

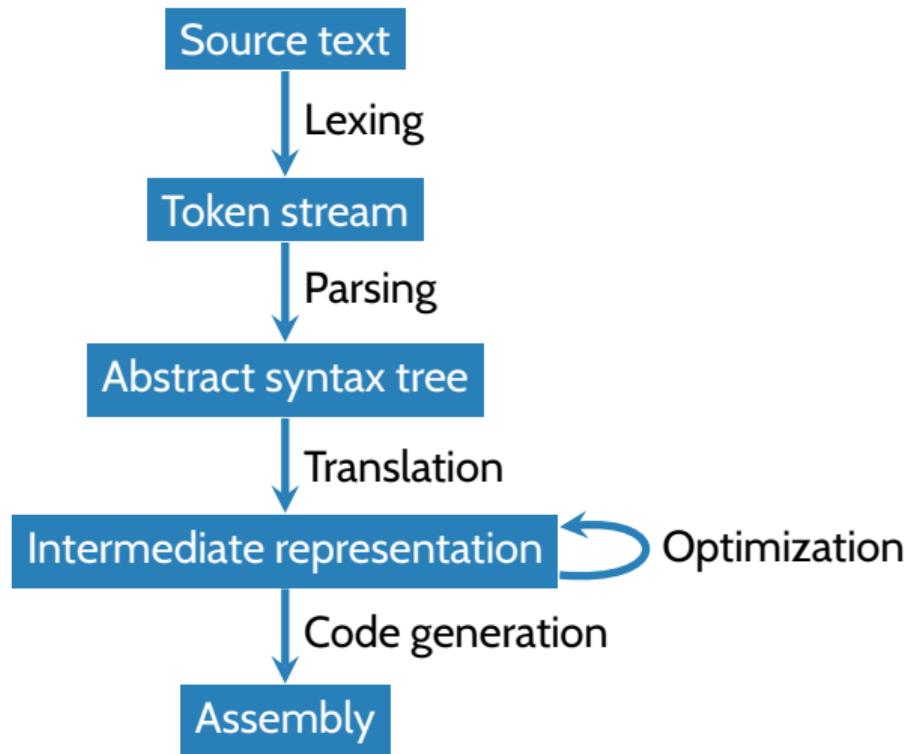
COS320: Compiling Techniques

Zak Kincaid

January 29, 2026

Parsing I: Context-free languages

Compiler phases (simplified)

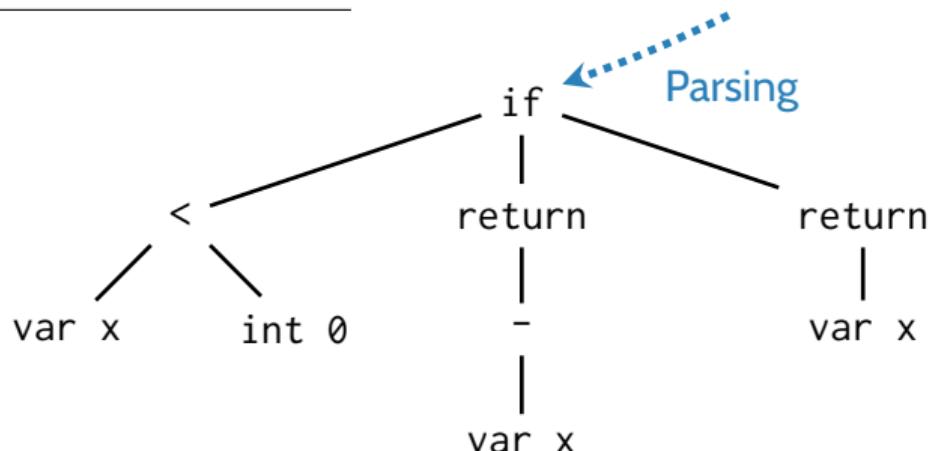


Lexing

```
// compute absolute value
if (x < 0) {
    return -x;
} else {
    return x;
}
```

IF, LPAREN, IDENT "x", LT, INT 0, RPAREN, LBRACE,
RETURN, MINUS, IDENT "x", SEMI,
RBRACE, ELSE, LBRACE,
RETURN, IDENT "x", SEMI,
RBRACE

