COS320: Compiling Techniques

Zak Kincaid

January 29, 2026

Data flow analysis

Recall: constant propagation

¢ A constant environment is a symbol table mapping each variable z to one of:
¢ aninteger n (indicating that «'s value is n whenever the program is at 1)
® T (indicating that z might take more than one value at 1)
¢ | (indicating that = may take no values at run-time - Iis unreachable)
® An assignment IN, OUT : N — ConstEnv for a CFG (N, E, s) maps each vertex to
e IN[bb]: a constant environment that holds immediately before bb
® OUT[bb]: a constant environment that holds immediately after bb
e Say that an assignment IN, OUT is conservative if
© IN]s] assigns each variable T
@ Foreachnodebb € N,
OUT|bb] 3 post(bb,IN[bb])

© For each edge src — dst € E,
IN[dst] 3 OUT|src]|

int sum2(int n) {

int sum = 0;

int step = 2;

while (n > 0) {
sum = sum + 1;
n =n - step;

}

return sum;

}

sum = @
step = 2

br loop

-

bgz sum, body, exit

sum = sum + 1
n=n - step

T

return sum

High-level constant propagation algorithm

e Initialize IN[s] to the constant environment that sends every variable to T and OUT|s| to
the constant environment that sends every variable to L.

e Initialize IN[bb] and OUT[bb] to the constant environment that sends every variable to |
for every other basic block

High-level constant propagation algorithm

Initialize IN[s] to the constant environment that sends every variable to T and OUT|s] to
the constant environment that sends every variable to L.

Initialize IN[bb] and OUT|[bb] to the constant environment that sends every variable to |
for every other basic block
Choose a constraint that is not satisfied by IN, OUT

® |f there is basic block bb with OUT[bb] A post(bb, IN[bb]), then set

OUT|bb] := post(bb, IN[bb])
¢ |f there is an edge src — dst € E with IN[dst] 2 OUT|src], then set
IN[dst] := IN[dst] Ll OUT|src]

Terminate when all constraints are satisfied.

Some vocabulary:
¢ Definepred(n) = {m € N: m — n € E} (control flow predecessors)
¢ Define succ(n) = {m € N: n— m € E} (control flow successors)

® Path = sequence of nodes ny, .. ., n; such that for each 1, there is an edge from
n; — N1 € E

Workset algorithm

Input : Control flow graph (N, E, s), with variables z1, . . ., z,
Output: Least conservative assignment of constant environments

Workset algorithm

Input : Control flow graph (N, E, s), with variables z1, . . ., z,

Output: Least conservative assignment of constant environments

IN[s|={z—T,...,2,— T}

OUT[s]|={m— L,...,zn— L}

IN[n] = OUT[n] = {z1 — L,...,z, — L} forall other nodes n;

work < N ; /* Set of nodes that may violate spec */

Workset algorithm

Input : Control flow graph (N, E, s), with variables z1, . . ., z,

Output: Least conservative assignment of constant environments

IN[s|={z—T,...,2,— T}

OUT[s]={m— L,...,zn— L}

IN[n] = OUT[n] = {z1 — L,...,z, — L} forall other nodes n;

work < N ; /* Set of nodes that may violate spec */
while work # () do

return IN, OUT

Workset algorithm

Input : Control flow graph (N, E, s), with variables z1, . . ., z,

Output: Least conservative assignment of constant environments

IN[s|={z—T,...,2,— T}

OUT[s]={m— L,...,zn— L}

IN[n] = OUT[n] = {z1 — L,...,z, — L} forall other nodes n;

work < N ; /* Set of nodes that may violate spec */
while work # () do

Pick some n from work;

work < work \ {n} ;

return IN, OUT

Workset algorithm

Input : Control flow graph (N, E, s), with variables z1, . . ., z,

Output: Least conservative assignment of constant environments

IN[s|={z—T,...,2,— T}

OUT[s]={m— L,...,zn— L}

IN[n] = OUT[n] = {z1 — L,...,z, — L} forall other nodes n;

work < N ; /* Set of nodes that may violate spec */
while work # () do

Pick some n from work;

work < work \ {n} ;

IN[n]« || OUT[p];
pEpred(n)
OUT|[n] < post(n,IN[n]);

return IN, OUT

Workset algorithm

Input : Control flow graph (N, E, s), with variables z1, . . ., z,
Output: Least conservative assignment of constant environments
IN[s|={z—T,...,2,— T}
OUT[s]={m— L,...,zn— L}
IN[n] = OUT[n] = {z1 — L,...,z, — L} forall other nodes n;
work < N ; /* Set of nodes that may violate spec */
while work # () do
Pick some n from work;
work < work \ {n} ;
old + OUT|[n];
IN[n]« || OUT[p];

pEpred(n)
OUT|[n] < post(n,IN[n]);
if old # OUT|n] then

| work < work U succ(n)
return IN, OUT

Common subexpression elimination

¢ Common subexpression elimination searches for expressions that
® appear at multiple points in a program
® evaluate to the same value at those points

and (possibly) save the cost of re-evaluation by storing that value.

