COS320: Compiling Techniques

Zak Kincaid

January 29, 2026



Parsing I: Context-free languages



Compiler phases (simplified)

Lexing
A\ 4

Parsing

i
Y

Abstract syntax tree

. (Translation

Intermediate representation ) Optimization

. (Code generation




Lexing

snEEEmg
P e Tra,
. .

. ]

‘e
// compute absolute value =
if (z<0){ IF, LPAREN, IDENT ”x”, LT, INT o, RPAREN, LBRACE,
return -z; RETURN, MINUS, IDENT ”x”, SEMI,
} else { RBRACE, ELSE, LBRACE,
return z; RETURN, IDENT ”x”, SEMI,

} RBRACE

.
o**
.
.

PG :
if Parsing

i

< return return
/7 \ I |
var X int 0 - var X

var X



* The parsing phase of a compiler takes in a stream of tokens (produced by a lexer), and
builds an abstract syntax tree (AST).
® Parser is responsible for reporting syntax errors if the token stream cannot be parsed
® Variable scoping, type checking, ... handled later (semantic analysis)



* The parsing phase of a compiler takes in a stream of tokens (produced by a lexer), and
builds an abstract syntax tree (AST).

® Parser is responsible for reporting syntax errors if the token stream cannot be parsed
® Variable scoping, type checking, ... handled later (semantic analysis)

e An abstract syntax tree is a tree that represents the syntactic structure of the source code
e “Abstract” in the sense that it omits details of the concrete syntax
® semi-colons, parens, braces, whitespace, comments, ...

* E.g, the following have the same abstract syntax tree:

+
® X +yxz / \

® x + (y * 2) var X *

* )+ (y*2 / \

© (00 * (v *2) vary var z



Implementing a parser

e Option 1: By-hand (recursive descent)

® Clang, gcc (since 3.4)
® Libraries can make this easier (e.g., parser combinators - parsec)



Implementing a parser

e Option 1: By-hand (recursive descent)
® Clang, gcc (since 3.4)
® Libraries can make this easier (e.g., parser combinators - parsec)
¢ Option 2: Use a parser generator
® Much easier to get right (“specification is the implementation”)
® Parser generator warns of ambiguities, ill-formed grammars, etc.

® gcc (before 3.4), Glasgow Haskell Compiler, OCaml compiler
® Parser generators: Yacc, Bison, ANTLR, menhir



Defining syntax

e Recall:

® An alphabet 3 is a finite set of symbols (e.g., {0, 1}, ASCII, unicode).
® A word (or string) over ¥ is a sequence of symbols in ©
® Alanguage over X is a set of words over ¥
* The set of syntactically valid programs in a programming language is a language

® Conceptually: alphabet is ASCII or Unicode
® In practice: (often) over token types

® Lexer gives us a higher-level view of source text that makes it easier to work with

e This language is typically specified by a context-free grammar

<expr> n=<int> * Well-formed expressions (character-level):
| <var> 3+2xx,
| <expr>+<expr> (xx100) + (y*10) + z, ..
| <expr>x<expr> * Well-formed expressions (token-level):

| (<exprs) INT+INT*VAR, (VARXINT)+(VAR*INT)+VAR...



Why not regular expressions?

* Programming languages are typically not regular.
e E.g., the language of valid expressions
e See: pumping lemma, Myhill-Nerode theorem - COS 487



Context-free grammars

e A context-free grammar G = (N, X, R, S) consists of:

® N afinite set of non-terminal symbols
® Y afinite alphabet (or set of terminal symbols), disjoint from N
® RC Nx (NUZX)* afinite set of rules or productions

® Rules often written A — w

® Ais anon-terminal (left-hand side)

® wis aword over Nand X (right-hand side)

® § € N: the starting non-terminal.



Context-free grammars

e A context-free grammar G = (N, X, R, S) consists of:

® N afinite set of non-terminal symbols

® Y afinite alphabet (or set of terminal symbols), disjoint from N
® RC Nx (NUZX)* afinite set of rules or productions

Rules often written A — w

A is a non-terminal (left-hand side)

® wis aword over Nand X (right-hand side)

® § € N: the starting non-terminal.
® Backus-Naur form is specialized syntax for writing context-free grammars
® Non-terminal symbols are written between <,>s

® Rules written as <expr> ::= <expr>+<expr>
® | abbreviates multiple productions w/ same left-hand side
® <expr> ::= <expr>+<expr> | <expr>*<expr>means
<expr> ::= <expr>+<expr>

