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Compiling object-oriented languages



Objects

An object consists of Data (attributes) and Behavior (methods).
public class AstNode {

location loc;
public AstNode(location nodeloc)
{ loc = nodeloc; }
public location getLocation()
{ return loc; }

}
abstract class Expr extends AstNode {

public abstract int eval(Env);
public Expr(location loc) { super(loc); }

}
public class AddExpr extends Expr {

Expr left, right;
public AddExpr(int loc, Expr x, Expr y)
{ super(loc); left = x; right = y; }
public int eval(Env env)
{ return left.eval(env) + right.eval(env); }

}

public class IntExpr extends Expr {
int value;
public IntExpr(int loc, int k)
{ super(loc); value = k; }
public int eval(int env)
{ return value; }

}



Compiling objects

• Compiling OO languages with single inheritance:
• Each class is associated with a dispatch vector (aka virtual table, vtable)

• dispatch vector = record of function pointers – one for each method
• Each object is associated with a record, with one field for the dispatch vector of its class, and

one field for each attribute
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Compiling methods

Each method is extended with an additional parameter for the current object
• Gives the method access to the attributes of the object
• Dispatch vector enables dynamic dispatch

location AstNode_getLocation(self) {
return self.loc;

}
int AddNode_eval(self, env) {

return self.left.dispatch.eval(self.left, env)
+ self.right.dispatch.eval(self.right, env);

}
int IntNode_eval(self, env) {

return self.value;
}

class IntExpr extends Expr { ...
public int eval(int env) { return value; } }

public class AddExpr extends Expr { ...
public int eval(Env env) { return left.eval(env) + right.eval(env); } }

class AstNode { ...
public location getLocation() { return loc; } }



Subtyping

• Recall the Liskov substitution priciple: if s is a subtype of t, then terms of type s can be used
as if they have type t without breaking type safety.

• If class B extends class A, then B is a subtype of A

• This works for the same reason that record width subtyping works:
• If A has a method foo, it appears in the same position in A and B’s dispatch vector
• If A has an attribute x, then A objects and B objects place x in the same position in object

records
RecordWidth

⊢ {lab1 : s1; . . . ; labm : sm} <: {lab1 : s1; . . . ; labn : sn}
n < m



Subtyping

• Recall the Liskov substitution priciple: if s is a subtype of t, then terms of type s can be used
as if they have type t without breaking type safety.

• If class B extends class A, then B is a subtype of A
• This works for the same reason that record width subtyping works:

• If A has a method foo, it appears in the same position in A and B’s dispatch vector
• If A has an attribute x, then A objects and B objects place x in the same position in object

records
RecordWidth

⊢ {lab1 : s1; . . . ; labm : sm} <: {lab1 : s1; . . . ; labn : sn}
n < m



Testing class membership

• Some OO languages support testing whether an object belongs to a given class, and
performing (checked) downcasts

• To implement, we need a run-time representation of the class hierarchy
• One solution:

• The dispatch table serves as a type tag
(i.e., typeOf(o) == AddExpr ⇐⇒ o.dispatch = DispatchVector(AddExpr))

• The first member of each dispatch table is a pointer to parent type
• To check o instanceOf C, walk up the class hierarchy

• o.dispatch = DispatchVector(C), or
• o.dispatch != DispatchVector(Object) and o.dispatch.parent = DispatchVector(C), or
• o.dispatch != DispatchVector(Object) and o.dispatch.parent !=

DispatchVector(Object) and o.dispatch.parent.parent = DispatchVector(C), or
• ...

• Checked downcasting: if o instanceOf c then bitcast, otherwise throw run-time exception.
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Multiple inheritence

• Some languages (such as C++) support a class extending more than one base class

• Previous strategy does not work: base classes have conflicting ideas about where methods
are stored in vtable

• Solution: Use hash tables instead of records
• Cost can be reduced with optimizing compiler

• Another solution: For every A <: B, create an A-in-B vtable
• A-in-B is laid out like B’s vtable but contains function pointers to A’s methods
• Object = triple of primary vtable pointer + secondary vtable pointer + attribute pointer.