void print (long *m, long n) {
long i,7;
long n_times n = n¥n;
for (i =0; i< n_times n;) {
for (j=0; j<mn; j+=1) {
printf(“ ¢ %ld’’, x(m + i + j));

void print (long *m, long n) {
long i,7;
for (i =0; i< n¥n; 7 += n) {
for (j=0; j<mn; j+=1) {
printf(“ ¢ %Bld’’, x(m + i + j));

}
} . .
. - long i plus n = i+n;
i (z.+t;é,<‘\nf?;.{ if (i_plus n < n_times_n) {
, prin n'’); printfC-\n’ Y ;

}

3 ¥ i = 1_plus_mn;
}

Avallable expressions

An expression in our simple imperative language has one of the following form:s:
® add <opn> <opn>
® mul <opn> <opn>
Fix control flow graph G = (N, E, s)
An expression eis available at basic block n € Nif for every path from sto nin G:
© the expression eis evaluated along the path
@ after the last evaluation of ¢ along the path, no variables in e are overwritten
Idea: if expression e is available at node 7, then we can eliminate redundant computations
of e within n

i =

0

br loop
tl = n*n
t2 = -1*tl
t3 = i+t2

blz t3, body, exit

i+n

F

t5 = n*n N .
t6 = -1%t5 1=
t7 = t4+t6 F[br loop
blez t7, line, merge

ret

urn

line = line+l

br merge

Propagating available expressions

® Given a set of expressions Fand an instruction z = e
Assuming the set of expressions E is available before the instruction, what expressions are available after the
instruction?

Propagating available expressions

® Given a set of expressions Fand an instruction z = e
Assuming the set of expressions E is available before the instruction, what expressions are available after the
instruction?
® posty(z=e E)={e € (EU{e}): znotin €'}

Propagating available expressions

® Given a set of expressions Fand an instruction z = e
Assuming the set of expressions E is available before the instruction, what expressions are available after the
instruction?
® posty(z=e E)={e € (EU{e}): znotin €'}
® How do we propagate available expressions through a basic block?

Propagating available expressions

® Given a set of expressions Fand an instruction z = e
Assuming the set of expressions E is available before the instruction, what expressions are available after the
instruction?
® posty(z=e E)={e € (EU{e}): znotin €'}
® How do we propagate available expressions through a basic block?
® Block takes the form instry, ..., instr,, term.
take post,(block, E) = post,g(instry, . . . post,c(instry, E))

Propagating available expressions

® Given a set of expressions Fand an instruction z = e
Assuming the set of expressions E is available before the instruction, what expressions are available after the
instruction?
® posty(z=e E)={e € (EU{e}): znotin €'}
® How do we propagate available expressions through a basic block?
® Block takes the form instry, ..., instr,, term.
take post,(block, E) = post,g(instry, . . . post,c(instry, E))
® How do we combine information from multiple predecessors?

tl = n*n n = m+m
t2 = m+m t2 = n+l
br tgt br tgt

{n*n, m+ m} \ / {m+m,n+1}

Propagating available expressions

® Given a set of expressions Fand an instruction z = e
Assuming the set of expressions E is available before the instruction, what expressions are available after the
instruction?
® posty(z=e E)={e € (EU{e}): znotin €'}
® How do we propagate available expressions through a basic block?
® Block takes the form instry, ..., instr,, term.
take post,(block, E) = post,g(instry, . . . post,c(instry, E))
® How do we combine information from multiple predecessors? Intersection

tl = n*n n = m+m
t2 = m+m t2 = n+l
br tgt br tgt

/ {m+m,n+ 1}

{n*n, m+ m}

Avallable expressions as a constraint system

® Let G = (N, E, s) be a control flow graph.
* For each basic block bb € N, associate two sets of expressions, IN[bb] and OUT |bb]

® IN[bb] is the set of expressions available at the entry of bb
® OUT|bb] is the set of expressions available at the exit of bb

Avallable expressions as a constraint system

® Let G = (N, E, s) be a control flow graph.
* For each basic block bb € N, associate two sets of expressions, IN[bb] and OUT |bb]

® IN[bb] is the set of expressions available at the entry of bb
® OUT|bb] is the set of expressions available at the exit of bb

¢ Say that the assignment IN, OUT is conservative if
O IN[s| =10
@ For each node bb € N,
OUT|bb] C post,(bb, IN[bb))

