COS320: Compiling Techniques

Zak Kincaid

January 29, 2026

Generic (forward) dataflow analysis algorithm

® Given:

® Abstract domain (£,C, LI, L, T)
® Transfer function

post . : Basic Block x £ — L
® Control flow graph G = (N, E, s)

® IN[s|=T
@ Forall n € N, post.(n,IN[n]) C
© Forallp + ne E, OUT[| C IN|

e Compute: least annotation IN, OUT such that

OUT(r]
)

IN[s] = T, OUT[s] = L;

IN[n] = OUT[n| = L for all other nodes n;
work < N;

while work # () do

Pick some n from work;
work < work \ {n} ;
old + OUT[n];

IN[7] « IN[n]U | | OUT[p
pEpred(n)
OUT|n] < post . (n,IN[n]);
if old # OUT|[n| then

| work < work U succ(n)
return IN, OUT

(Partial) Correctness

IN[s] = T, OUT[s] = L;
IN[n] = OUT[n] = L for all other nodes n;
work < N;
while work # () do
Pick some n from work;
work < work \ {n} ;
old + OUT(n];
IN[n] « IN[n]U | | OUT[p};
pepred(n)
OUT(n] « post . (n, IN[n]);
if old # OUT[n] then
| work < work U succ(n)
return IN, OUT

When algorithm terminates, all constraints are satisfied. Invariants:
e IN[s]=T
* Forany n € N, if post,(n,IN[n]) Z OUT[n], we have n € work
® Forany p — n € Ewith OUT[p] Z IN(n), we have n € work

Optimality

Algorithm computes [east solution.

e |nvariant: IN C* IN and OUT C* OUT, where

e IN/OUT denotes any solution to the constraint system
® C*is pointwise order on function space N — L

Optimality

Algorithm computes [east solution.

* Invariant: IN C* IN and OUT C* OUT, where
e IN/OUT denotes any solution to the constraint system
® C*is pointwise order on function space N — L
¢ Argument: let IN;/OUT; be IN/OUT at iteration i n; be workset item
* Base case IN; C* IN and OUT, C* OUT is easy
¢ Inductive step:
® INiya[n] =INi[n U | | OUTip] CIN[nJu | | OUT[p] C IN[ni
p—n;,€EE 7pH7LiEE
L4 OUTH_l[m} = [f)OSl’L:(7’L1;7 INH_l[TLZ]) E postﬁ(m, IN[’I’Ll]) E OUT[TLZ]
® For any n ;ﬁ ni, INi+1 [n] = INZ[TL} C W[nl]

Termination

* Why does this algorithm terminate?

Termination

* Why does this algorithm terminate?
® Ingeneral, it doesn't

Termination

* Why does this algorithm terminate?
® Ingeneral, it doesn't
e Ascending chain condition is sufficient.

® A partial order C satisfies the ascending chain condition if any infinite ascending sequence
mEap Cag

eventually stabilizes: for some ¢, we have z; = z; forall j > .

Termination

* Why does this algorithm terminate?
® Ingeneral, it doesn't
e Ascending chain condition is sufficient.
® A partial order C satisfies the ascending chain condition if any infinite ascending sequence

1 ExpExC

eventually stabilizes: for some 7, we have z; = z; forall j > i.
* Fact: Xis finite = (2%, C) and (2, D) satisfy a.c.c. (available expressions)

Termination

* Why does this algorithm terminate?
® Ingeneral, it doesn't
e Ascending chain condition is sufficient.
® A partial order C satisfies the ascending chain condition if any infinite ascending sequence

b,
eventually stabilizes: for some 7, we have z; = z; forall j > i.
* Fact: Xis finite = (2%, C) and (2, D) satisfy a.c.c. (available expressions)
® Fact: Xis finite and (£, C) satisfies a.c.c. = (X — £, C") satisfies a.c.c. (constant propagation)

Termination

* Why does this algorithm terminate?
® Ingeneral, it doesn't
e Ascending chain condition is sufficient.
® A partial order C satisfies the ascending chain condition if any infinite ascending sequence

