
COS320: Compiling Techniques

Zak Kincaid

January 29, 2026

Compiling object-oriented languages

Objects

An object consists of Data (attributes) and Behavior (methods).
public class AstNode {

location loc;
public AstNode(location nodeloc)
{ loc = nodeloc; }
public location getLocation()
{ return loc; }

}
abstract class Expr extends AstNode {

public abstract int eval(Env);
public Expr(location loc) { super(loc); }

}
public class AddExpr extends Expr {

Expr left, right;
public AddExpr(int loc, Expr x, Expr y)
{ super(loc); left = x; right = y; }
public int eval(Env env)
{ return left.eval(env) + right.eval(env); }

}

public class IntExpr extends Expr {
int value;
public IntExpr(int loc, int k)
{ super(loc); value = k; }
public int eval(int env)
{ return value; }

}

Compiling objects

• Compiling OO languages with single inheritance:
• Each class is associated with a dispatch vector (aka virtual table, vtable)

• dispatch vector = record of function pointers – one for each method
• Each object is associated with a record, with one field for the dispatch vector of its class, and

one field for each attribute

AstNode_getLocation
AstNode_getLocation
AddExpr_eval

AstNode_getLocation
IntExpr_eval

AstNode AddExpr IntExpr

Dispatch vectors

dispatch
loc

dispatch
loc
left
right

dispatch
loc
left
right

dispatch
loc
value

Compiling methods

Each method is extended with an additional parameter for the current object
• Gives the method access to the attributes of the object
• Dispatch vector enables dynamic dispatch

location AstNode_getLocation(self) {
return self.loc;

}
int AddNode_eval(self, env) {

return self.left.dispatch.eval(self.left, env)
+ self.right.dispatch.eval(self.right, env);

}
int IntNode_eval(self, env) {

return self.value;
}

class IntExpr extends Expr { ...
public int eval(int env) { return value; } }

public class AddExpr extends Expr { ...
public int eval(Env env) { return left.eval(env) + right.eval(env); } }

class AstNode { ...
public location getLocation() { return loc; } }

Subtyping

• Recall the Liskov substitution priciple: if s is a subtype of t, then terms of type s can be used
as if they have type t without breaking type safety.

• If class B extends class A, then B is a subtype of A

• This works for the same reason that record width subtyping works:
• If A has a method foo, it appears in the same position in A and B’s dispatch vector
• If A has an attribute x, then A objects and B objects place x in the same position in object

records
RecordWidth

⊢ {lab1 : s1; . . . ; labm : sm} <: {lab1 : s1; . . . ; labn : sn}
n < m

Subtyping

• Recall the Liskov substitution priciple: if s is a subtype of t, then terms of type s can be used
as if they have type t without breaking type safety.

• If class B extends class A, then B is a subtype of A
• This works for the same reason that record width subtyping works:

• If A has a method foo, it appears in the same position in A and B’s dispatch vector
• If A has an attribute x, then A objects and B objects place x in the same position in object

records
RecordWidth

⊢ {lab1 : s1; . . . ; labm : sm} <: {lab1 : s1; . . . ; labn : sn}
n < m

Testing class membership

• Some OO languages support testing whether an object belongs to a given class, and
performing (checked) downcasts

• To implement, we need a run-time representation of the class hierarchy
• One solution:

• The dispatch table serves as a type tag
(i.e., typeOf(o) == AddExpr ⇐⇒ o.dispatch = DispatchVector(AddExpr))

• The first member of each dispatch table is a pointer to parent type
• To check o instanceOf C, walk up the class hierarchy

• o.dispatch = DispatchVector(C), or
• o.dispatch != DispatchVector(Object) and o.dispatch.parent = DispatchVector(C), or
• o.dispatch != DispatchVector(Object) and o.dispatch.parent !=

DispatchVector(Object) and o.dispatch.parent.parent = DispatchVector(C), or
• ...

• Checked downcasting: if o instanceOf c then bitcast, otherwise throw run-time exception.

