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¢ HWS3 on course webpage later today. Due March 25. Start early!
® You will implement a compiler for a simple imperative programming language (Oat), targeting
LLVMlite.
® You may work individually or in pairs
e Midterm next Thursday
® Covers material in lectures up to February 29th (this Thursday)
® Interpreters, program transformation, X86, IRs, lexing, parsing
® How to prepare:

® Sample exams on Canvas later today

® Starton HW3

® Review slides

® Review example code from lectures (try re-implementing!)

® Review next Tuesday: come prepared with questions



Parsing II: LL parsing



Recall: Context-free grammars

e A context-free grammar G = (N, X, R, S) consists of:

N: afinite set of non-terminal symbols

¥ afinite alphabet (or set of terminal symbols)

R C N x (NUZX)" afinite set of rules or productions
S € N: the starting non-terminal.



Recall: Context-free grammars

® A context-free grammar G = (N, X, R, S) consists of:
N: afinite set of non-terminal symbols
¥ afinite alphabet (or set of terminal symbols)
R C N x (NUZX)" afinite set of rules or productions
S € N: the starting non-terminal.
* A word wis accepted by G if is derivable in zero or more steps from the starting
non-terminal
® Write v = 7/ if 7/ is obtained from ~ by replacing a non-terminal symbol in -y with the
right-hand-side of one of its rules
* Write v =* 4/ if ¥/ can be obtained from ~ using O or more derivation steps
* Aword w € X" is accepted by Gif S =" w



Parsing

¢ Context-free grammars are generative: easy to find strings that belongs to £( G), not so
easy determine whether a given string belongs to £(G)

® Pushdown automata (PDA) are a kind of automata that recognize context-free languages

* Pushdown automaton recognizing <S> ::= <S><S> | (<S>) | e
® Stack alphabet: $ marks bottom of the stack, L marks unbalanced left paren

(,e—> L

€,e— 3 €, $—)€
start qo0 %

), L —e€




Recall: pushdown automata

® Apush-down automaton A = (@, X, T, A, s, F') consists of
® () afinite set of states

¥: an (input) alphabet

I': a (stack) alphabet

AC Q xXEu{e)x I x @ x I* thetransition relation
~ ——— =~

~—~

source read input read stack dest  write stack
® s€ (@ start state
F C @ set of final (accepting) states



Recall: pushdown automata

® Apush-down automaton A = (@, X, T, A, s, F') consists of
® () afinite set of states

¥: an (input) alphabet

I': a (stack) alphabet

AC Q xXEu{e)x I x @ x I* thetransition relation
~ ——— =~

~—~
source read input read stack dest  write stack

® s€ (@ start state
® F C @ set of final (accepting) states
e Aword wis accepted by A if there is a w-labeled accepting path in 4
A configuration of A is a pair (¢, v) consisting of a state ¢ € @ and astack v € I'*
® Write (¢,v) = (¢, /) if there is some t € T'* such that v = at, v/ = bt,and (¢, w, a, ¢, b) € A
o Write (¢, v) %" (¢, o) if there is some wi, ..., w,and (g1, v1), .- ., (gu_1, vn_1) such that
w= w- - w, and
wa Wn—1 Wn, l7 ’Ul)

() =5 (g1, v1) = (g2, 12) = ... —= (g1, Vn—1) — (g

* A word wis accepted iff (s, €) N (g, v) forsome g€ F,ve ™.



Context free languages

¢ Claim: a language is recognized by a context-free grammar if and only if it is recognized
by a pushdown automaton

® Say that a language is context free if it is recognized by a context-free grammar (equiv.
pushdown automaton).

¢ Consequence: can “compile” context-free grammars to pushdown automata in order to
implement parsers



Context free languages

¢ Claim: a language is recognized by a context-free grammar if and only if it is recognized
by a pushdown automaton

® Say that a language is context free if it is recognized by a context-free grammar (equiv.
pushdown automaton).

¢ Consequence: can “compile” context-free grammars to pushdown automata in order to
implement parsers
¢ Two strategies, which correspond to different ways to implement parsers:
¢ Top-down (LL parsing)
® Bottom-up (LR parsing)



Stack represents intermediate state of a derivation, minus the consumed part of the input string.

Start with S on the stack

Any time top of the stack is a non-terminal 4, non-deterministically choose arule A ::= v € R.

