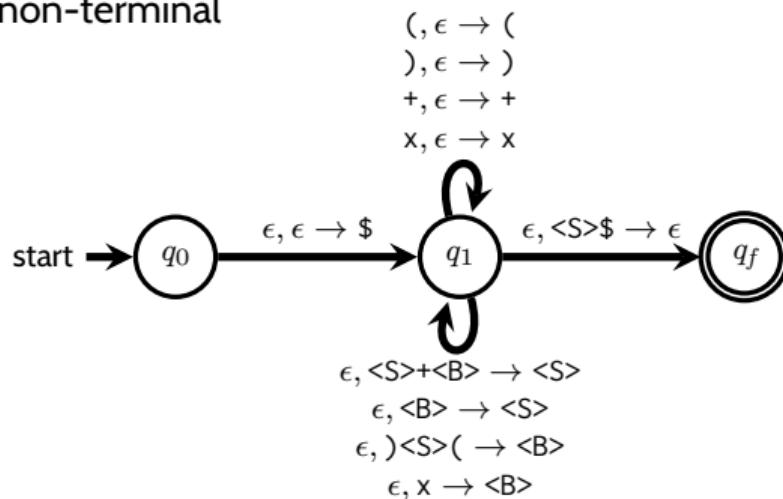
$$\begin{array}{l} (, (\rightarrow \epsilon \\),) \rightarrow \epsilon \\ +, + \rightarrow \epsilon \\ x, x \rightarrow \epsilon \end{array}$$


State	Stack	Input
q_0	ϵ	$(x+x)+x$
q_1	$\langle S \rangle \$$	$(x+x)+x$
q_1	$\langle B \rangle + \langle S \rangle \$$	$(x+x)+x$
q_1	$(\langle S \rangle) + \langle S \rangle \$$	$(x+x)+x$
q_1	$\langle S \rangle) + \langle S \rangle \$$	$x+x)+x$
q_1	$\langle B \rangle + \langle S \rangle) + \langle S \rangle \$$	$x+x)+x$
q_1	$x + \langle S \rangle) + \langle S \rangle \$$	$x+x)+x$
q_1	$+ \langle S \rangle) + \langle S \rangle \$$	$+x)+x$
q_1	$\langle S \rangle) + \langle S \rangle \$$	$x)+x$
q_1	$\langle B \rangle) + \langle S \rangle \$$	$x)+x$
q_1	$x) + \langle S \rangle \$$	$x)+x$
q_1	$) + \langle S \rangle \$$	$) + x$
q_1	$+ \langle S \rangle \$$	$+x$
q_1	$\langle S \rangle \$$	x
q_1	$\langle B \rangle \$$	x
q_1	$x \$$	x
q_1	$\$$	ϵ
q_f	ϵ	ϵ

Bottom-up parsing

- Stack holds a word in $(N \cup \Sigma)^*$ such that it is possible to derive the part of the input string that has been consumed **from its reverse**.
- At any time, may read a letter from input string and push it on top of the stack
- At any time, may non-deterministically choose a rule $A ::= \gamma_1 \dots \gamma_n$ and apply it **in reverse**: pop $\gamma_n \dots \gamma_1$ off the top of the stack, and push A .
- Accept when stack just contains start non-terminal

$\langle S \rangle ::= \langle B \rangle + \langle S \rangle \mid \langle B \rangle$
 $\langle B \rangle ::= (\langle S \rangle) \mid x$



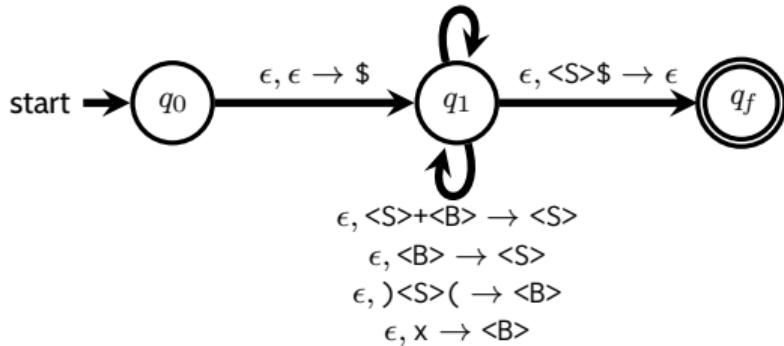
$$\langle S \rangle ::= \langle B \rangle + \langle S \rangle \mid \langle B \rangle$$