Testing class membership

• Some OO languages support testing whether an object belongs to a given class, and
performing (checked) downcasts

• To implement, we need a run-time representation of the class hierarchy

• One solution:
• The dispatch table serves as a type tag

(i.e., typeOf(o) == AddExpr ⇐⇒ o.dispatch = DispatchVector(AddExpr))
• The first member of each dispatch table is a pointer to parent type
• To check o instanceOf C, walk up the class hierarchy

• o.dispatch = DispatchVector(C), or
• o.dispatch != DispatchVector(Object) and o.dispatch.parent = DispatchVector(C), or
• o.dispatch != DispatchVector(Object) and o.dispatch.parent !=

DispatchVector(Object) and o.dispatch.parent.parent = DispatchVector(C), or
• ...

• Checked downcasting: if o instanceOf c then bitcast, otherwise throw run-time exception.

Testing class membership

• Some OO languages support testing whether an object belongs to a given class, and
performing (checked) downcasts

• To implement, we need a run-time representation of the class hierarchy
• One solution:

• The dispatch table serves as a type tag
(i.e., typeOf(o) == AddExpr ⇐⇒ o.dispatch = DispatchVector(AddExpr))

• The first member of each dispatch table is a pointer to parent type
• To check o instanceOf C, walk up the class hierarchy

• o.dispatch = DispatchVector(C), or
• o.dispatch != DispatchVector(Object) and o.dispatch.parent = DispatchVector(C), or
• o.dispatch != DispatchVector(Object) and o.dispatch.parent !=

DispatchVector(Object) and o.dispatch.parent.parent = DispatchVector(C), or
• ...

• Checked downcasting: if o instanceOf c then bitcast, otherwise throw run-time exception.

Testing class membership

• Some OO languages support testing whether an object belongs to a given class, and
performing (checked) downcasts

• To implement, we need a run-time representation of the class hierarchy
• One solution:

• The dispatch table serves as a type tag
(i.e., typeOf(o) == AddExpr ⇐⇒ o.dispatch = DispatchVector(AddExpr))

• The first member of each dispatch table is a pointer to parent type

• To check o instanceOf C, walk up the class hierarchy
• o.dispatch = DispatchVector(C), or
• o.dispatch != DispatchVector(Object) and o.dispatch.parent = DispatchVector(C), or
• o.dispatch != DispatchVector(Object) and o.dispatch.parent !=

DispatchVector(Object) and o.dispatch.parent.parent = DispatchVector(C), or
• ...

• Checked downcasting: if o instanceOf c then bitcast, otherwise throw run-time exception.

Testing class membership

• Some OO languages support testing whether an object belongs to a given class, and
performing (checked) downcasts

• To implement, we need a run-time representation of the class hierarchy
• One solution:

• The dispatch table serves as a type tag
(i.e., typeOf(o) == AddExpr ⇐⇒ o.dispatch = DispatchVector(AddExpr))

• The first member of each dispatch table is a pointer to parent type
• To check o instanceOf C, walk up the class hierarchy

• o.dispatch = DispatchVector(C), or
• o.dispatch != DispatchVector(Object) and o.dispatch.parent = DispatchVector(C), or
• o.dispatch != DispatchVector(Object) and o.dispatch.parent !=

DispatchVector(Object) and o.dispatch.parent.parent = DispatchVector(C), or
• ...

• Checked downcasting: if o instanceOf c then bitcast, otherwise throw run-time exception.

Testing class membership

• Some OO languages support testing whether an object belongs to a given class, and
performing (checked) downcasts

• To implement, we need a run-time representation of the class hierarchy
• One solution:

• The dispatch table serves as a type tag
(i.e., typeOf(o) == AddExpr ⇐⇒ o.dispatch = DispatchVector(AddExpr))

• The first member of each dispatch table is a pointer to parent type
• To check o instanceOf C, walk up the class hierarchy

• o.dispatch = DispatchVector(C), or
• o.dispatch != DispatchVector(Object) and o.dispatch.parent = DispatchVector(C), or
• o.dispatch != DispatchVector(Object) and o.dispatch.parent !=

DispatchVector(Object) and o.dispatch.parent.parent = DispatchVector(C), or
• ...

• Checked downcasting: if o instanceOf c then bitcast, otherwise throw run-time exception.