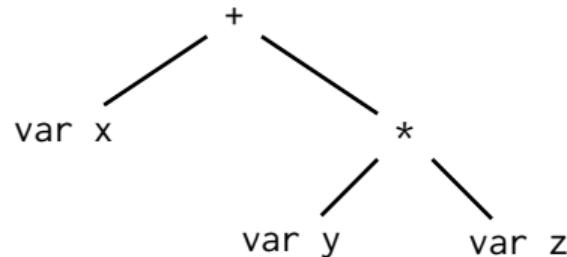
Parsing



- The *parsing* phase of a compiler takes in a stream of tokens (produced by a lexer), and builds an *abstract syntax tree* (AST).
 - Parser is responsible for reporting syntax errors if the token stream cannot be parsed
 - Variable scoping, type checking, ... handled later (*semantic analysis*)

- The **parsing** phase of a compiler takes in a stream of tokens (produced by a lexer), and builds an *abstract syntax tree* (AST).
 - Parser is responsible for reporting syntax errors if the token stream cannot be parsed
 - Variable scoping, type checking, ... handled later (*semantic analysis*)
- An **abstract syntax tree** is a tree that represents the syntactic structure of the source code
 - “Abstract” in the sense that it omits details of the concrete syntax
 - semi-colons, parens, braces, whitespace, comments, ...
 - E.g., the following have the same abstract syntax tree:

- $x + y * z$
- $x + (y * z)$
- $(x) + (y * z)$
- $((x) + (y * z))$



Implementing a parser

- Option 1: By-hand (recursive descent)
 - Clang, gcc (since 3.4)
 - Libraries can make this easier (e.g., parser combinators – parsec)

Implementing a parser

- Option 1: By-hand (recursive descent)
 - Clang, gcc (since 3.4)
 - Libraries can make this easier (e.g., parser combinators – parsec)
- Option 2: Use a parser generator
 - Much easier to get right (“specification is the implementation”)
 - Parser generator warns of ambiguities, ill-formed grammars, etc.
 - gcc (before 3.4), Glasgow Haskell Compiler, OCaml compiler
 - Parser generators: Yacc, Bison, ANTLR, **menhir**

Defining syntax

- Recall:
 - An *alphabet* Σ is a finite set of symbols (e.g., $\{0, 1\}$, ASCII, unicode).
 - A *word* (or *string*) over Σ is a sequence of symbols in Σ
 - A *language* over Σ is a set of words over Σ
- The set of syntactically valid programs in a programming language is a language
 - Conceptually: alphabet is ASCII or Unicode
 - In practice: (often) over token types
 - Lexer gives us a higher-level view of source text that makes it easier to work with
- This language is typically specified by a *context-free grammar*

```
<expr> ::= <int>
          | <var>
          | <expr>+<expr>
          | <expr>*<expr>
          | (<expr>)
```

- Well-formed expressions (character-level):
 $3+2*x$,
 $(x*100) + (y*10) + z$, ...
- Well-formed expressions (token-level):
 $INT+INT*VAR$, $(VAR*INT)+(VAR*INT)+VAR$...

Why not regular expressions?

- Programming languages are typically not regular.
- E.g., the language of valid expressions
- See: *pumping lemma, Myhill-Nerode theorem* - COS 487

Context-free grammars

- A **context-free grammar** $G = (N, \Sigma, R, S)$ consists of:
 - N : a finite set of *non-terminal symbols*
 - Σ : a finite alphabet (or set of *terminal symbols*), disjoint from N
 - $R \subseteq N \times (N \cup \Sigma)^*$ a finite set of *rules* or *productions*
 - Rules often written $A \rightarrow w$
 - A is a non-terminal (*left-hand side*)
 - w is a word over N and Σ (*right-hand side*)
 - $S \in N$: the starting non-terminal.