Pop A off the stack, and push ~

If the top of the stack is a terminal a, consume a from the input string and pop « off the stack

Accept when stack is empty

<S> 1:= <B>+<S> | <B>
<B> = (<S>) | x

Top-down parsing

G(—e
),) —e
++ =€
Xy, X —> €

€,€ — <S>$ A €% — e
start q0 )%/ > 9

€,<S> — <B>+<S>
€,<S> — <B>
€,<B> — (<5>)
€,<B> — x




<S> 1= <B>+<S> | <B>
<B> = (<S>) | x

G(—e
),) — €
.+ €
X, X —> €

e,e%<5>$fck €% —e€
start =»{ 490 )%J > 9

€,<S> — <B>+<S>
€,<S> — <B>
€,<B> — (<S>)
€,<B> — x

State Stack Input
q0 € | (xtx)+x
q1 <S>$ | (x+x)+x
q1 <B>+<S>$ | (x+x)+x
q1 (<S>)+<S>$ | (x+x)+x
q <S>)+<S>$ X+X)+X
qQ <B>+<S>)+<S>$ X+X)+X
Q X+<S>)+<S>$ X+X)+X
Q1 +<S>)+<S>$ +X)+x
Q <S>)+<S>$ X)+x
q1 <B>)+<S>$ X)+X
q1 X)+<S>$ X)+X
q )+<5>$ )+x
Q1 +<S>$ +X
Q1 <S>$ X
q <B>$ X
Q x$ X
q1 $ €

€ €

9




Bottom-up parsing

Stack holds a word in (NU X)* such that it is possible to derive the part of the input string that has
been consumed from its reverse.

At any time, may read a letter from input string and push it on top of the stack

At any time, may non-deterministically choose arule A ::= v; ..., and apply it in reverse: pop
Yn - - - 71 Off the top of the stack, and push A.

Accept when stack just contains start non-terminal Ge—(
), e—=)
+ € — +
X, € —> X

- + e, e —>$ AE,<S>$4}E
<S> 1= <B>+<S> | <B> start _)@ >%j >(( o

<B> = (<S>) | x

€, <S>+<B> — <S>
€,<B> — <S>
€,)<S>( — <B>
€,x — <B>



<S>:
<B>:

= <B>+<S> | <B>
= (<8>) | x

Ge—=(
), € =)
€ — +
X, € = X

€,e—$ €,<5>% — €
start =»{ g0 )%/ > 9

€,<S>+<B> — <S>
€,<B> — <S>
€,)<S>( — <B>
€, X — <B>

State Stack Input
q0 € | (xtx)+x
q1 $ | (x+x)+x
q1 ($ | x+x)+x
q1 x($ X)X
q <B>($ +X)+X
q1 +<B>($ X)+X
Q x+<B>($ )+x
q1 <B>+<B>($ )+x
q1 <S>+<B>($ Y+x
q1 <S>($ )X
q1 )<S>($ X
q1 <B>$ +X
q1 +<B>$ X
Q1 x+<B>$ €
Q1 <B>+<B>$ €
q1 <S>+<B>$ €
q1 <S$>$ €
qf € €




Parsing overview

* Basic problem with both top-down and bottom-up construction: non-determinism
® Non-deterministic search is inefficient
® Eg,consider<S> ::= <S>a | <S>b | e. Top-down parser must “guess’ the entire input string at
the beginning (breadth-first backtracking search takes exponential time in length of input string,
depth-first does not terminate).
* Algorithms for parsing any context free grammar in cubic' time, based on dynamic
programming (Earley, and Cocke-Younger-Kasami).

'Also sub-cubic galactic algorithms: Valiant 1975



Parsing overview

* Basic problem with both top-down and bottom-up construction: non-determinism
® Non-deterministic search is inefficient

® Eg, consider<S> ::= <S>a | <S>b | e. Top-down parser must “guess’ the entire input string at
the beginning (breadth-first backtracking search takes exponential time in length of input string,
depth-first does not terminate).