Multiple inheritence

• Some languages (such as C++) support a class extending more than one base class

• Previous strategy does not work: base classes have conflicting ideas about where methods
are stored in vtable

• Solution: Use hash tables instead of records
• Cost can be reduced with optimizing compiler

• Another solution: For every A <: B, create an A-in-B vtable
• A-in-B is laid out like B’s vtable but contains function pointers to A’s methods
• Object = triple of primary vtable pointer + secondary vtable pointer + attribute pointer.

• Secondary used to resolve method calls!
• To cast from A to B: allocate a new triple, changing the secondary table to A-in-B

Multiple inheritence

• Some languages (such as C++) support a class extending more than one base class
• Previous strategy does not work: base classes have conflicting ideas about where methods

are stored in vtable

• Solution: Use hash tables instead of records
• Cost can be reduced with optimizing compiler

• Another solution: For every A <: B, create an A-in-B vtable
• A-in-B is laid out like B’s vtable but contains function pointers to A’s methods
• Object = triple of primary vtable pointer + secondary vtable pointer + attribute pointer.

• Secondary used to resolve method calls!
• To cast from A to B: allocate a new triple, changing the secondary table to A-in-B

Multiple inheritence

• Some languages (such as C++) support a class extending more than one base class
• Previous strategy does not work: base classes have conflicting ideas about where methods

are stored in vtable
• Solution: Use hash tables instead of records

• Cost can be reduced with optimizing compiler

• Another solution: For every A <: B, create an A-in-B vtable
• A-in-B is laid out like B’s vtable but contains function pointers to A’s methods
• Object = triple of primary vtable pointer + secondary vtable pointer + attribute pointer.

• Secondary used to resolve method calls!
• To cast from A to B: allocate a new triple, changing the secondary table to A-in-B

Multiple inheritence

• Some languages (such as C++) support a class extending more than one base class
• Previous strategy does not work: base classes have conflicting ideas about where methods

are stored in vtable
• Solution: Use hash tables instead of records

• Cost can be reduced with optimizing compiler
• Another solution: For every A <: B, create an A-in-B vtable

• A-in-B is laid out like B’s vtable but contains function pointers to A’s methods
• Object = triple of primary vtable pointer + secondary vtable pointer + attribute pointer.

• Secondary used to resolve method calls!
• To cast from A to B: allocate a new triple, changing the secondary table to A-in-B

Garbage Collection

Garbage collection

• Many modern languages feature garbage collectors, which automatically reclaim memory
that was allocated by a program but no longer used

• A memory location is garbage if it will not be used in the remainder of the program
• Determining whether or not it will be used is undecidable

• But, we are happy with a conservative approximation: free memory if it cannot possibly be
used in the remainder of the program

• Usually not a static analysis, but rather a dynamic analysis
• static analyses collect information about a program without running it
• dynamic analyses collect information about a program while running it

Garbage collection

• Many modern languages feature garbage collectors, which automatically reclaim memory
that was allocated by a program but no longer used

• A memory location is garbage if it will not be used in the remainder of the program

• Determining whether or not it will be used is undecidable
• But, we are happy with a conservative approximation: free memory if it cannot possibly be

used in the remainder of the program
• Usually not a static analysis, but rather a dynamic analysis

• static analyses collect information about a program without running it
• dynamic analyses collect information about a program while running it

Garbage collection

• Many modern languages feature garbage collectors, which automatically reclaim memory
that was allocated by a program but no longer used

• A memory location is garbage if it will not be used in the remainder of the program
• Determining whether or not it will be used is undecidable

• But, we are happy with a conservative approximation: free memory if it cannot possibly be
used in the remainder of the program

• Usually not a static analysis, but rather a dynamic analysis
• static analyses collect information about a program without running it
• dynamic analyses collect information about a program while running it

Garbage collection

• Many modern languages feature garbage collectors, which automatically reclaim memory
that was allocated by a program but no longer used

• A memory location is garbage if it will not be used in the remainder of the program
• Determining whether or not it will be used is undecidable

• But, we are happy with a conservative approximation: free memory if it cannot possibly be
used in the remainder of the program

• Usually not a static analysis, but rather a dynamic analysis
• static analyses collect information about a program without running it
• dynamic analyses collect information about a program while running it