Context-free grammars

- A **context-free grammar** $G = (N, \Sigma, R, S)$ consists of:
 - N : a finite set of *non-terminal symbols*
 - Σ : a finite alphabet (or set of *terminal symbols*), disjoint from N
 - $R \subseteq N \times (N \cup \Sigma)^*$ a finite set of *rules* or *productions*
 - Rules often written $A \rightarrow w$
 - A is a non-terminal (*left-hand side*)
 - w is a word over N and Σ (*right-hand side*)
 - $S \in N$: the starting non-terminal.
- **Backus-Naur form** is specialized syntax for writing context-free grammars
 - Non-terminal symbols are written between <,>s
 - Rules written as $\langle \text{expr} \rangle ::= \langle \text{expr} \rangle + \langle \text{expr} \rangle$
 - $|$ abbreviates multiple productions w/ same left-hand side
 - $\langle \text{expr} \rangle ::= \langle \text{expr} \rangle + \langle \text{expr} \rangle \mid \langle \text{expr} \rangle * \langle \text{expr} \rangle$ means
 - $\langle \text{expr} \rangle ::= \langle \text{expr} \rangle + \langle \text{expr} \rangle$
 - $\langle \text{expr} \rangle ::= \langle \text{expr} \rangle * \langle \text{expr} \rangle$

Derivations

- A **derivation** consists of a finite sequence of words $w_1, \dots, w_n \in (N \cup \Sigma)^*$ such that $w_1 = S$ and for each i , w_{i+1} is obtained from w_i by replacing a non-terminal symbol with the right-hand-side of one of its rules
 - Example:
 - Grammar: $\langle S \rangle ::= \langle S \rangle \langle S \rangle \mid (\langle S \rangle) \mid \epsilon$
 - Derivations:
 - $\langle S \rangle \Rightarrow (\langle S \rangle) \Rightarrow ()$
 - $\langle S \rangle \Rightarrow \langle S \rangle \langle S \rangle \Rightarrow \langle S \rangle (\langle S \rangle) \Rightarrow (\langle S \rangle) (\langle S \rangle) \Rightarrow () (\langle S \rangle) \Rightarrow () ()$
 - $\langle S \rangle \Rightarrow \langle S \rangle \langle S \rangle \Rightarrow \langle S \rangle (\langle S \rangle) \Rightarrow \langle S \rangle () \Rightarrow (\langle S \rangle) () \Rightarrow ((\langle S \rangle)) () \Rightarrow ((()) ()$
 - Formally:
 - For each i , there is some $u, v \in (N \cup \Sigma)^*$ some $A \in N$, and some $x \in (N \cup \Sigma)^*$ such that $w_i = uAv$, $w_{i+1} = uxv$, and $(A, x) \in R$.
- The set of all strings $w \in \Sigma^*$ such that G has a derivation of w is the *language* of G , written $\mathcal{L}(G)$.

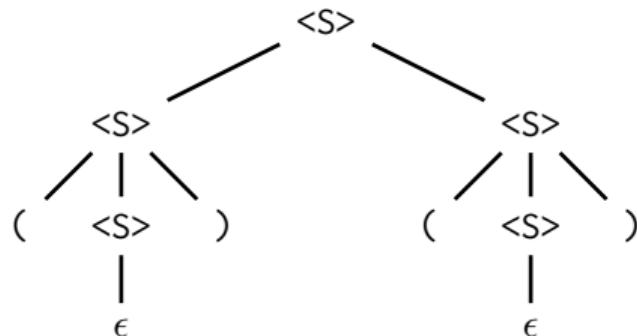
Derivations

- A **derivation** consists of a finite sequence of words $w_1, \dots, w_n \in (N \cup \Sigma)^*$ such that $w_1 = S$ and for each i , w_{i+1} is obtained from w_i by replacing a non-terminal symbol with the right-hand-side of one of its rules
 - Example:
 - Grammar: $\langle S \rangle ::= \langle S \rangle \langle S \rangle \mid (\langle S \rangle) \mid \epsilon$
 - Derivations:
 - $\langle S \rangle \Rightarrow (\langle S \rangle) \Rightarrow ()$
 - $\langle S \rangle \Rightarrow \langle S \rangle \langle S \rangle \Rightarrow \langle S \rangle (\langle S \rangle) \Rightarrow (\langle S \rangle) (\langle S \rangle) \Rightarrow () (\langle S \rangle) \Rightarrow () ()$
 - $\langle S \rangle \Rightarrow \langle S \rangle \langle S \rangle \Rightarrow \langle S \rangle (\langle S \rangle) \Rightarrow \langle S \rangle () \Rightarrow (\langle S \rangle) () \Rightarrow ((\langle S \rangle)) () \Rightarrow ((()) ()$
 - Formally:
 - For each i , there is some $u, v \in (N \cup \Sigma)^*$ some $A \in N$, and some $x \in (N \cup \Sigma)^*$ such that $w_i = uAv$, $w_{i+1} = uxv$, and $(A, x) \in R$.
- The set of all strings $w \in \Sigma^*$ such that G has a derivation of w is the *language* of G , written $\mathcal{L}(G)$.
- A derivation is **leftmost** if we always substitute the leftmost non-terminal, and **rightmost** if we always substitute the rightmost non-terminal.