1 ExpExC

eventually stabilizes: for some 7, we have z; = z; forall j > i.
* Fact: Xis finite = (2%, C) and (2, D) satisfy a.c.c. (available expressions)
® Fact: Xis finite and (£, C) satisfies a.c.c. = (X — £, C") satisfies a.c.c. (constant propagation)
® Termination argument:
e |f (£, C) satisfies a.c.c., so does the space of annotations (N — £,C*)
® OUT, C* OUT, C* ..., where OUT, is the OUT annotation at iteration 4
® This sequence eventually stabilizes = algorithm terminates

Local vs. Global constraints

¢ We had two specifications for available expressions
¢ Global: ¢ available at entry of n iff for every path from sto nin G:
@ the expression e is evaluated along the path
@ after the last evaluation of ¢ along the path, no variables in e are overwritten
e Local: IN, OUT is least annotation such that
O IN[§|=T
@ Foralln € N, post , ,(n,IN[n]) C OUT[n]
© Forallp — nc E OUT[p] C IN(n)

* Why are these specifications the same?

Coincidence

* Let (£,C,U, L, T) bean abstract domain and let post . be a transfer function.
® “Global specification” is formulated as join over paths:

JOP[n| = |_| post . (m, T)
wePath(s,n)

where Path(s, n) denotes set of paths from s to n, and post . is extended to paths by taking

post.(niny...ng, T) = post,(ny,...,post,(ny, T))

Coincidence

* Let (£,C,U, L, T) bean abstract domain and let post . be a transfer function.
® “Global specification” is formulated as join over paths:

JOP[n| = |_| post . (m, T)
wePath(s,n)

where Path(s, n) denotes set of paths from s to n, and post . is extended to paths by taking
post.(niny...ng, T) = post,(ny,...,post,(ny, T))

¢ Coincidence theorem (Kildall, Kam & Ullman): let (£, C, LI, L, T) be an abstract domain
satisfying the a.c.c, post . be a distributive transfer function, and IN/OUT be least
solution to
© IN[s§|=T
@ Forall n € N, post.(n,IN[n]) C OUT[n]
© Forallp — n e E, OUT[p| C IN(n)

Then for all n, JOP[n] = IN|[n|.

Coincidence

* Let (£,C,U, L, T) bean abstract domain and let post . be a transfer function.
® “Global specification” is formulated as join over paths:

JOP[n| = |_| post . (m, T)
wePath(s,n)

where Path(s, n) denotes set of paths from s to n, and post . is extended to paths by taking
post.(niny...ng, T) = post,(ny,...,post,(ny, T))

¢ Coincidence theorem (Kildall, Kam & Ullman): let (£, C, LI, L, T) be an abstract domain
satisfying the a.c.c, post . be a distributive transfer function, and IN/OUT be least
solution to
© IN[s§|=T
@ Forall n € N, post.(n,IN[n]) C OUT[n]
© Forallp — n e E, OUT[p| C IN(n)
Then for all n, JOP[n] = IN|[n|.

® post is distributive if forall z, y € L, post - (n, zU y) = post -(n, z) Ll post - (n, y)

Avallable expressions

Recall transfer function post, for available expressions:
postye(z = e, E) = {¢ € (EU{e}) : znotin ¢'}
post, is distributive:

postae(z = e, By N Ex) = {€ € (E1 N Ez) U{e}) : znotin ¢}
={d e BEyu{e}):znotine}n{e € (B2 U{e}): znotin ¢}
= post,c(z = e, Ey) Npostye(z= e, Ey)

Constant propagation

Is post - distributive?

Constant propagation

Is post - distributive?

postep(z:=z+ y,{z+— 0,y — 1} U{z— 1,y — 0}) = postep(z:= z+ y,{z+— T,y— T})
={z— T,y T}

Constant propagation

Is post - distributive?

postep(z:=z+y,{z— 0,y — 1} U{z— 1,y— 0}) = postp(z:=z+ y,{z— T,y— T})
={z— T,y T}

postep(z:=z+ y,{z+— 0,y — 1}) = {z— 1,y — 1}
postep(z:=z+y,{z—1,y—0}) ={z—1,y— 0}
{z— 1Ly 1} U{z—1,y—»0}={z—1y— T}

Gen/kill analyses

Suppose we have a finite set of data flow “facts”

Elements of the abstract domain are sets of facts

For each basic block n, associate a set of generated facts gen(n) and killed facts kill(n)
Define post - (n, F) = (F'\ kill(n)) U gen(n).