$$\langle B \rangle ::= (\langle S \rangle) \mid x$$

$$(), \epsilon \rightarrow ()$$

$$), \epsilon \rightarrow)$$

$$+, \epsilon \rightarrow +$$

$$x, \epsilon \rightarrow x$$


State	Stack	Input
q_0	ϵ	$(x+x)+x$
q_1	$\$$	$(x+x)+x$
q_1	$(\$$	$x+x)+x$
q_1	$x(\$$	$+x)+x$
q_1	$\langle B \rangle (\$$	$+x)+x$
q_1	$+ \langle B \rangle (\$$	$x)+x$
q_1	$x + \langle B \rangle (\$$	$) + x$
q_1	$\langle B \rangle + \langle B \rangle (\$$	$) + x$
q_1	$\langle S \rangle + \langle B \rangle (\$$	$) + x$
q_1	$\langle S \rangle (\$$	$) + x$
q_1	$) \langle S \rangle (\$$	$+ x$
q_1	$\langle B \rangle \$$	$+ x$
q_1	$+ \langle B \rangle \$$	x
q_1	$x + \langle B \rangle \$$	ϵ
q_1	$\langle B \rangle + \langle B \rangle \$$	ϵ
q_1	$\langle S \rangle + \langle B \rangle \$$	ϵ
q_1	$\langle S \rangle \$$	ϵ
q_f	ϵ	ϵ

Parsing overview

- Basic problem with both top-down and bottom-up construction: *non-determinism*
 - Non-deterministic search is inefficient
 - E.g., consider $\langle S \rangle ::= \langle S \rangle a \mid \langle S \rangle b \mid \epsilon$. Top-down parser must “guess” the entire input string at the beginning (breadth-first backtracking search takes exponential time in length of input string, depth-first does not terminate).
 - Algorithms for parsing any context free grammar in cubic¹ time, based on dynamic programming (Earley, and Cocke-Younger-Kasami).

¹Also sub-cubic galactic algorithms: Valiant 1975

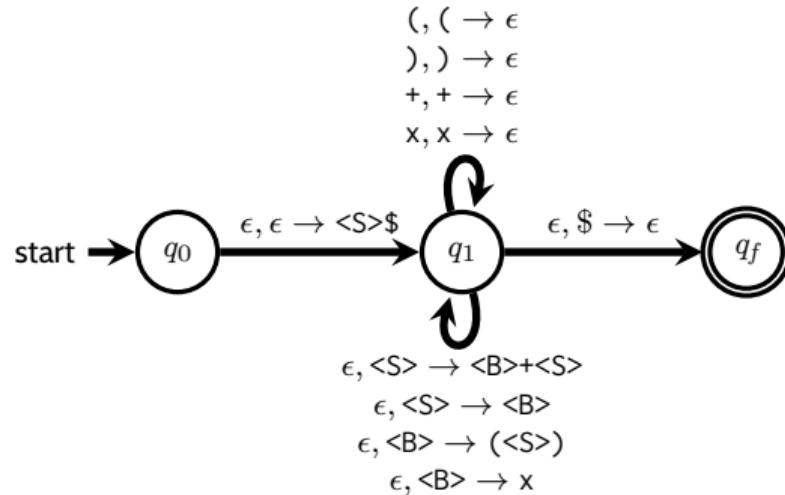
Parsing overview

- Basic problem with both top-down and bottom-up construction: *non-determinism*
 - Non-deterministic search is inefficient
 - E.g., consider $\langle S \rangle ::= \langle S \rangle a \mid \langle S \rangle b \mid \epsilon$. Top-down parser must “guess” the entire input string at the beginning (breadth-first backtracking search takes exponential time in length of input string, depth-first does not terminate).
 - Algorithms for parsing any context free grammar in cubic¹ time, based on dynamic programming (Earley, and Cocke-Younger-Kasami).
 - Parser generators use these same ideas, but restricted to cases where we can eliminate non-determinism.
 - Possible for both top-down and bottom-up style
 - Today: *LL* (*Left-to-right, Leftmost derivation*) parsers: top-down
 - Easy to understand & write by hand
 - Next time: *LR* (*Left-to-right, Rightmost derivation*) parsers: bottom-up
 - More general, (variations) implemented in parser generators