Parse trees

- A *parse tree* is a tree representation of a derivation
 - Each leaf node is labelled with a terminal
 - Each internal node is labelled with a non-terminal
 - If an internal node has label X , its children (read left-to-right) are the right-hand-side of a rule w/ left-hand-side X
 - The root is labelled with the start symbol

Parse tree for $()()$, with grammar $\langle S \rangle ::= \langle S \rangle \langle S \rangle \mid (\langle S \rangle) \mid \epsilon$



Parse trees

- A *parse tree* is a tree representation of a derivation
 - Each leaf node is labelled with a terminal
 - Each internal node is labelled with a non-terminal
 - If an internal node has label X , its children (read left-to-right) are the right-hand-side of a rule w/ left-hand-side X
 - The root is labelled with the start symbol
- Construct a parse tree from a derivating by “parallelizing” non-terminals
- Parse tree corresponds to *many* derivations
 - Exactly one leftmost derivation (and exactly one rightmost derivation).

Ambiguity

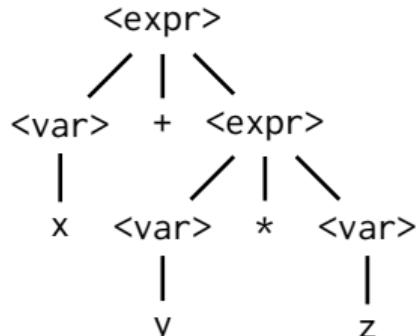
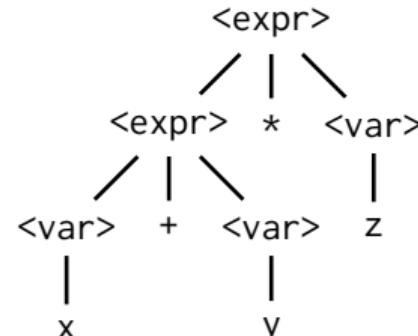
- A context-free grammar is *ambiguous* if there are two different parse trees for the same word.
 - Equivalently: a grammar is ambiguous if some word has two different left-most derivations

$\langle \text{expr} \rangle ::= \langle \text{int} \rangle \mid \langle \text{var} \rangle \mid \langle \text{expr} \rangle + \langle \text{expr} \rangle \mid \langle \text{expr} \rangle * \langle \text{expr} \rangle \mid (\langle \text{expr} \rangle)$

$\langle \text{var} \rangle ::= a \mid \dots \mid z$

$\langle \text{int} \rangle ::= 0 \mid \dots \mid 9$

$$\begin{array}{|c|} \hline x+y*z \\ \hline \end{array}$$



Eliminating ambiguity

- Ambiguity can often be eliminated by refactoring the grammar
 - Some languages are *inherently ambiguous*: context-free, but every grammar that accepts the language is ambiguous. E.g. $\{a^i b^j c^k : i = j \text{ or } j = k\}$.

Eliminating ambiguity

- Ambiguity can often be eliminated by refactoring the grammar
 - Some languages are *inherently ambiguous*: context-free, but every grammar that accepts the language is ambiguous. E.g. $\{a^i b^j c^k : i = j \text{ or } j = k\}$.
- Unambiguous expression grammar

```
<expr> ::= <term>+<expr> | <term>
<term> ::= <term>*<factor> | <factor>
<factor> ::= <var> | <int> | (<expr>)
```

- $+$ associates to the right and $*$ associates to the left (recursive case right (respectively, left) of operator)
- $*$ has higher precedence than $+$ ($*$ is farther from start symbol)

Regular languages are context-free

Suppose that L is a regular language. Then there is an NFA $A = (Q, \Sigma, \Delta, s, F)$ such that $\mathcal{L}(A) = L$. How can we construct a context-free grammar that accepts L ?