• Secondary used to resolve method calls!
• To cast from A to B: allocate a new triple, changing the secondary table to A-in-B
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Garbage Collection



Garbage collection

• Many modern languages feature garbage collectors, which automatically reclaim memory
that was allocated by a program but no longer used

• A memory location is garbage if it will not be used in the remainder of the program
• Determining whether or not it will be used is undecidable

• But, we are happy with a conservative approximation: free memory if it cannot possibly be
used in the remainder of the program

• Usually not a static analysis, but rather a dynamic analysis
• static analyses collect information about a program without running it
• dynamic analyses collect information about a program while running it
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Reference counting

• Each memory location gets an extra int field to hold the number of active references to
that memory

• Collect when count is zero
• Example: compiling a store x->f = y

y->count ++
tmp = x->f
tmp->count --
if (tmp->count == 0) free(tmp);
x->f = y

ref
f

x

ref

+1

...

y

ref

-1

...

tmp



Reference counting

• Each memory location gets an extra int field to hold the number of active references to
that memory

• Collect when count is zero
• Example: compiling a store x->f = y

y->count ++

tmp = x->f
tmp->count --
if (tmp->count == 0) free(tmp);
x->f = y

ref
f

x

ref+1
...

y

ref

-1

...

tmp



Reference counting

• Each memory location gets an extra int field to hold the number of active references to
that memory

• Collect when count is zero
• Example: compiling a store x->f = y

y->count ++
tmp = x->f

tmp->count --
if (tmp->count == 0) free(tmp);
x->f = y

ref
f

x

ref+1
...

y

ref

-1

...

tmp



Reference counting

• Each memory location gets an extra int field to hold the number of active references to
that memory

• Collect when count is zero
• Example: compiling a store x->f = y

y->count ++
tmp = x->f
tmp->count --
if (tmp->count == 0) free(tmp);

x->f = y

ref
f

x

ref+1
...

y

ref-1
...

tmp



Reference counting

• Each memory location gets an extra int field to hold the number of active references to
that memory

• Collect when count is zero
• Example: compiling a store x->f = y

y->count ++
tmp = x->f
tmp->count --
if (tmp->count == 0) free(tmp);
x->f = y

ref
f

x

ref+1
...

y

ref-1
...

tmp



Problem: cyclic data structures never get collected
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Tracing-based GC

• Tracing garbage collection: a memory location is garbage if it is unreachable from the
program’s roots

• roots = registers, stack, global static data

• Mark-and-sweep:
• Each memory location gets an extra bit to hold a “mark”
• Mark: When there is no remaining free memory, run a DFS search from the roots, marking all

memory locations
• Sweep: Traverse the entire heap; unmarked nodes are collected; marked nodes are unmarked
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Memory layout

• Boxing: every value is a pointer to a block of memory that begins with metadata. In
OCaml:

header
value[0]
value[1]
value[2]

...
value[n]

size

tag

x

2 bits for GC

54 bits

8 bits

# values in this block

Mark block as reachable

• Variants for algebraic datatypes
• Mark block as no scan:

value[0]...value[n] not scanned by GC
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Finding roots

Stack is a sequence of 64-bit values
• Values (pointers in the heap); i.e., roots
• Saved frame pointers (pointers in the stack)
• Saved return addresses (pointers in code)

Code & Data

Stack

Heap

0x00000000

0xffffffff

rsp

Grows up
(lower addresses)



Tagged pointers

• Boxing has high overhead

header
x
y

p
header

320

header
2026

type point = { x : int; y : int }

• Pointers are quadword aligned ⇒ last four (low-order) bits are 0
• If values for a type fit into 63 bits, can used unboxed value, marked with a last (low-order)

bit so GC does not scan
• Integers are 63 bit: x is represented as x«1 | 1
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Copying GC

• Mark-and-sweep can lead to memory fragmentation

• Since GC traverses the heap anyway, might as well compact as it goes
• Copying (or Moving) GC:

• Maintain two heaps (roughly equal size), old and new
• GC sequentially copies reachable blocks from old heap to new heap
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Generational GC

• Generational hypothesis:
• Most memory becomes garbage quickly after allocation
• Memory that does not quickly become garbage is likely to not be garbage for a very long time

• Generational GC: maintain several heaps (“generations”) G0,G1, . . .
• Allocate in G0, and scan frequently
• Scan G1 less frequently, G2 less frequently than that, ...
• After collecting garbage in Gi, non-garbage is promoted to Gi+1

• Complication: inter-generational pointers (from older to newer generation) are new roots
that must be managed
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Summary

• Reference counting
• No long pauses (as for tracing GC)
• Performance penalty for maintaining refcounts, cycles cause leaks

• Mark-and-sweep GC
• Low memory requirements
• Memory fragmentation, long pauses

• Copying GC
• Simple (no free list), Less memory fragmentation
• Cuts available memory in half, long pauses

• Generational GC
• Shortens average GC pauses; can combine mark-and-sweep & copying GC
• Relatively complicated, performance penalty for managing intergenerational pointers
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