© For each edge src — dst € E,
IN[dst] C OUT[src]

Avallable expressions as a constraint system

Let G = (N, E, s) be a control flow graph.
For each basic block bb € N, associate two sets of expressions, IN[bb] and OUT [bb]

® IN[bb] is the set of expressions available at the entry of bb
® OUT|bb] is the set of expressions available at the exit of bb

Say that the assignment IN, OUT is conservative if
O IN[s| =10
@ For each node bb € N,
OUT|bb] C post,(bb, IN[bb])
© For each edge src — dst € E,
IN[dst] C OUT[src]

Fact: if IN, OUT is a conservative assignment, then:

¢ |f e € IN[bb], then eis available at entry of bb
® Similarly for OUT

Workset algorithm

Input : Control flow graph (N, E, s), with expressions U
Output: Greatest conservative assignment of available expressions
IN[s] = 0;
OUT[s] = U;
IN[n] = OUT[n] = U for all other nodes n;
work < N; /* Set of nodes that may violate spec */
while work # () do
Pick some n from work;
work < work \ {n} ;
old + OUT[n];
IN[n]« (] OUT[p];
pEpred(n)
OUT[n] < post,(n, IN[n]);
if old # OUT|n] then

| work < work U succ(n)
return IN, OUT

Constant propagation Available expressions

Want smallest assignment IN, OUT such that Want greatest assignment IN, OUT such that

® IN[s|={m—T,...,2,— T} ® IN[s| =0
® Foreachn € N, ® Foreachn e N,
OUT|n] 3 postcp(n, IN[n]) OUT|n] C postae(n,IN[n])
® Foreach p — n € E, OUT|[p|] C IN[n] ® Foreachp — n e E OUT|[p| D IN[n]

¢ Commonality: consant propagation and available expressions are characterized by
optimal solutions to a system of local constraints
® “Local™: defined in terms of edges; contrast with “global’, which depends on the structure of
the whole graph (e.g., paths)

Constant propagation Available expressions

Want smallest assignment IN, OUT such that Want greatest assignment IN, OUT such that

IN[s|={z1 = T,...;2,— T} ® IN[s| =0

Foreachn € N, ® Foreachn e N,

OUT|n] 3 postcp(n, IN[n]) OUT|n] C postae(n,IN[n])

Foreach p — n € E, OUT[p] C IN|[n] ® Foreachp — n € E,OUT[p] D IN[n]

Commonality: consant propagation and available expressions are characterized by
optimal solutions to a system of local constraints

® “Local™: defined in terms of edges; contrast with “global’, which depends on the structure of
the whole graph (e.g., paths)

The algorithms for constant propagation & available expressions are essentially the same

Dataflow analysis

e Dataflow analysis is an approach to program analysis that unifies the presentation and
implementation of many different analyses
® Formulate problem as a system of constraints
® Solve the constraints iteratively (using some variation of the workset algorithm)

Dataflow analysis

e Dataflow analysis is an approach to program analysis that unifies the presentation and
implementation of many different analyses
® Formulate problem as a system of constraints
® Solve the constraints iteratively (using some variation of the workset algorithm)
¢ What now:
¢ General theory & algorithms

¢ Conditions under which the approach works
® Guarantees about the solution

Dataflow analysis

e Dataflow analysis is an approach to program analysis that unifies the presentation and
implementation of many different analyses
® Formulate problem as a system of constraints
® Solve the constraints iteratively (using some variation of the workset algorithm)
¢ What now:
¢ General theory & algorithms
¢ Conditions under which the approach works
¢ Guarantees about the solution
e Not covered: abstract interpretation - a general theory for relating program analysis to
program semantics
® What does it mean for a constraint system to be correct?
® How do we prove it?

A (forward) dataflow analysis consists of:
¢ An abstract domain £
® Defines the space of program “properties” that we are interested in
* An abstract transformer post -

¢ Determines how each basic block transforms properties
® i.e., if property p holds before n, then post . (n, p) is a property that holds after n

Abstract domains

An abstract domain is a set £ equipped with:
® A partial order C

* 1 C ymeans that z represents more precise information about the program than /'
® [denotes corresponding irreflexive relation

"The other direction also works, and is the one taken in classical compilers literature. In this class, we will stick to
this direction, which is the convention established in abstract interpretation.

Abstract domains

An abstract domain is a set £ equipped with:
® A partial order C
* 1 C ymeans that z represents more precise information about the program than /'
® [denotes corresponding irreflexive relation
* A least upper bound (“join”) operator, LI

O :zCzuy
@ yCaly
© zUyLC zforany zsatisfying 1and 2

"The other direction also works, and is the one taken in classical compilers literature. In this class, we will stick to
this direction, which is the convention established in abstract interpretation.