Reference counting

• Each memory location gets an extra int field to hold the number of active references to
that memory

• Collect when count is zero
• Example: compiling a store x->f = y

y->count ++
tmp = x->f
tmp->count --
if (tmp->count == 0) free(tmp);
x->f = y

ref
f

x

ref

+1

...

y

ref

-1

...

tmp

Reference counting

• Each memory location gets an extra int field to hold the number of active references to
that memory

• Collect when count is zero
• Example: compiling a store x->f = y

y->count ++

tmp = x->f
tmp->count --
if (tmp->count == 0) free(tmp);
x->f = y

ref
f

x

ref+1
...

y

ref

-1

...

tmp

Reference counting

• Each memory location gets an extra int field to hold the number of active references to
that memory

• Collect when count is zero
• Example: compiling a store x->f = y

y->count ++
tmp = x->f

tmp->count --
if (tmp->count == 0) free(tmp);
x->f = y

ref
f

x

ref+1
...

y

ref

-1

...

tmp

Reference counting

• Each memory location gets an extra int field to hold the number of active references to
that memory

• Collect when count is zero
• Example: compiling a store x->f = y

y->count ++
tmp = x->f
tmp->count --
if (tmp->count == 0) free(tmp);

x->f = y

ref
f

x

ref+1
...

y

ref-1
...

tmp

Reference counting

• Each memory location gets an extra int field to hold the number of active references to
that memory

• Collect when count is zero
• Example: compiling a store x->f = y

y->count ++
tmp = x->f
tmp->count --
if (tmp->count == 0) free(tmp);
x->f = y

ref
f

x

ref+1
...

y

ref-1
...

tmp

Problem: cyclic data structures never get collected

dll
ref: 1
forward
back

ref: 2
forward
back

ref: 1
forward
back

ref: 2
forward
back

ref: 2
forward
back

ref: 1
forward
back

ref: 1
forward
back

ref: 2
forward
back

ref: 1
forward
back

Problem: cyclic data structures never get collected

dll
ref: 1
forward
back

ref: 2
forward
back

ref: 1
forward
back

ref: 2
forward
back

ref: 2
forward
back

ref: 1
forward
back

ref: 1
forward
back

ref: 2
forward
back

ref: 1
forward
back

Problem: cyclic data structures never get collected

dll

ref: 1
forward
back

ref: 2
forward
back

ref: 1
forward
back

ref: 2
forward
back

ref: 2
forward
back

ref: 1
forward
back

ref: 1
forward
back

ref: 2
forward
back

ref: 1
forward
back

Problem: cyclic data structures never get collected

dll

ref: 1
forward
back

ref: 2
forward
back

ref: 1
forward
back

ref: 2
forward
back

ref: 2
forward
back

ref: 1
forward
back

ref: 1
forward
back

ref: 2
forward
back

ref: 1
forward
back

Problem: cyclic data structures never get collected

dll
ref: 1
forward
back

ref: 2
forward
back

ref: 1
forward
back

ref: 2
forward
back

ref: 2
forward
back

ref: 1
forward
back

ref: 1
forward
back

ref: 2
forward
back

ref: 1
forward
back

Tracing-based GC

• Tracing garbage collection: a memory location is garbage if it is unreachable from the
program’s roots

• roots = registers, stack, global static data

• Mark-and-sweep:
• Each memory location gets an extra bit to hold a “mark”
• Mark: When there is no remaining free memory, run a DFS search from the roots, marking all

memory locations
• Sweep: Traverse the entire heap; unmarked nodes are collected; marked nodes are unmarked

Tracing-based GC

• Tracing garbage collection: a memory location is garbage if it is unreachable from the
program’s roots

• roots = registers, stack, global static data
• Mark-and-sweep:

• Each memory location gets an extra bit to hold a “mark”
• Mark: When there is no remaining free memory, run a DFS search from the roots, marking all

memory locations
• Sweep: Traverse the entire heap; unmarked nodes are collected; marked nodes are unmarked

Memory layout

• Boxing: every value is a pointer to a block of memory that begins with metadata. In
OCaml:

header
value[0]
value[1]
value[2]

