

COS320: Compiling Techniques

Zak Kincaid

January 29, 2026

Generic (forward) dataflow analysis algorithm

- Given:
 - Abstract domain $(\mathcal{L}, \sqsubseteq, \sqcup, \perp, \top)$
 - Transfer function $post_{\mathcal{L}} : Basic\ Block \times \mathcal{L} \rightarrow \mathcal{L}$
 - Control flow graph $G = (N, E, s)$
- Compute: *least* annotation **IN**, **OUT** such that
 - $\mathbf{IN}[s] = \top$
 - For all $n \in N$, $post_{\mathcal{L}}(n, \mathbf{IN}[n]) \sqsubseteq \mathbf{OUT}[n]$
 - For all $p \rightarrow n \in E$, $\mathbf{OUT}[p] \sqsubseteq \mathbf{IN}[n]$

```
 $\mathbf{IN}[s] = \top, \mathbf{OUT}[s] = \perp;$ 
 $\mathbf{IN}[n] = \mathbf{OUT}[n] = \perp$  for all other nodes  $n$ ;  

 $work \leftarrow N$ ;  

while  $work \neq \emptyset$  do  

  Pick some  $n$  from  $work$ ;  

   $work \leftarrow work \setminus \{n\}$  ;  

   $old \leftarrow \mathbf{OUT}[n]$ ;  

   $\mathbf{IN}[n] \leftarrow \mathbf{IN}[n] \sqcup \bigsqcup_{p \in pred(n)} \mathbf{OUT}[p]$ ;  

   $\mathbf{OUT}[n] \leftarrow post_{\mathcal{L}}(n, \mathbf{IN}[n])$ ;  

  if  $old \neq \mathbf{OUT}[n]$  then  

    |  $work \leftarrow work \cup succ(n)$   

return IN, OUT
```

(Partial) Correctness

```
IN[s] = ⊤, OUT[s] = ⊥;  
IN[n] = OUT[n] = ⊥ for all other nodes n;  
work ← N;  
while work ≠ ∅ do  
    Pick some n from work;  
    work ← work \ {n} ;  
    old ← OUT[n];  
    IN[n] ← IN[n] ∪ ⋃p ∈ pred(n) OUT[p];  
    OUT[n] ← postℒ(n, IN[n]);  
    if old ≠ OUT[n] then  
        | work ← work ∪ succ(n)  
return IN, OUT
```

When algorithm terminates, all constraints are satisfied. Invariants:

- $IN[s] = \top$
- For any $n \in N$, if $post_{\mathcal{L}}(n, IN[n]) \not\subseteq OUT[n]$, we have $n \in work$
- For any $p \rightarrow n \in E$ with $OUT[p] \not\subseteq IN(n)$, we have $n \in work$

Optimality

Algorithm computes *least* solution.

- Invariant: $\mathbf{IN} \sqsubseteq^* \overline{\mathbf{IN}}$ and $\mathbf{OUT} \sqsubseteq^* \overline{\mathbf{OUT}}$, where
 - $\overline{\mathbf{IN}/\mathbf{OUT}}$ denotes any solution to the constraint system
 - \sqsubseteq^* is pointwise order on function space $N \rightarrow \mathcal{L}$

Optimality

Algorithm computes *least* solution.

- Invariant: $\mathbf{IN} \sqsubseteq^* \overline{\mathbf{IN}}$ and $\mathbf{OUT} \sqsubseteq^* \overline{\mathbf{OUT}}$, where
 - $\overline{\mathbf{IN}/\mathbf{OUT}}$ denotes any solution to the constraint system
 - \sqsubseteq^* is pointwise order on function space $N \rightarrow \mathcal{L}$
- Argument: let $\mathbf{IN}_i/\mathbf{OUT}_i$ be \mathbf{IN}/\mathbf{OUT} at iteration i ; n_i be workset item
 - Base case $\mathbf{IN}_0 \sqsubseteq^* \overline{\mathbf{IN}}$ and $\mathbf{OUT}_0 \sqsubseteq^* \overline{\mathbf{OUT}}$ is easy
 - Inductive step:
 - $\mathbf{IN}_{i+1}[n_i] = \mathbf{IN}_i[n_i] \sqcup \bigsqcup_{p \rightarrow n_i \in E} \mathbf{OUT}_i[p] \sqsubseteq \overline{\mathbf{IN}[n_i]} \sqcup \bigsqcup_{p \rightarrow n_i \in E} \overline{\mathbf{OUT}[p]} \sqsubseteq \overline{\mathbf{IN}[n_i]}$
 - $\mathbf{OUT}_{i+1}[n_i] = \mathbf{post}_{\mathcal{L}}(n_i, \mathbf{IN}_{i+1}[n_i]) \sqsubseteq \mathbf{post}_{\mathcal{L}}(n_i, \overline{\mathbf{IN}[n_i]}) \sqsubseteq \overline{\mathbf{OUT}[n_i]}$
 - For any $n \neq n_i$, $\mathbf{IN}_{i+1}[n] = \mathbf{IN}_i[n] \sqsubseteq \overline{\mathbf{IN}[n]}$