<expr> ::= <expr>*x<expr>



Derivations

* A derivation consists of a finite sequence of words wy, ..., w, € (NU X)* such that wy = S
and for each 4, w;;1 is obtained from w; by replacing a non-terminal symbol with the
right-hand-side of one of its rules

® Example:
® Grammar: <S> ::= <S><S> | (<S>) | €
¢ Derivations:
<S>= (<S> =0
<8> = <S><S> = <S>(<S>) = (K> (<S>) = O (<S>) = OO
<S> = <S><S> = <S>(<S>) = <S>() = (<SSO = (>N O=(D)O
® Formally:
® For each i, thereis some u, v € (NU X)" some A € N,and some z € (NU X)” such that
w; = uAv, wip1 = uxv,and (A, x) € R.

¢ The set of all strings w € ¥* such that G has a derivation of w s the language of G, written
L(G).



Derivations

* A derivation consists of a finite sequence of words wy, ..., w, € (NU X)* such that wy = S
and for each 4, w;;1 is obtained from w; by replacing a non-terminal symbol with the
right-hand-side of one of its rules

® Example:
® Grammar: <S> ::= <S><S> | (<S>) | €
¢ Derivations:
<S$>=(<$>) =0
<S> = <S><S> = <S>(<S>) = (<5>) (<5>) = () (<S>) = O ()
<8§> = <5><8> = <5>(<8>) = <S>() = (<S>) O = ((<$>) O = (OO
® Formally:
® For each i, thereis some u, v € (NU X)" some A € N,and some z € (NU X)” such that
w; = uAv, wip1 = uxv,and (A, x) € R.

¢ The set of all strings w € ¥* such that G has a derivation of w s the language of G, written
L(G).

¢ A derivation is leftmost if we always substitute the leftmost non-terminal, and rightmost if
we always substitute the rightmost non-terminal.



Parse trees

® Aparse tree is a tree representation of a derivation
® Each leaf node is labelled with a terminal
® Each internal node is labelled with a non-terminal
® If aninternal node has label X, its children (read left-to-right) are the right-hand-side of a rule w/
left-hand-side X

® The root is labelled with the start symbol
Parse tree for () (), with grammar <S> ::= <S><S> | (<S>) | ¢
<S>

PN

<S> <S>

/7 I\ VAN

¢ <> ) ( <> )

€ €



Parse trees

® Aparse tree is a tree representation of a derivation
® Each leaf node is labelled with a terminal
® Each internal node is labelled with a non-terminal
® If aninternal node has label X, its children (read left-to-right) are the right-hand-side of a rule w/
left-hand-side X

® The root is labelled with the start symbol

e Construct a parse tree from a derivating by “parallelizing” non-terminals
* Parse tree corresponds to many derivations
® Exactly one leftmost derivation (and exactly one rightmost derivation).



Ambiguity

* A context-free grammar is ambiguous if there are two different parse trees for the same
word.
® Equivalently: a grammar is ambiguous if some word has two different left-most derivations

<expr> ::=<int> | <var> | <expr>+<expr> | <expr>*<expr> | (<expr>)

<var>:=a|..|z
<int>:=0|..|9
vy
| -
<expr> <expr>
71N\ RN
<var> + <expr> <expr> * <var>
| N N |
X <var> * <var> <var> + <var> z

y z X y



Eliminating ambiguity

* Ambiguity can often be eliminated by refactoring the grammar

° Some languages are inherently ambiguous: context-free, but every grammar that accepts the
language is ambiguous. E.g. {a’b'c* : i = jorj = k}.



Eliminating ambiguity

* Ambiguity can often be eliminated by refactoring the grammar

° Some languages are inherently ambiguous: context-free, but every grammar that accepts the
language is ambiguous. E.g. {a’b'c* : i = jorj = k}.

* Unambiguous expression grammar

<expr> :=<term>+<expr> | <term>
<term> ::=<term>*<factor> | <factor>

<factor> ::=<var> | <int> | (<expr>)

® +associates to the right and and * associates to the left (recursive case right (respectively, left)
of operator)
® x has higher precedence than + (x is farther from start symbol)



Regular languages are context-free

Suppose that L is a regular language. Then thereisan NFA A = (Q, X, A, s, F) such that
L(A) = L. How can we construct a context-free grammar that accepts L?



Regular languages are context-free

Suppose that L is a regular language. Then thereisan NFA A = (Q, X, A, s, F) such that
L(A) = L. How can we construct a context-free grammar that accepts L?