¹Also sub-cubic galactic algorithms: Valiant 1975

LL parsing

$\langle S \rangle ::= \langle B \rangle + \langle S \rangle \mid \langle B \rangle$
 $\langle B \rangle ::= (\langle S \rangle) \mid x$



- “Any time top of the stack is a non-terminal A , **non-deterministically** choose a production $A ::= \gamma \in R$. Pop A off the stack, and push γ ”
 - Key problem: need to deterministically choose which production to use
 - Solution: Look at the next input symbol, but don’t consume it (*lookahead*)
 - This is $LL(1)$ parsing. $LL(k)$ allows k lookahead tokens

- We say that a grammar is $LL(k)$ if when we look ahead k symbols in a top-down parser, we know which rule we should apply.
 - Let $G = (N, \Sigma, R, S)$ be a grammar. G is $LL(k)$ iff: for any $S \Rightarrow^* \alpha A \beta$, for any word $w \in \Sigma^k$, if there is some $A ::= \gamma \in R$ such that $\gamma \beta \Rightarrow^* w \beta'$ (for some β'), then γ is unique.
- Not every context-free language has an $LL(k)$ grammar.
 - $\{a^i b^j : i = j \vee 2i = j\}$ is not $LL(k)$ for any k

- We say that a grammar is $LL(k)$ if when we look ahead k symbols in a top-down parser, we know which rule we should apply.
 - Let $G = (N, \Sigma, R, S)$ be a grammar. G is $LL(k)$ iff: for any $S \Rightarrow^* \alpha A \beta$, for any word $w \in \Sigma^k$, if there is some $A ::= \gamma \in R$ such that $\gamma \beta \Rightarrow^* w \beta'$ (for some β'), then γ is unique.
- Not every context-free language has an $LL(k)$ grammar.
 - $\{a^i b^j : i = j \vee 2i = j\}$ is not $LL(k)$ for any k
- Which of the following are $LL(1)$ grammars?
 - $\langle S \rangle ::= a \langle S \rangle \mid b \langle S \rangle \mid \epsilon$
 - $\langle S \rangle ::= \langle S \rangle a \mid \langle S \rangle b \mid \epsilon$
 - $\langle S \rangle ::= \langle B \rangle^+ \langle S \rangle \mid \langle B \rangle$
 $\langle B \rangle ::= (\langle S \rangle) \mid x$

- We say that a grammar is $LL(k)$ if when we look ahead k symbols in a top-down parser, we know which rule we should apply.
 - Let $G = (N, \Sigma, R, S)$ be a grammar. G is $LL(k)$ iff: for any $S \Rightarrow^* \alpha A \beta$, for any word $w \in \Sigma^k$, if there is some $A ::= \gamma \in R$ such that $\gamma \beta \Rightarrow^* w \beta'$ (for some β'), then γ is unique.
- Not every context-free language has an $LL(k)$ grammar.
 - $\{a^i b^j : i = j \vee 2i = j\}$ is not $LL(k)$ for any k
- Which of the following are $LL(1)$ grammars?
 - $\langle S \rangle ::= a \langle S \rangle \mid b \langle S \rangle \mid \epsilon$
More generally, any grammar that results from our DFA \rightarrow CFG conversion
 - $\langle S \rangle ::= \langle S \rangle a \mid \langle S \rangle b \mid \epsilon$
 - $\langle S \rangle ::= \langle B \rangle^+ \langle S \rangle \mid \langle B \rangle$
 $\langle B \rangle ::= (\langle S \rangle) \mid x$

Left-factoring

- The grammar

$$\begin{aligned} <S> &::= +<S> \mid \\ &::= (<S>) \mid x \end{aligned}$$

is not LL(1): (lookahead can't distinguish the two $<S>$ rules

- However, there is an LL(1) grammar for the language

Left-factoring

- The grammar

$$\begin{aligned} <S> &::= +<S> \mid \\ &::= (<S>) \mid x \end{aligned}$$

is not LL(1): (lookahead can't distinguish the two $<S>$ rules

- However, there is an LL(1) grammar for the language

$$\begin{aligned} <S> &::= <R> \\ <R> &::= +<S> \mid \epsilon \\ &::= (<S>) \mid x \end{aligned}$$