Regular languages are context-free

Suppose that L is a regular language. Then there is an NFA $A = (Q, \Sigma, \Delta, s, F)$ such that $\mathcal{L}(A) = L$. How can we construct a context-free grammar that accepts L ?

$G = (N, \Sigma, R, S)$, where:

- $N = Q$
- $S = s$
- $R = \{q ::= aq' : (q, a, q') \in \Delta\} \cup \{q ::= \epsilon : q \in F\}$

Regular languages are context-free

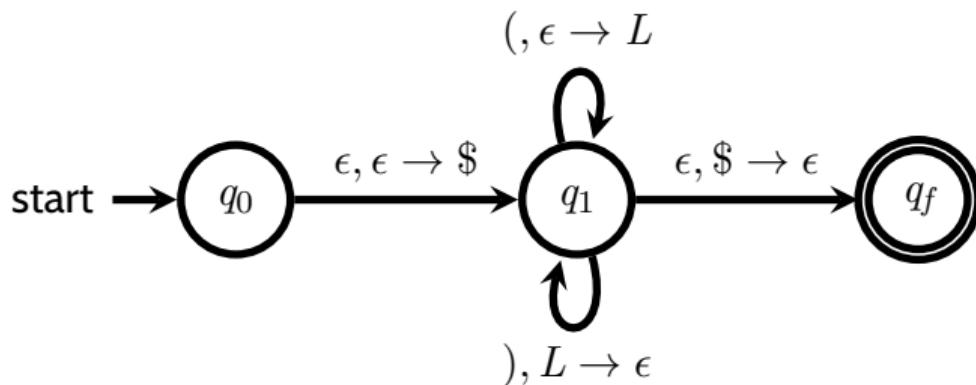
Suppose that L is a regular language. Then there is an NFA $A = (Q, \Sigma, \Delta, s, F)$ such that $\mathcal{L}(A) = L$. How can we construct a context-free grammar that accepts L ?

$G = (N, \Sigma, R, S)$, where:

- $N = Q$
- $S = s$
- $R = \{q ::= aq' : (q, a, q') \in \Delta\} \cup \{q ::= \epsilon : q \in F\}$
- Consequence: could fold lexer definition into grammar definition
- Why not?
 - Separation of concerns
 - Ambiguity is easily understood at lexer level, not parser level
 - Parser generators only handle *some* context-free grammars
 - Non-determinism is easy at the lexer level ($NFA \rightarrow DFA$ conversion)
 - Non-determinism is hard at the parser level (deterministic CFL \neq non-deterministic CFL)

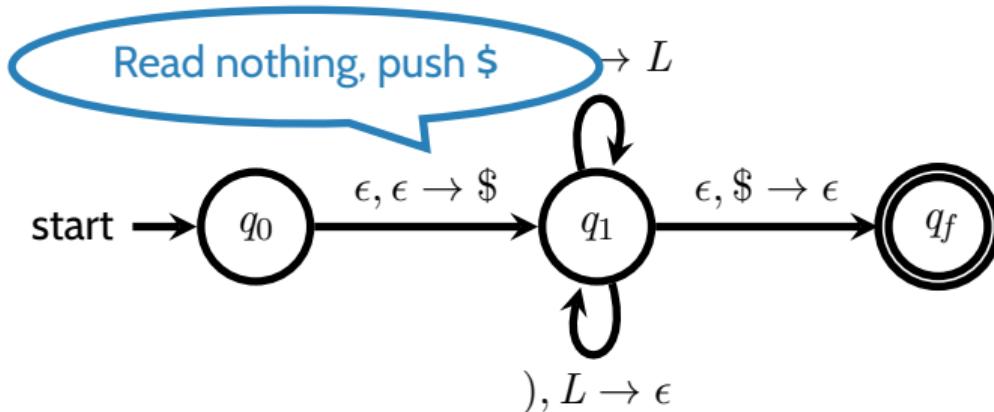
Pushdown automata

- *Pushdown automata* recognize context-free languages
 - PDA:Context-free lanuages :: DFA:Regular languages
 - $\text{PDA} \sim \text{NFA} + \text{a stack}$
- *Parser generator* compiles (restricted) grammar to (restricted) PDA
- Pushdown automaton recognizing $\langle S \rangle ::= \langle S \rangle \langle S \rangle \mid (\langle S \rangle) \mid \epsilon$:
 - *Stack alphabet*: $\$$ marks bottom of the stack, L marks unbalanced left paren