Termination

- Why does this algorithm terminate?

Termination

- Why does this algorithm terminate?
 - In general, it doesn't

Termination

- Why does this algorithm terminate?
 - In general, it doesn't
- **Ascending chain condition** is sufficient.
 - A partial order \sqsubseteq satisfies the ascending chain condition if any infinite ascending sequence

$$x_1 \sqsubseteq x_2 \sqsubseteq x_3 \sqsubseteq \dots$$

eventually stabilizes: for some i , we have $x_j = x_i$ for all $j \geq i$.

Termination

- Why does this algorithm terminate?
 - In general, it doesn't
- **Ascending chain condition** is sufficient.
 - A partial order \sqsubseteq satisfies the ascending chain condition if any infinite ascending sequence

$$x_1 \sqsubseteq x_2 \sqsubseteq x_3 \sqsubseteq \dots$$

eventually stabilizes: for some i , we have $x_j = x_i$ for all $j \geq i$.

- Fact: X is finite $\Rightarrow (2^X, \sqsubseteq)$ and $(2^X, \supseteq)$ satisfy a.c.c. (*available expressions*)

Termination

- Why does this algorithm terminate?
 - In general, it doesn't
- **Ascending chain condition** is sufficient.
 - A partial order \sqsubseteq satisfies the ascending chain condition if any infinite ascending sequence

$$x_1 \sqsubseteq x_2 \sqsubseteq x_3 \sqsubseteq \dots$$

eventually stabilizes: for some i , we have $x_j = x_i$ for all $j \geq i$.

- Fact: X is finite $\Rightarrow (2^X, \subseteq)$ and $(2^X, \supseteq)$ satisfy a.c.c. (*available expressions*)
- Fact: X is finite and $(\mathcal{L}, \sqsubseteq)$ satisfies a.c.c. $\Rightarrow (X \rightarrow \mathcal{L}, \sqsubseteq^*)$ satisfies a.c.c. (*constant propagation*)

Termination

- Why does this algorithm terminate?
 - In general, it doesn't
- **Ascending chain condition** is sufficient.
 - A partial order \sqsubseteq satisfies the ascending chain condition if any infinite ascending sequence

$$x_1 \sqsubseteq x_2 \sqsubseteq x_3 \sqsubseteq \dots$$

eventually stabilizes: for some i , we have $x_j = x_i$ for all $j \geq i$.

- Fact: X is finite $\Rightarrow (2^X, \subseteq)$ and $(2^X, \supseteq)$ satisfy a.c.c. (*available expressions*)
- Fact: X is finite and $(\mathcal{L}, \sqsubseteq)$ satisfies a.c.c. $\Rightarrow (X \rightarrow \mathcal{L}, \sqsubseteq^*)$ satisfies a.c.c. (*constant propagation*)
- Termination argument:
 - If $(\mathcal{L}, \sqsubseteq)$ satisfies a.c.c., so does the space of annotations $(N \rightarrow \mathcal{L}, \sqsubseteq^*)$
 - **OUT**₀ \sqsubseteq^* **OUT**₁ \sqsubseteq^* \dots , where **OUT** _{i} is the **OUT** annotation at iteration i
 - This sequence eventually stabilizes \Rightarrow algorithm terminates