- General strategy: factor out rules with common prefixes (“left factoring”)

Eliminating left recursion

- A grammar is **left-recursive** if there is a non-terminal A such that $A \Rightarrow^+ A\gamma$ (for some γ)
- Left-recursive grammars are not $LL(k)$ for any k
- Consider:

$$\langle S \rangle ::= \langle S \rangle + \langle B \rangle \mid \langle B \rangle$$
$$\langle B \rangle ::= (\langle S \rangle) \mid x$$

Eliminating left recursion

- A grammar is **left-recursive** if there is a non-terminal A such that $A \Rightarrow^+ A\gamma$ (for some γ)
- Left-recursive grammars are not $LL(k)$ for any k
- Consider:

$$\begin{aligned} <S> &::= <S> + \mid \\ &::= (<S>) \mid x \end{aligned}$$

Can remove left recursion as follows:

$$\begin{aligned} <S> &::= <S'> \\ <S'> &::= + <S'> \mid \epsilon \\ &::= (<S>) \mid x \end{aligned}$$

(Recognizes the same language, but parse trees are different!)

Mechanical construction of LL(1) parsers

- Fix a grammar $G = (N, \Sigma, R, S)$
- For any word $\gamma \in (N \cup \Sigma)^*$, define **first**(γ) = $\{a \in \Sigma : \gamma \Rightarrow^* aw\}$
- For any word $\gamma \in (N \cup \Sigma)^*$, say that γ is **nullable** if $\gamma \Rightarrow^* \epsilon$
- For any non-terminal A , define **follow**(A) = $\{a \in \Sigma : \exists \gamma, \gamma'. S \Rightarrow \gamma A a \gamma'\}$

Mechanical construction of LL(1) parsers

- Fix a grammar $G = (N, \Sigma, R, S)$
- For any word $\gamma \in (N \cup \Sigma)^*$, define $\text{first}(\gamma) = \{a \in \Sigma : \gamma \Rightarrow^* aw\}$
- For any word $\gamma \in (N \cup \Sigma)^*$, say that γ is **nullable** if $\gamma \Rightarrow^* \epsilon$
- For any non-terminal A , define $\text{follow}(A) = \{a \in \Sigma : \exists \gamma, \gamma'. S \Rightarrow \gamma A a \gamma'\}$
- Transition table δ for G can be computed using **first**, **follow**, and **nullable**:
 - ① For each non-terminal A and letter a , initialize $\delta(A, a)$ to \emptyset
 - ② For each rule $A ::= \gamma$
 - Add γ to $\delta(A, a)$ for each $a \in \text{first}(\gamma)$
 - If γ is nullable, add γ to $\delta(A, a)$ for each $a \in \text{follow}(A)$

Mechanical construction of LL(1) parsers

- Fix a grammar $G = (N, \Sigma, R, S)$
- For any word $\gamma \in (N \cup \Sigma)^*$, define $\text{first}(\gamma) = \{a \in \Sigma : \gamma \Rightarrow^* aw\}$
- For any word $\gamma \in (N \cup \Sigma)^*$, say that γ is **nullable** if $\gamma \Rightarrow^* \epsilon$
- For any non-terminal A , define $\text{follow}(A) = \{a \in \Sigma : \exists \gamma, \gamma'. S \Rightarrow \gamma A a \gamma'\}$
- Transition table δ for G can be computed using **first**, **follow**, and **nullable**:
 - ① For each non-terminal A and letter a , initialize $\delta(A, a)$ to \emptyset
 - ② For each rule $A ::= \gamma$
 - Add γ to $\delta(A, a)$ for each $a \in \text{first}(\gamma)$
 - If γ is nullable, add γ to $\delta(A, a)$ for each $a \in \text{follow}(A)$
- G is $LL(1)$ iff $\delta(A, a)$ is empty or singleton for all A and a