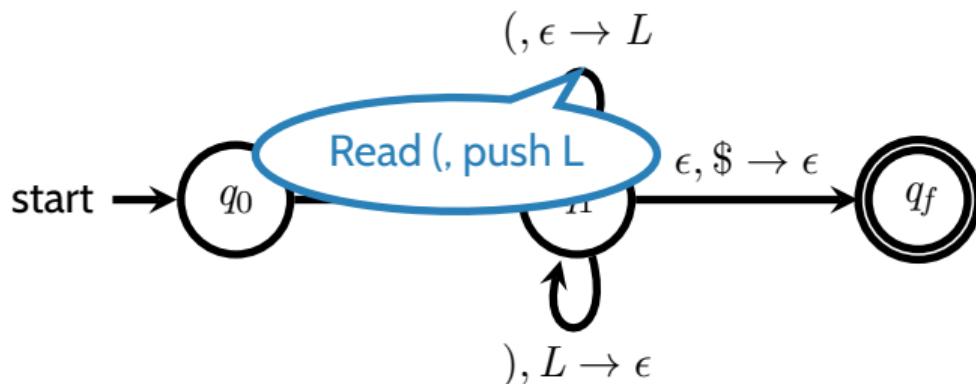
Pushdown automata

- *Pushdown automata* recognize context-free languages
 - PDA:Context-free lanuages :: DFA:Regular languages
 - $\text{PDA} \sim \text{NFA} + \text{a stack}$
- *Parser generator* compiles (restricted) grammar to (restricted) PDA
- Pushdown automaton recognizing $\langle S \rangle ::= \langle S \rangle \langle S \rangle \mid (\langle S \rangle) \mid \epsilon$:
 - *Stack alphabet*: $\$$ marks bottom of the stack, L marks unbalanced left paren



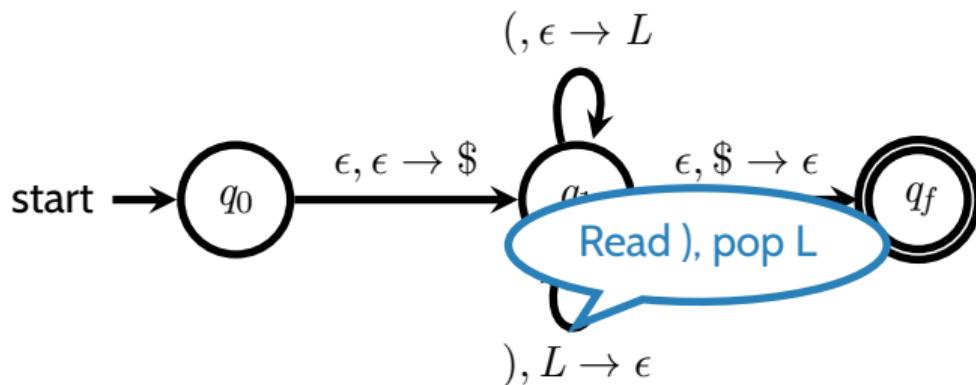
Pushdown automata

- *Pushdown automata* recognize context-free languages
 - PDA:Context-free lanuages :: DFA:Regular languages
 - $\text{PDA} \sim \text{NFA} + \text{a stack}$
- *Parser generator* compiles (restricted) grammar to (restricted) PDA
- Pushdown automaton recognizing $\langle S \rangle ::= \langle S \rangle \langle S \rangle \mid (\langle S \rangle) \mid \epsilon$:
 - *Stack alphabet*: $\$$ marks bottom of the stack, L marks unbalanced left paren