Local vs. Global constraints

- We had two specifications for available expressions
 - **Global:** e available at entry of n iff for every path from s to n in G :
 - 1 the expression e is evaluated along the path
 - 2 after the *last* evaluation of e along the path, no variables in e are overwritten
 - **Local:** **IN**, **OUT** is *least* annotation such that
 - 1 $\mathbf{IN}[s] = \top$
 - 2 For all $n \in N$, $\mathbf{post}_{AE}(n, \mathbf{IN}[n]) \sqsubseteq \mathbf{OUT}[n]$
 - 3 For all $p \rightarrow n \in E$, $\mathbf{OUT}[p] \sqsubseteq \mathbf{IN}(n)$
 - *Why are these specifications the same?*

Coincidence

- Let $(\mathcal{L}, \sqsubseteq, \sqcup, \perp, \top)$ be an abstract domain and let $\text{post}_{\mathcal{L}}$ be a transfer function.
 - “Global specification” is formulated as *join over paths*:

$$\mathbf{JOP}[n] = \bigsqcup_{\pi \in \text{Path}(s, n)} \text{post}_{\mathcal{L}}(\pi, \top)$$

where $\text{Path}(s, n)$ denotes set of paths from s to n , and $\text{post}_{\mathcal{L}}$ is extended to paths by taking

$$\text{post}_{\mathcal{L}}(n_1 n_2 \dots n_k, \top) = \text{post}_{\mathcal{L}}(n_k, \dots, \text{post}_{\mathcal{L}}(n_1, \top))$$

Coincidence

- Let $(\mathcal{L}, \sqsubseteq, \sqcup, \perp, \top)$ be an abstract domain and let $\text{post}_{\mathcal{L}}$ be a transfer function.
 - “Global specification” is formulated as *join over paths*:

$$\mathbf{JOP}[n] = \bigsqcup_{\pi \in \text{Path}(s, n)} \text{post}_{\mathcal{L}}(\pi, \top)$$

where $\text{Path}(s, n)$ denotes set of paths from s to n , and $\text{post}_{\mathcal{L}}$ is extended to paths by taking

$$\text{post}_{\mathcal{L}}(n_1 n_2 \dots n_k, \top) = \text{post}_{\mathcal{L}}(n_k, \dots, \text{post}_{\mathcal{L}}(n_1, \top))$$

- Coincidence theorem** (Kildall, Kam & Ullman): let $(\mathcal{L}, \sqsubseteq, \sqcup, \perp, \top)$ be an abstract domain satisfying the a.c.c., $\text{post}_{\mathcal{L}}$ be a **distributive** transfer function, and **IN/OUT** be least solution to

- 1 $\mathbf{IN}[s] = \top$
- 2 For all $n \in N$, $\text{post}_{\mathcal{L}}(n, \mathbf{IN}[n]) \sqsubseteq \mathbf{OUT}[n]$
- 3 For all $p \rightarrow n \in E$, $\mathbf{OUT}[p] \sqsubseteq \mathbf{IN}(n)$

Then for all n , $\mathbf{JOP}[n] = \mathbf{IN}[n]$.

Coincidence

- Let $(\mathcal{L}, \sqsubseteq, \sqcup, \perp, \top)$ be an abstract domain and let $\text{post}_{\mathcal{L}}$ be a transfer function.
 - “Global specification” is formulated as *join over paths*:

$$\mathbf{JOP}[n] = \bigsqcup_{\pi \in \text{Path}(s, n)} \text{post}_{\mathcal{L}}(\pi, \top)$$

where $\text{Path}(s, n)$ denotes set of paths from s to n , and $\text{post}_{\mathcal{L}}$ is extended to paths by taking

$$\text{post}_{\mathcal{L}}(n_1 n_2 \dots n_k, \top) = \text{post}_{\mathcal{L}}(n_k, \dots, \text{post}_{\mathcal{L}}(n_1, \top))$$

- Coincidence theorem** (Kildall, Kam & Ullman): let $(\mathcal{L}, \sqsubseteq, \sqcup, \perp, \top)$ be an abstract domain satisfying the a.c.c., $\text{post}_{\mathcal{L}}$ be a **distributive** transfer function, and **IN/OUT** be least solution to

- 1 $\mathbf{IN}[s] = \top$
- 2 For all $n \in N$, $\text{post}_{\mathcal{L}}(n, \mathbf{IN}[n]) \sqsubseteq \mathbf{OUT}[n]$
- 3 For all $p \rightarrow n \in E$, $\mathbf{OUT}[p] \sqsubseteq \mathbf{IN}(n)$

Then for all n , $\mathbf{JOP}[n] = \mathbf{IN}[n]$.