Mechanical construction of LL(1) parsers

- Fix a grammar $G = (N, \Sigma, R, S)$
- For any word $\gamma \in (N \cup \Sigma)^*$, define $\text{first}(\gamma) = \{a \in \Sigma : \gamma \Rightarrow^* aw\}$
- For any word $\gamma \in (N \cup \Sigma)^*$, say that γ is **nullable** if $\gamma \Rightarrow^* \epsilon$
- For any non-terminal A , define $\text{follow}(A) = \{a \in \Sigma : \exists \gamma, \gamma'. S \Rightarrow \gamma A a \gamma'\}$
- Transition table δ for G can be computed using **first**, **follow**, and **nullable**:
 - ① For each non-terminal A and letter a , initialize $\delta(A, a)$ to \emptyset
 - ② For each rule $A ::= \gamma$
 - Add γ to $\delta(A, a)$ for each $a \in \text{first}(\gamma)$
 - If γ is nullable, add γ to $\delta(A, a)$ for each $a \in \text{follow}(A)$
- G is $LL(1)$ iff $\delta(A, a)$ is empty or singleton for all A and a
- Operation of the parser on a word w :
 - Start with stack $\langle S \rangle$
 - While w not empty
 - If top of the stack is a terminal a and $w = aw'$, pop and set $w = w'$
 - If top of the stack is a non-terminal A and $w = aw'$, pop and push (singleton) $\delta(A, a)$ (or reject if $\delta(A, a)$ is empty)
 - Accept if stack is empty; reject otherwise.

Computing nullable

- **nullable** is the *smallest set* of non-terminals such that if there is some $A ::= \gamma_1 \dots \gamma_n \in R$ with $\gamma_1, \dots, \gamma_n \in \text{nullable}$ implies $A \in \text{nullable}$

- Fixpoint computation:

- $\text{nullable}_0 = \emptyset$
- $\text{nullable}_{i+1} = \{A : \exists \gamma_1, \dots, \gamma_n \in \text{nullable}_i. A ::= \gamma_1 \dots \gamma_n \in R\}$
- $\text{nullable} = \bigcup_{i=0}^{\infty} \text{nullable}_i$

```
nullable ← ∅;  
changed ← true;  
while changed do  
    changed ← false;  
    for  $A := \gamma_1 \dots \gamma_n \in R$  do  
        if  $A \notin \text{nullable} \wedge \gamma_1, \dots, \gamma_n \in \text{nullable}$  then  
            nullable ← nullable ∪ {A};  
            changed ← true;
```

Computing nullable

- **nullable** is the *smallest set* of non-terminals such that if there is some $A ::= \gamma_1 \dots \gamma_n \in R$ with $\gamma_1, \dots, \gamma_n \in \text{nullable}$ implies $A \in \text{nullable}$

- Fixpoint computation:

- $\text{nullable}_0 = \emptyset$
- $\text{nullable}_{i+1} = \{A : \exists \gamma_1, \dots, \gamma_n \in \text{nullable}_i. A ::= \gamma_1 \dots \gamma_n \in R\}$
- $\text{nullable} = \bigcup_{i=0}^{\infty} \text{nullable}_i$

```
nullable ← ∅;  
changed ← true;  
while changed do  
    changed ← false;  
    for  $A := \gamma_1 \dots \gamma_n \in R$  do  
        if  $A \notin \text{nullable} \wedge \gamma_1, \dots, \gamma_n \in \text{nullable}$  then  
            nullable ← nullable ∪ {A};  
            changed ← true;
```

- Fixpoint computations appear everywhere!
 - Later we will see how they are used in dataflow analysis

Computing first and follow

- **first** is the *smallest function*² such that
 - For each $a \in \Sigma$, $\text{first}(a) = \{a\}$
 - For each $A ::= \gamma_1 \dots \gamma_i \dots \gamma_n \in R$, with $\gamma_1, \dots, \gamma_{i-1}$ nullable, $\text{first}(A) \supseteq \text{first}(\gamma_i)$
- **follow** is the *smallest function* such that
 - For each $A ::= \gamma_1 \dots \gamma_i \dots \gamma_n \in R$, with $\gamma_{i+1}, \dots, \gamma_n$ nullable, $\text{follow}(\gamma_i) \supseteq \text{follow}(A)$
 - For each $A ::= \gamma_1 \dots \gamma_i \dots \gamma_j \dots \gamma_n \in R$, with $\gamma_{i+1}, \dots, \gamma_{j-1}$ nullable, $\text{follow}(\gamma_i) \supseteq \text{first}(\gamma_j)$
- Both can be computed using a fixpoint algorithm, like **nullable**

²Pointwise order: $f \leq g$ if for all x , $f(x) \leq g(x)$