* Algorithms for parsing any context free grammar in cubic' time, based on dynamic
programming (Earley, and Cocke-Younger-Kasami).
* Parser generators use these same ideas, but restricted to cases where we can eliminate
non-determinism.
* Possible for both top-down and bottom-up style
® Today: LL (Left-to-right, Leftmost derivation) parsers: top-down
® Easy to understand & write by hand
® Next time: LR (Left-to-right, Rightmost derivation) parsers: bottom-up
® More general, (variations) implemented in parser generators

'Also sub-cubic galactic algorithms: Valiant 1975



LL parsing
G(—e
),) e
+,+ — €
X, X —> €

R + e,e—><$>$A €% —e€
<S> 1:= <B>+<S> | <B> start _)@ ;%/ >( @

<B>::= (<S>) | x

€,<S> — <B>+<S>
€,<8> — <B>
€,<B> — (<S>)
€,<B> — x

® “Any time top of the stack is a non-terminal A, non-deterministically choose a production
A ::=~ € R. Pop A off the stack, and push ~"
® Key problem: need to deterministically choose which production to use
® Solution: Look at the next input symbol, but don't consume it (lookahead)
® Thisis LL(1) parsing. LL(k) allows k lookahead tokens



e We say that a grammar is . (%) if when we look ahead % symbols in a top-down parser,
we know which rule we should apply.

* Let G = (N,X, R, S) be agrammar. G'is LL(k) iff: forany S =* oA, for any word w € ©*, if
there is some A ::= v € Rsuch thaty3 =* wp’ (for some '), then ~ is unique.
¢ Not every context-free language has an LL(k) grammar.
° {a'V :i=jV2i=j}isnot LL(k) forany k



e We say that a grammar is . (%) if when we look ahead % symbols in a top-down parser,
we know which rule we should apply.

* Let G = (N,X, R, S) be agrammar. G'is LL(k) iff: forany S =* oA, for any word w € ©*, if
there is some A ::= v € Rsuch thaty3 =* wp’ (for some '), then ~ is unique.
¢ Not every context-free language has an LL(k) grammar.
° {a'V :i=jV2i=j}isnot LL(k) forany k
¢ Which of the following are LL(1) grammars?
® <S> :=a<S> | b<S>| e

® <S>:=<S>a|<S>b|e
® <S> = <B>+<S> | <B>
<B> = (<S>) | x



e We say that a grammar is . (%) if when we look ahead % symbols in a top-down parser,
we know which rule we should apply.
* Let G = (N,X, R, S) be agrammar. G'is LL(k) iff: forany S =* oA, for any word w € ©*, if
there is some A ::= v € Rsuch thaty3 =* wp’ (for some '), then ~ is unique.
¢ Not every context-free language has an LL(k) grammar.
° {a'V :i=jV2i=j}isnot LL(k) forany k
¢ Which of the following are LL(1) grammars?
® <S> :=a<S> | b<S>| e
More generally, any grammar that results from our DFA—CFG conversion
® <S>:u=<S>a |<S>b|e€
® <S> = <B>+<S> | <B>
<B> = (<S>) | x



Left-factoring

* The grammar
<S> 1= <B>+<S> | <B>

<B> = (<S>) | x

is not LL(1): ( lookahead can't distinguish the two <S> rules
* However, there is an LL(1) grammar for the language



Left-factoring

* The grammar

<S> 1= <B>+<S> | <B>
<B> = (<S>) | x

is not LL(1): ( lookahead can't distinguish the two <S> rules
* However, there is an LL(1) grammar for the language

<S> 1= <B><R>
<R> = +<S> | €
<B> = (<S>) | x

¢ General strategy: factor out rules with common prefixes (“left factoring”)



Eliminating left recursion

* Agrammar is left-recursive if there is a non-terminal A such that A =" A~ (for some )
e Left-recursive grammars are not LL(k) forany k
e Consider:

<S> 1= <S>+<B> | <B>
<B> = (<S>) | x



Eliminating left recursion

* Agrammar is left-recursive if there is a non-terminal A such that A =" A~ (for some )

e Left-recursive grammars are not LL(k) forany k
* Consider:

<S> 1= <S>+<B> | <B>
<B> = (<S>) | x

Can remove left recursion as follows:

<S> = <B><S’>
<S’> = +<B><S’> | €
<B>::= (<S>) | x

(Recognizes the same language, but parse trees are different!)