G = (N,%, R, S), where:
° N:Q
e S=35
e R={q:=aqd : (¢ga,d) e AyU{q:=¢€:q€ F}



Regular languages are context-free

Suppose that L is a regular language. Then thereisan NFA A = (Q, X, A, s, F) such that
L(A) = L. How can we construct a context-free grammar that accepts L?
G = (N,%, R, S), where:

° N:Q
S =

L S

R={q:=aqd : (q,a,d) e A} U{qu=€:qe F}
Consequence: could fold lexer definition into grammar definition
Why not?

® Separation of concerns

® Ambiguity is easily understood at lexer level, not parser level
® Parser generators only handle some context-free grammars

® Non-determinism is easy at the lexer level (NFA — DFA conversion)
® Non-determinism is hard at the parser level (deterministic CFL # non-deterministic CFL)



Pushdown automata

® Pushdown automata recognize context-free languages

* PDA:Context-free lanuages :: DFA:Regular languages
® PDA ~ NFA + astack

* Parser generator compiles (restricted) grammar to (restricted) PDA

® Pushdown automaton recognizing <S> ::= <S><S> | (<S>) | e
e Stack alphabet: $ marks bottom of the stack, L marks unbalanced left paren

(e~ L

€, e—$ A e$—>e
start ==»{ 4o %

), L —e€




Pushdown automata

® Pushdown automata recognize context-free languages

* PDA:Context-free lanuages :: DFA:Regular languages
® PDA ~ NFA + astack

* Parser generator compiles (restricted) grammar to (restricted) PDA

® Pushdown automaton recognizing <S> ::= <S><S> | (<S>) | e
e Stack alphabet: $ marks bottom of the stack, L marks unbalanced left paren

Read nothing, push $ L
€, e—$ A 6,%—e
start =>»{ @ )% >

), L —e€




Pushdown automata

® Pushdown automata recognize context-free languages

* PDA:Context-free lanuages :: DFA:Regular languages
® PDA ~ NFA + astack

* Parser generator compiles (restricted) grammar to (restricted) PDA

® Pushdown automaton recognizing <S> ::= <S><S> | (<S>) | e
e Stack alphabet: $ marks bottom of the stack, L marks unbalanced left paren

,e— L
Read push L

), L —e€




Pushdown automata

® Pushdown automata recognize context-free languages

* PDA:Context-free lanuages :: DFA:Regular languages
® PDA ~ NFA + astack

* Parser generator compiles (restricted) grammar to (restricted) PDA

® Pushdown automaton recognizing <S> ::= <S><S> | (<S>) | e
e Stack alphabet: $ marks bottom of the stack, L marks unbalanced left paren

(e—= L

6% —e¢

start = @
Read ), pop L
L — €



Pushdown automata

® Pushdown automata recognize context-free languages

* PDA:Context-free lanuages :: DFA:Regular languages
® PDA ~ NFA + astack

* Parser generator compiles (restricted) grammar to (restricted) PDA

® Pushdown automaton recognizing <S> ::= <S><S> | (<S>) | e
e Stack alphabet: $ marks bottom of the stack, L marks unbalanced left paren

Read nothing, pop $

€, e—$ 6% —e¢
start ==»{ 4o \% @

), L —e€




Pushdown automata, formally

e A push-down automaton A = (Q, 3, T, A, s, F) consists of
® () afinite set of states

¥: an (input) alphabet

I': a (stack) alphabet

AC @ xXEu{e)x I x @ x TI* thetransition relation
~ = N~
source read input read stack dest write stack

® s€ (@ start state

® F C @ set of final (accepting) states



Pushdown automata, formally

e A push-down automaton A = (Q, 3, T, A, s, F) consists of

® () afinite set of states

® 33 an (input) alphabet

® T a(stack) alphabet

* AC @ xXZU{e)x I'" x @ x I* | thetransition relation
source read input read stack dest  write stack

® s€ (@ start state

® F C @ set of final (accepting) states
* A pushdown automaton accepts a word wif w can be written as w; ws...w,, (each
w; € (X U {e})) sit. there exists qo, ¢1, ..., ¢, € Qand vy, vy, ..., v, € I'* such that
O ¢ = sand vy = € (i.e., the machine starts at the start state with an empty stactk)
@ forall 5, we have (g;, wiy1, a, ¢i+1, b) € A, where v; = atand v;y; = bt forsome a, b, t € T*
©® g, € F. (i.e, the machine ends at a final state).