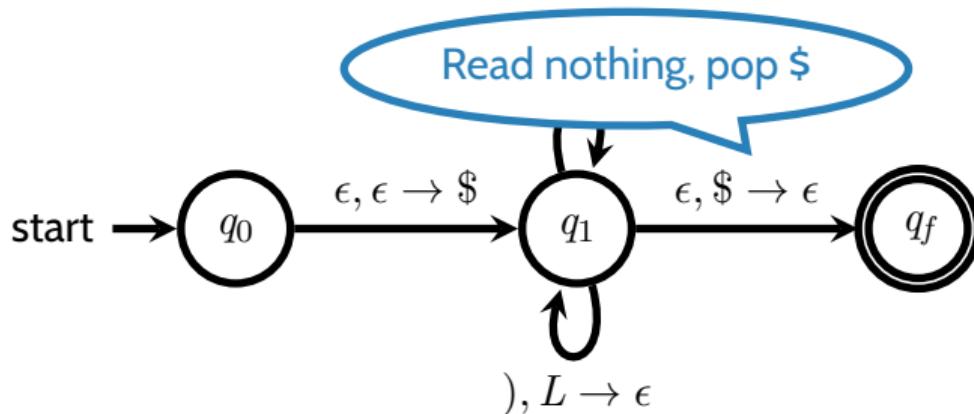
Pushdown automata

- *Pushdown automata* recognize context-free languages
 - PDA:Context-free languages :: DFA:Regular languages
 - $\text{PDA} \sim \text{NFA} + \text{a stack}$
- *Parser generator* compiles (restricted) grammar to (restricted) PDA
- Pushdown automaton recognizing $\langle S \rangle ::= \langle S \rangle \langle S \rangle \mid (\langle S \rangle) \mid \epsilon$:
 - *Stack alphabet*: $\$$ marks bottom of the stack, L marks unbalanced left paren



Pushdown automata

- *Pushdown automata* recognize context-free languages
 - PDA:Context-free lanuages :: DFA:Regular languages
 - $\text{PDA} \sim \text{NFA} + \text{a stack}$
- *Parser generator* compiles (restricted) grammar to (restricted) PDA
- Pushdown automaton recognizing $\langle S \rangle ::= \langle S \rangle \langle S \rangle \mid (\langle S \rangle) \mid \epsilon$:
 - *Stack alphabet*: $\$$ marks bottom of the stack, L marks unbalanced left paren



Pushdown automata, formally

- A **push-down automaton** $A = (Q, \Sigma, \Gamma, \Delta, s, F)$ consists of
 - Q : a finite set of states
 - Σ : an (input) alphabet
 - Γ : a (stack) alphabet
 - $\Delta \subseteq \underbrace{Q}_{\text{source}} \times \underbrace{(\Sigma \cup \{\epsilon\})}_{\text{read input}} \times \underbrace{\Gamma^*}_{\text{read stack}} \times \underbrace{Q}_{\text{dest}} \times \underbrace{\Gamma^*}_{\text{write stack}}$, the transition relation
 - $s \in Q$: start state
 - $F \subseteq Q$: set of final (accepting) states

Pushdown automata, formally

- A **push-down automaton** $A = (Q, \Sigma, \Gamma, \Delta, s, F)$ consists of
 - Q : a finite set of states
 - Σ : an (input) alphabet
 - Γ : a (stack) alphabet
 - $\Delta \subseteq \underbrace{Q}_{\text{source}} \times \underbrace{(\Sigma \cup \{\epsilon\})}_{\text{read input}} \times \underbrace{\Gamma^*}_{\text{read stack}} \times \underbrace{Q}_{\text{dest}} \times \underbrace{\Gamma^*}_{\text{write stack}}$, the transition relation
 - $s \in Q$: start state
 - $F \subseteq Q$: set of final (accepting) states
- A pushdown automaton accepts a word w if w can be written as $w_1 w_2 \dots w_n$ (each $w_i \in (\Sigma \cup \{\epsilon\})$) s.t. there exists $q_0, q_1, \dots, q_n \in Q$ and $v_0, v_1, \dots, v_n \in \Gamma^*$ such that
 - ① $q_0 = s$ and $v_0 = \epsilon$ (i.e., the machine starts at the start state with an empty stack)
 - ② for all i , we have $(q_i, w_{i+1}, a, q_{i+1}, b) \in \Delta$, where $v_i = at$ and $v_{i+1} = bt$ for some $a, b, t \in \Gamma^*$
 - ③ $q_m \in F$. (i.e., the machine ends at a final state).