- $\text{post}_{\mathcal{L}}$ is **distributive** if for all $x, y \in \mathcal{L}$, $\text{post}_{\mathcal{L}}(n, x \sqcup y) = \text{post}_{\mathcal{L}}(n, x) \sqcup \text{post}_{\mathcal{L}}(n, y)$

Available expressions

Recall transfer function $post_{AE}$ for available expressions:

$$post_{AE}(x = e, E) = \{e' \in (E \cup \{e\}) : x \text{ not in } e'\}$$

$post_{AE}$ is distributive:

$$\begin{aligned} post_{AE}(x = e, E_1 \cap E_2) &= \{e' \in ((E_1 \cap E_2) \cup \{e\}) : x \text{ not in } e'\} \\ &= \{e' \in E_1 \cup \{e\} : x \text{ not in } e'\} \cap \{e' \in (E_2 \cup \{e\}) : x \text{ not in } e'\} \\ &= post_{AE}(x = e, E_1) \cap post_{AE}(x = e, E_2) \end{aligned}$$

Constant propagation

Is $post_{CP}$ distributive?

Constant propagation

Is post_{CP} distributive?

$$\begin{aligned}\text{post}_{CP}(x := x + y, \{x \mapsto 0, y \mapsto 1\} \sqcup \{x \mapsto 1, y \mapsto 0\}) &= \text{post}_{CP}(x := x + y, \{x \mapsto \top, y \mapsto \top\}) \\ &= \{x \mapsto \top, y \mapsto \top\}\end{aligned}$$

Constant propagation

Is post_{CP} distributive?

$$\begin{aligned}\text{post}_{CP}(x := x + y, \{x \mapsto 0, y \mapsto 1\} \sqcup \{x \mapsto 1, y \mapsto 0\}) &= \text{post}_{CP}(x := x + y, \{x \mapsto \top, y \mapsto \top\}) \\ &= \{x \mapsto \top, y \mapsto \top\}\end{aligned}$$

$$\text{post}_{CP}(x := x + y, \{x \mapsto 0, y \mapsto 1\}) = \{x \mapsto 1, y \mapsto 1\}$$

$$\text{post}_{CP}(x := x + y, \{x \mapsto 1, y \mapsto 0\}) = \{x \mapsto 1, y \mapsto 0\}$$

$$\{x \mapsto 1, y \mapsto 1\} \sqcup \{x \mapsto 1, y \mapsto 0\} = \{x \mapsto 1, y \mapsto \top\}$$

Gen/kill analyses

- Suppose we have a finite set of data flow “facts”
- Elements of the abstract domain are *sets* of facts
- For each basic block n , associate a set of *generated* facts $\text{gen}(n)$ and *killed* facts $\text{kill}(n)$
- Define $\text{post}_{\mathcal{L}}(n, F) = (F \setminus \text{kill}(n)) \cup \text{gen}(n)$.

Gen/kill analyses

- Suppose we have a finite set of data flow “facts”
- Elements of the abstract domain are *sets* of facts
- For each basic block n , associate a set of *generated* facts $\text{gen}(n)$ and *killed* facts $\text{kill}(n)$
- Define $\text{post}_{\mathcal{L}}(n, F) = (F \setminus \text{kill}(n)) \cup \text{gen}(n)$.
- The order on sets of facts may be \subseteq or \supseteq
 - \subseteq used for *existential* analyses: a fact holds at n if it holds along *some* path to n
 - E.g., a variable is possibly-uninitialized at n if it is possibly-uninitialized along some path to n .
 - \supseteq used for *universal* analyses: a fact holds at n if it holds along *all* paths to n
 - E.g., an expression is available at n if it is available along all paths to n