Mechanical construction of LL(1) parsers

Fixagrammar G = (N, X, R, S)

Forany word y € (NU X)*, define first(y) = {a €  : v =" aw}

Forany word v € (NU X)", say that v is nullable if v =" ¢

For any non-terminal 4, define follow(A) = {a € ¥ : 3y,~".S = vAay'}



Mechanical construction of LL(1) parsers

Fix a grammar G = (N, X, R, S)

Forany word y € (NU X)*, define first(y) = {a €  : v =" aw}

Forany word v € (NU X)", say that v is nullable if v =" ¢

For any non-terminal 4, define follow(A) = {a € ¥ : 3y,~".S = vAay'}
Transition table ¢ for G can be computed using first, follow, and nullable:

@ For each non-terminal A and letter g, initialize §(A4, a) to 0
@ Foreachrule 4 ::=~

® Add v to §(A, a) for each a € first(y)

® If vis nullable, add v to §( A, a) for each a € follow(A)



Mechanical construction of LL(1) parsers

Fix a grammar G = (N, X, R, S)

Forany word y € (NU X)*, define first(y) = {a €  : v =" aw}

Forany word v € (NU X)", say that v is nullable if v =" ¢

For any non-terminal 4, define follow(A) = {a € ¥ : 3y,~".S = vAay'}
Transition table ¢ for G can be computed using first, follow, and nullable:

@ For each non-terminal A and letter g, initialize §(A4, a) to 0
@ Foreachrule 4 ::=~
® Add v to §(A, a) for each a € first(y)
® If vis nullable, add v to §( A, a) for each a € follow(A)
Gis LL(1) iff (A, a) is empty or singleton forall A and a



Mechanical construction of LL(l) parsers

Fix a grammar G = (N, X, R, S)
Forany word y € (NU X)*, define first(y) = {a €  : v =" aw}
Forany word vy € (NU X)*, say that v is nullable if y =" ¢
For any non-terminal 4, define follow(A) = {a € ¥ : 3y,~".S = vAay'}
Transition table ¢ for G can be computed using first, follow, and nullable:
@ For each non-terminal A and letter g, initialize §(A4, a) to 0
@ Foreachrule 4 ::=~
® Add v to §(A, a) for each a € first(y)
® If vis nullable, add v to §( A, a) for each a € follow(A)
Gis LL(1) iff (A, a) is empty or singleton forall A and a
Operation of the parser on a word w:
® Start with stack <S>
® While wnot empty
* If top of the stack is a terminal a and w = aw', pop and set w = w'
* If top of the stack is a non-terminal A and w = aw’, pop and push (singleton) 5( A4, a)
(or rejectif 6( A, a) is empty)
® Accept if stack is empty; reject otherwise.



Computing nullable

* nullable is the smallest set of non-terminals such that if there issome A ::=~,...v, € R
with v, ..., 7, € nullable implies A € nullable
® Fixpoint computation:
* nullabley =
® nullable;y; = {4 :3y1,...,7, € nullable;.A ::= 1 ...v, € R}

* nullable = _ nullable;
=0
nullable < 0;
changed < true;
while changed do
changed « false;
forA:=~...7, € Rdo
if A ¢ nullable A ~1,...,v» € nullable then
nullable < nullable U { A};
‘ changed « true;




Computing nullable

* nullable is the smallest set of non-terminals such that if there issome A ::=~,...v, € R
with v, ..., 7, € nullable implies A € nullable
® Fixpoint computation:
* nullabley =
® nullable;y; = {4 :3y1,...,7, € nullable;.A ::= 1 ...v, € R}

* nullable = _ nullable;
=0
nullable < 0;
changed < true;
while changed do
changed « false;
forA:=~...7, € Rdo
if A ¢ nullable A ~1,...,v» € nullable then
nullable < nullable U { A};
‘ changed « true;

* Fixpoint computations appear everywhere!
® Later we will see how they are used in dataflow analysis



Computing first and follow

e firstis the smallest function? such that

® Foreach a € X, first(a) = {a}
® Foreach A ::=y;...7;...7n, € R, with~y,...,v,-1 nullable, first(A) D first(~,)
e follow is the smallest function such that
® Foreach A ::=1...7;...v, € R, with;11,...,7v, nullable, follow(v;) 2 follow(A)
® Foreach A = ...7;...7j...7n € R, withy;41,...,7;—1 nullable, follow(v;) D first(v;)

* Both can be computed using a fixpoint algorithm, like nullable

2pointwise order: f < gif forall z, f(z) < g(z)