...
value[n]

size

tag

x

2 bits for GC

54 bits

8 bits

values in this block

Mark block as reachable

• Variants for algebraic datatypes
• Mark block as no scan:

value[0]...value[n] not scanned by GC

Memory layout

• Boxing: every value is a pointer to a block of memory that begins with metadata. In
OCaml:

header
value[0]
value[1]
value[2]

...
value[n]

size

tag

x

2 bits for GC

54 bits

8 bits

values in this block

Mark block as reachable

• Variants for algebraic datatypes
• Mark block as no scan:

value[0]...value[n] not scanned by GC

Memory layout

• Boxing: every value is a pointer to a block of memory that begins with metadata. In
OCaml:

header
value[0]
value[1]
value[2]

...
value[n]

size

tag

x

2 bits for GC

54 bits

8 bits

values in this block

Mark block as reachable

• Variants for algebraic datatypes
• Mark block as no scan:

value[0]...value[n] not scanned by GC

Memory layout

• Boxing: every value is a pointer to a block of memory that begins with metadata. In
OCaml:

header
value[0]
value[1]
value[2]

...
value[n]

size

tag

x

2 bits for GC

54 bits

8 bits

values in this block

Mark block as reachable

• Variants for algebraic datatypes
• Mark block as no scan:

value[0]...value[n] not scanned by GC

Finding roots

Stack is a sequence of 64-bit values
• Values (pointers in the heap); i.e., roots
• Saved frame pointers (pointers in the stack)
• Saved return addresses (pointers in code)

Code & Data

Stack

Heap

0x00000000

0xffffffff

rsp

Grows up
(lower addresses)

Tagged pointers

• Boxing has high overhead

header
x
y

p
header

320

header
2026

type point = { x : int; y : int }

• Pointers are quadword aligned ⇒ last four (low-order) bits are 0
• If values for a type fit into 63 bits, can used unboxed value, marked with a last (low-order)

bit so GC does not scan
• Integers are 63 bit: x is represented as x«1 | 1

Tagged pointers

• Boxing has high overhead

header
x
y

p
header

320

header
2026

type point = { x : int; y : int }

• Pointers are quadword aligned ⇒ last four (low-order) bits are 0

• If values for a type fit into 63 bits, can used unboxed value, marked with a last (low-order)
bit so GC does not scan

• Integers are 63 bit: x is represented as x«1 | 1

Tagged pointers

• Boxing has high overhead

header
x
y

p
header

320

header
2026

type point = { x : int; y : int }

• Pointers are quadword aligned ⇒ last four (low-order) bits are 0
• If values for a type fit into 63 bits, can used unboxed value, marked with a last (low-order)

bit so GC does not scan
• Integers are 63 bit: x is represented as x«1 | 1

Copying GC

• Mark-and-sweep can lead to memory fragmentation

• Since GC traverses the heap anyway, might as well compact as it goes
• Copying (or Moving) GC:

• Maintain two heaps (roughly equal size), old and new
• GC sequentially copies reachable blocks from old heap to new heap

root

x
w
z

y

old new

Copying GC

• Mark-and-sweep can lead to memory fragmentation
• Since GC traverses the heap anyway, might as well compact as it goes

• Copying (or Moving) GC:
• Maintain two heaps (roughly equal size), old and new
• GC sequentially copies reachable blocks from old heap to new heap

root

x
w
z

y

old new

Copying GC

• Mark-and-sweep can lead to memory fragmentation
• Since GC traverses the heap anyway, might as well compact as it goes
• Copying (or Moving) GC:

• Maintain two heaps (roughly equal size), old and new
• GC sequentially copies reachable blocks from old heap to new heap

root

x
w
z

y

old new

Copying GC

• Mark-and-sweep can lead to memory fragmentation
• Since GC traverses the heap anyway, might as well compact as it goes
• Copying (or Moving) GC:

• Maintain two heaps (roughly equal size), old and new
• GC sequentially copies reachable blocks from old heap to new heap

root

x
w
z

y

old

x

new

Copying GC

• Mark-and-sweep can lead to memory fragmentation
• Since GC traverses the heap anyway, might as well compact as it goes
• Copying (or Moving) GC:

• Maintain two heaps (roughly equal size), old and new
• GC sequentially copies reachable blocks from old heap to new heap

root

x
w
z

y

old

x
y

new

Copying GC

• Mark-and-sweep can lead to memory fragmentation
• Since GC traverses the heap anyway, might as well compact as it goes
• Copying (or Moving) GC:

• Maintain two heaps (roughly equal size), old and new
• GC sequentially copies reachable blocks from old heap to new heap

root

x
w
z

y

old

x
y
z

new

Copying GC

• Mark-and-sweep can lead to memory fragmentation
• Since GC traverses the heap anyway, might as well compact as it goes
• Copying (or Moving) GC:

• Maintain two heaps (roughly equal size), old and new
• GC sequentially copies reachable blocks from old heap to new heap

root

new

x
y
z

old

Generational GC

• Generational hypothesis:
• Most memory becomes garbage quickly after allocation
• Memory that does not quickly become garbage is likely to not be garbage for a very long time

• Generational GC: maintain several heaps (“generations”) G0,G1, . . .
• Allocate in G0, and scan frequently
• Scan G1 less frequently, G2 less frequently than that, ...
• After collecting garbage in Gi, non-garbage is promoted to Gi+1

• Complication: inter-generational pointers (from older to newer generation) are new roots
that must be managed

Generational GC

• Generational hypothesis:
• Most memory becomes garbage quickly after allocation
• Memory that does not quickly become garbage is likely to not be garbage for a very long time

• Generational GC: maintain several heaps (“generations”) G0,G1, . . .
• Allocate in G0, and scan frequently
• Scan G1 less frequently, G2 less frequently than that, ...
• After collecting garbage in Gi, non-garbage is promoted to Gi+1

• Complication: inter-generational pointers (from older to newer generation) are new roots
that must be managed

Generational GC

• Generational hypothesis:
• Most memory becomes garbage quickly after allocation
• Memory that does not quickly become garbage is likely to not be garbage for a very long time

• Generational GC: maintain several heaps (“generations”) G0,G1, . . .
• Allocate in G0, and scan frequently
• Scan G1 less frequently, G2 less frequently than that, ...
• After collecting garbage in Gi, non-garbage is promoted to Gi+1

• Complication: inter-generational pointers (from older to newer generation) are new roots
that must be managed

Summary

• Reference counting
• No long pauses (as for tracing GC)
• Performance penalty for maintaining refcounts, cycles cause leaks

• Mark-and-sweep GC
• Low memory requirements
• Memory fragmentation, long pauses

• Copying GC
• Simple (no free list), Less memory fragmentation
• Cuts available memory in half, long pauses

• Generational GC
• Shortens average GC pauses; can combine mark-and-sweep & copying GC
• Relatively complicated, performance penalty for managing intergenerational pointers

Summary

• Reference counting
• No long pauses (as for tracing GC)
• Performance penalty for maintaining refcounts, cycles cause leaks

• Mark-and-sweep GC
• Low memory requirements
• Memory fragmentation, long pauses

• Copying GC
• Simple (no free list), Less memory fragmentation
• Cuts available memory in half, long pauses

• Generational GC
• Shortens average GC pauses; can combine mark-and-sweep & copying GC
• Relatively complicated, performance penalty for managing intergenerational pointers

Summary

• Reference counting
• No long pauses (as for tracing GC)
• Performance penalty for maintaining refcounts, cycles cause leaks

• Mark-and-sweep GC
• Low memory requirements
• Memory fragmentation, long pauses

• Copying GC
• Simple (no free list), Less memory fragmentation
• Cuts available memory in half, long pauses

• Generational GC
• Shortens average GC pauses; can combine mark-and-sweep & copying GC
• Relatively complicated, performance penalty for managing intergenerational pointers

Summary

• Reference counting
• No long pauses (as for tracing GC)
• Performance penalty for maintaining refcounts, cycles cause leaks

• Mark-and-sweep GC
• Low memory requirements
• Memory fragmentation, long pauses

• Copying GC
• Simple (no free list), Less memory fragmentation
• Cuts available memory in half, long pauses

• Generational GC
• Shortens average GC pauses; can combine mark-and-sweep & copying GC
• Relatively complicated, performance penalty for managing intergenerational pointers