Gen/kill analyses

Suppose we have a finite set of data flow “facts”
Elements of the abstract domain are sets of facts
For each basic block n, associate a set of generated facts gen(n) and killed facts kill(n)
Define post - (n, F) = (F'\ kill(n)) U gen(n).
The order on sets of facts may be C or O
® C used for existential analyses: a fact holds at » if it holds along some path to n
® E.g., avariable is possibly-uninitialized at n if it is possibly-uninitialized along some path to n.

® D used for universal analyses: a fact holds at n if it holds along all paths to n
® E.g,an expression is available at n if it is available along all paths to n

Gen/kill analyses

Suppose we have a finite set of data flow “facts”
Elements of the abstract domain are sets of facts
For each basic block n, associate a set of generated facts gen(n) and killed facts kill(n)
Define post - (n, F) = (F'\ kill(n)) U gen(n).
The order on sets of facts may be C or O
® C used for existential analyses: a fact holds at » if it holds along some path to n
® E.g., avariable is possibly-uninitialized at n if it is possibly-uninitialized along some path to n.
® D used for universal analyses: a fact holds at n if it holds along all paths to n
® E.g,an expression is available at n if it is available along all paths to n

In either case, post . is monotone and distributive
post.(n, FU G) = ((FU G) \ kill(n)) U gen(n)
= ((F\ kill(n)) U (G \ kill(n))) U gen(n)
= ((F\ kill(n)) U gen(n)) U (G \ kill(n))) U gen(n))
= post(n, F') U post ;(n, G)

Possibly-uninitialized variables analysis

¢ Avariable zis possibly-uninitialized at a location n if there is some path from start to n
along which z is never written to.

® |f nuses an uninitialized variable, that could indicate undefined behavior

® Can catch these errors at compile time using possibly-uninitialized variable analysis
® E.g javac does this by default

¢ Possibly-unintialized variables as a dataflow analysis problem:

Possibly-uninitialized variables analysis

¢ Avariable zis possibly-uninitialized at a location n if there is some path from start to n
along which z is never written to.

® |f nuses an uninitialized variable, that could indicate undefined behavior

® Can catch these errors at compile time using possibly-uninitialized variable analysis
® E.g javac does this by default

¢ Possibly-unintialized variables as a dataflow analysis problem:

* Abstract domain: 2" (each V € 2" represents a set of possibly-uninitialized vars)
® Existential = orderis C, joinis U, T is Var, L is 0

Possibly-uninitialized variables analysis

¢ Avariable zis possibly-uninitialized at a location n if there is some path from start to n
along which z is never written to.
e If nuses an uninitialized variable, that could indicate undefined behavior

® Can catch these errors at compile time using possibly-uninitialized variable analysis
® E.g javac does this by default

¢ Possibly-unintialized variables as a dataflow analysis problem:
* Abstract domain: 2" (each V € 2" represents a set of possibly-uninitialized vars)
® Existential = orderis C, joinis U, T is Var, L is 0
o kill(z:=e) = {z}
° gen(z:=¢) =10

Reaching definitions analysis

e A definition is a pair (n, z) consisting of a basic block », and a variable z such that »
contains an assignment to z.

¢ We say that a definitoin (n, z) reaches a node m if there is a path from start to m such that
the latest definition of xz along the path is at

¢ Reaching definitions as a data flow analysis:

Reaching definitions analysis

e A definition is a pair (n, z) consisting of a basic block », and a variable z such that »
contains an assignment to z.

¢ We say that a definitoin (n, z) reaches a node m if there is a path from start to m such that
the latest definition of xz along the path is at
¢ Reaching definitions as a data flow analysis:
® Abstract domain: 2V Var
® Existential = orderis C, joinis U, T is N x Var, L is ()
e kill(n) = {(m,z) : me N, (z:=e)inn}
e gen(n) = {(n,x): (z:= e)inn}

Wrap-up

* In a compiler, program analysis is used to inform optimization
® OQutside of compilers: verification, testing, software understanding...

¢ Dataflow analysis is a particular family of progam analyses, which operates by solving a
constraint system over an ordered set

® Gen/kill analysis are a sub-family with nice properties
® The basic idea of solving constraints systems over ordered sets appears in lotss of different
places!
® Parsing - computation of first, follow, nullable
® Networking - computing shortest parths

® Automated planning - distance-to-goal estimation
o