Abstract domains

An abstract domain is a set £ equipped with:
® A partial order C
* 1 C ymeans that z represents more precise information about the program than /'
® [denotes corresponding irreflexive relation
* A least upper bound (“join”) operator, LI
O zzCzUy

@ yCaly
© zUyLC zforany zsatisfying 1and 2

e A least element (“bottom”), L

e | C gforallz
° | Uz=zU L =zgforallz

"The other direction also works, and is the one taken in classical compilers literature. In this class, we will stick to
this direction, which is the convention established in abstract interpretation.

Abstract domains

An abstract domain is a set £ equipped with:
® A partial order C
* 1 C ymeans that z represents more precise information about the program than /'
® [denotes corresponding irreflexive relation
* A least upper bound (“join”) operator, LI
O :zCzuy
@ yCazly
© zUyLC zforany zsatisfying 1and 2
¢ A least element (“bottom”), L
e | C gforallz
°* | Uz=zUl =zforalz
* A greatest element (“top”), T
e oz Tforallz

"The other direction also works, and is the one taken in classical compilers literature. In this class, we will stick to
this direction, which is the convention established in abstract interpretation.

¢ Often convenient to depict partial order as Haase diagram

® Draw aline from zto yif x C yand there is no zwith z = z C y (y covers)
® 1 C yiff thereis a upwards path from zto y

Function spaces

¢ Constant environments are functions mapping Variables — Z U { L, T}

Function spaces

¢ Constant environments are functions mapping Variables — Z U { L, T}

® Environments inherit pointwise ordering C* from the orderingConZ U { L, T }:
fE* giff flz) C g(z) forall x € Variables
® There is a least and greatest environment

1*=(funz— 1)
T =(funz—T)

® Environments have least upper bounds

fU™ g = (fun (2)->f(z) U g(2))

Function spaces

¢ Constant environments are functions mapping Variables — Z U { L, T}

® Environments inherit pointwise ordering C* from the orderingConZ U { L, T }:
fE* giff flz) C g(z) forall x € Variables
® There is a least and greatest environment

1*=(funz— 1)
T =(funz—T)

® Environments have least upper bounds
fU™ g = (fun (2)->f(z) U g(2))

® This holds more generally: If L is an abstract domain and X is any set, the set of functions
X — Lis an abstract domain under the pointwise ordering.

z— T,y— T
{ y

N\

{t—=0,y—» T} {z—T,y—=0} {z—T,y—1} {z— 1y~ T}

> > >

{t—0,y—»0} {z—0,y—1} {z—1,y—0} {z—1y—1}

T\

{z— Ly~ 1}
(Identifying {z — L,y L} with all functions that map either zor y to L)

Powersets

For any set X, the set 2% of subsets of X is an abstract domain:
* Order C, least element (), greatest element X, join U
® Order D, least element X, greatest element (), join N (Available Expressions)

{a, b, c}
{a, b}><{ a, c} {b, ¢}
| |
{a} {b} {c}

Transfer functions

A transfer function post . : Basic Block x £ — £ maps each basic block & “pre-state” value to a
“post-state” value

* Technical requirement: post . is monotone
z T y = post,(n,z) C post,(n,y)

(“more information in = more information out”)
* Note: monotonicity is not the same as z C f(z) forall z

Generic (forward) dataflow analysis algorithm

* Given:

® Abstract domain (£,C, U, 1, T)
® Transfer function
post . : Basic Block x L — L
® Control flow graph G = (N, E, s)
® Compute: least annotation IN, OUT such that
O IN(s)=T
@ Forall n € N, post .(n,IN[n))

C OUT|n|
© Forall p— n e E OUT[p C IN(n)

Generic (forward) dataflow analysis algorithm

* Given:

® Abstract domain (£,C, U, 1, T)

® Transfer function
post -

¢ Control flow graph G =

O IN(s)=T
@ Forall n € N, post - (n,

: Basic Block x L — L

(N, E, s)
® Compute: least annotation IN, OUT such that

IN[n])

(3) Forallp—)nEEOUT[]E

C
IN

OUT[7]
(n)

IN[s] = T, OUT[s] = L;
IN[n] = OUT[n] = L

for all other nodes n;
work < N;
while work # () do
Pick some n from work;
work < work \ {n} ;
old + OUT[n];

| | ouTy;
pepred(n)
OUT[n] < post . (n,IN[n]);
if old # OUT|[n| then
| work < work U succ(n)
return IN, OUT

IN[n] +

Summary

* Program analyses share common structure

® Can implement a single workset algorithm and get multiple analyses by “plugging in”
different abstract domains and transfer functions
® Can prove correctness of workset algorithm once-and-for-all in an abstract setting

¢ Next time: correctness of the general worklist algorithm