Gen/kill analyses

- Suppose we have a finite set of data flow “facts”
- Elements of the abstract domain are *sets* of facts
- For each basic block n , associate a set of *generated* facts $\text{gen}(n)$ and *killed* facts $\text{kill}(n)$
- Define $\text{post}_{\mathcal{L}}(n, F) = (F \setminus \text{kill}(n)) \cup \text{gen}(n)$.
- The order on sets of facts may be \subseteq or \supseteq
 - \subseteq used for *existential* analyses: a fact holds at n if it holds along *some* path to n
 - E.g., a variable is possibly-uninitialized at n if it is possibly-uninitialized along some path to n .
 - \supseteq used for *universal* analyses: a fact holds at n if it holds along *all* paths to n
 - E.g., an expression is available at n if it is available along all paths to n
- In either case, $\text{post}_{\mathcal{L}}$ is monotone and distributive

$$\begin{aligned}\text{post}_{\mathcal{L}}(n, F \cup G) &= ((F \cup G) \setminus \text{kill}(n)) \cup \text{gen}(n) \\ &= ((F \setminus \text{kill}(n)) \cup (G \setminus \text{kill}(n))) \cup \text{gen}(n) \\ &= ((F \setminus \text{kill}(n)) \cup \text{gen}(n)) \cup (((G \setminus \text{kill}(n))) \cup \text{gen}(n)) \\ &= \text{post}_{\mathcal{L}}(n, F) \cup \text{post}_{\mathcal{L}}(n, G)\end{aligned}$$

Possibly-uninitialized variables analysis

- A variable x is **possibly-uninitialized** at a location n if there is some path from start to n along which x is never written to.
- If n uses an uninitialized variable, that could indicate undefined behavior
 - Can catch these errors at compile time using possibly-uninitialized variable analysis
 - E.g. javac does this by default
- Possibly-uninitialized variables as a dataflow analysis problem:

Possibly-uninitialized variables analysis

- A variable x is **possibly-uninitialized** at a location n if there is some path from start to n along which x is never written to.
- If n uses an uninitialized variable, that could indicate undefined behavior
 - Can catch these errors at compile time using possibly-uninitialized variable analysis
 - E.g. javac does this by default
- Possibly-uninitialized variables as a dataflow analysis problem:
 - Abstract domain: 2^{Var} (each $V \in 2^{Var}$ represents a set of possibly-uninitialized vars)
 - *Existential* \Rightarrow order is \subseteq , join is \cup , \top is Var , \perp is \emptyset

Possibly-uninitialized variables analysis

- A variable x is **possibly-uninitialized** at a location n if there is some path from start to n along which x is never written to.
- If n uses an uninitialized variable, that could indicate undefined behavior
 - Can catch these errors at compile time using possibly-uninitialized variable analysis
 - E.g. javac does this by default
- Possibly-uninitialized variables as a dataflow analysis problem:
 - Abstract domain: 2^{Var} (each $V \in 2^{\text{Var}}$ represents a set of possibly-uninitialized vars)
 - *Existential* \Rightarrow order is \subseteq , join is \cup , \top is Var , \perp is \emptyset
 - $\text{kill}(x := e) = \{x\}$
 - $\text{gen}(x := e) = \emptyset$

Reaching definitions analysis

- A *definition* is a pair (n, x) consisting of a basic block n , and a variable x such that n contains an assignment to x .
- We say that a definition (n, x) *reaches* a node m if there is a path from start to m such that the latest definition of x along the path is at n
- Reaching definitions as a data flow analysis:

Reaching definitions analysis

- A *definition* is a pair (n, x) consisting of a basic block n , and a variable x such that n contains an assignment to x .
- We say that a definition (n, x) *reaches* a node m if there is a path from start to m such that the latest definition of x along the path is at n
- Reaching definitions as a data flow analysis:
 - Abstract domain: $2^{N \times \text{Var}}$
 - *Existential* \Rightarrow order is \subseteq , join is \cup , \top is $N \times \text{Var}$, \perp is \emptyset
 - $\text{kill}(n) = \{(m, x) : m \in N, (x := e) \text{ in } n\}$
 - $\text{gen}(n) = \{(n, x) : (x := e) \text{ in } n\}$

Wrap-up

- In a compiler, program analysis is used to inform optimization
 - Outside of compilers: verification, testing, software understanding...
- Dataflow analysis is a particular *family* of program analyses, which operates by solving a constraint system over an ordered set
 - Gen/kill analysis are a sub-family with nice properties
 - The basic idea of solving constraints systems over ordered sets appears in lots of different places!
 - Parsing – computation of first, follow, nullable
 - Networking – computing shortest paths
 - Automated planning – distance-to-goal estimation
 - ...