COS320: Compiling Techniques

Zak Kincaid

January 29, 2026

Compiling object-oriented languages

Objects

An object consists of Data (attributes) and Behavior (methods).

public class AstNode {
location loc;
public AstNode(location nodeloc)
{ loc = nodeloc; }
public location getLocation()
{ return loc; }
}
abstract class Ezpr extends AstNode {
public abstract int eval(Env);
public Ezpr(location loc) { super(loc); }

3

public class AddExpr extends Ezpr { public class IntEzpr extends Expr {
Ezxpr left, right; int value;
public AddEzpr(int loc, Ezpr z, Ezpr y) public IntEzpr(int loc, int k)
{ super(loc); left = x; right = y; } { super(loc); wvalue = k; }
public int eval(Env env) public int eval(int env)
{ return left.eval(env) + right.eval(env); } { return value; }

} 3

Compiling objects

¢ Compiling OO languages with single inheritance:
® Each class is associated with a dispatch vector (aka virtual table, vtable)
* dispatch vector = record of function pointers - one for each method

® Each object is associated with a record, with one field for the dispatch vector of its class, and
one field for each attribute

dispatch == dispatch _
dispatch === loc loc \ dispatch \

loc left left 1°§
right right vazue
- AstNode_getlLocation AstNode_getLocation
IAstNode_getLocatlon I AddExpr_eval IntExpr_eval
AstNode

\ AddExpr / IntExpr

Dispatch vectors

Compiling methods

Each method is extended with an additional parameter for the current object
* Gives the method access to the attributes of the object
¢ Dispatch vector enables dynamic dispatch

location AstNode__getLocation(self) { class AstNode { ...)

return self loc: public location getLocation() { return loc; } }

- loc;

}
int AddNode__eval(self, env) {

return self. left. dispatch. eval(self. left, env) public class AddEzpr extends Expr { ...

+ self. right. dispatch. eval(self. right, env); public int eval(Env env) { return left. eval(env) + right.eval(env); } }

¥
int IntNode__eval(self, env) {

return SElf' Ualue; class IntExpr extends Expr { ...
public int eval(int env) { return value; } }

}

Subtyping

* Recall the Liskov substitution priciple: if sis a subtype of ¢, then terms of type s can be used
as if they have type t without breaking type safety.

* |f class B extends class 4, then Bis a subtype of A

Subtyping

* Recall the Liskov substitution priciple: if sis a subtype of ¢, then terms of type s can be used
as if they have type t without breaking type safety.

* |f class B extends class 4, then Bis a subtype of A
* This works for the same reason that record width subtyping works:

* If A hasamethod foo, it appears in the same position in A and Bs dispatch vector
* |f A has an attribute x, then A objects and B objects place z in the same position in object
records
RECORDWIDTH

F{laby : s1;...;laby, : sy} <: {laby : s1;...;lab, : s,} nem

Testing class membership

¢ Some OO languages support testing whether an object belongs to a given class, and
performing (checked) downcasts

Testing class membership

¢ Some OO languages support testing whether an object belongs to a given class, and
performing (checked) downcasts

¢ To implement, we need a run-time representation of the class hierarchy

Testing class membership

¢ Some OO languages support testing whether an object belongs to a given class, and
performing (checked) downcasts

¢ To implement, we need a run-time representation of the class hierarchy

¢ One solution:

® The dispatch table serves as a type tag
(i.e., typeOf (o) == AddExpr <= o.dispatch = DispatchVector (AddExpr))

Testing class membership

¢ Some OO languages support testing whether an object belongs to a given class, and
performing (checked) downcasts

¢ To implement, we need a run-time representation of the class hierarchy

® One solution:

® The dispatch table serves as a type tag
(i.e., typeOf (o) == AddExpr <= o.dispatch = DispatchVector (AddExpr))
® The first member of each dispatch table is a pointer to parent type

Testing class membership

¢ Some OO languages support testing whether an object belongs to a given class, and
performing (checked) downcasts

¢ To implement, we need a run-time representation of the class hierarchy
¢ One solution:

® The dispatch table serves as a type tag
(i.e., typeOf (o) == AddExpr <= o.dispatch = DispatchVector (AddExpr))
® The first member of each dispatch table is a pointer to parent type
® Tocheck o instanceOf C,walk up the class hierarchy
® o.dispatch = DispatchVector(C), or
® o.dispatch != DispatchVector(Object) and o.dispatch.parent = DispatchVector(C), or
® o.dispatch != DispatchVector(Object) and o.dispatch.parent !=

DispatchVector(Object) and o.dispatch.parent.parent = DispatchVector(C), or
[]

Testing class membership

¢ Some OO languages support testing whether an object belongs to a given class, and
performing (checked) downcasts

¢ To implement, we need a run-time representation of the class hierarchy
¢ One solution:

® The dispatch table serves as a type tag
(i.e., typeOf (o) == AddExpr <= o.dispatch = DispatchVector (AddExpr))
® The first member of each dispatch table is a pointer to parent type
® Tocheck o instanceOf C,walk up the class hierarchy
® o.dispatch = DispatchVector(C), or
® o.dispatch != DispatchVector(Object) and o.dispatch.parent = DispatchVector(C), or
® o.dispatch != DispatchVector(Object) and o.dispatch.parent !=

DispatchVector(Object) and o.dispatch.parent.parent = DispatchVector(C), or
[]

® Checked downcasting: if o instanceOf c then bitcast, otherwise throw run-time exception.

Multiple inheritence

¢ Some languages (such as C++) support a class extending more than one base class

Multiple inheritence

¢ Some languages (such as C++) support a class extending more than one base class

* Previous strategy does not work: base classes have conflicting ideas about where methods
are stored in vtable

Multiple inheritence

¢ Some languages (such as C++) support a class extending more than one base class
* Previous strategy does not work: base classes have conflicting ideas about where methods
are stored in vtable
* Solution: Use hash tables instead of records
¢ Cost can be reduced with optimizing compiler

Multiple inheritence

Some languages (such as C++) support a class extending more than one base class

Previous strategy does not work: base classes have conflicting ideas about where methods
are stored in vtable
Solution: Use hash tables instead of records
¢ Cost can be reduced with optimizing compiler
Another solution: For every A <: B, create an A-in-B vtable

® A-in-Bis laid out like B's vtable but contains function pointers to A's methods
® Object = triple of primary vtable pointer + secondary vtable pointer + attribute pointer.

® Secondary used to resolve method calls!
® To cast from A to B: allocate a new triple, changing the secondary table to A-in-B

Garbage Collection

Garbage collection

e Many modern languages feature garbage collectors, which automatically reclaim memory
that was allocated by a program but no longer used

Garbage collection

e Many modern languages feature garbage collectors, which automatically reclaim memory
that was allocated by a program but no longer used

¢ A memory location is garbage if it will not be used in the remainder of the program

Garbage collection

e Many modern languages feature garbage collectors, which automatically reclaim memory
that was allocated by a program but no longer used
¢ A memory location is garbage if it will not be used in the remainder of the program

¢ Determining whether or not it will be used is undecidable
® But, we are happy with a conservative approximation: free memory if it cannot possibly be
used in the remainder of the program

Garbage collection

Many modern languages feature garbage collectors, which automatically reclaim memory
that was allocated by a program but no longer used
A memory location is garbage if it will not be used in the remainder of the program
Determining whether or not it will be used is undecidable
® But, we are happy with a conservative approximation: free memory if it cannot possibly be
used in the remainder of the program
Usually not a static analysis, but rather a dynamic analysis

® static analyses collect information about a program without running it
® dynamic analyses collect information about a program while running it

Reference counting

e Each memory location gets an extra int field to hold the number of active references to
that memory

¢ Collect when count is zero

¢ Example: compiling a store x->f =y

—| ref

— ref

ref

Reference counting

e Each memory location gets an extra int field to hold the number of active references to
that memory

e Collect when count is zero
¢ Example: compiling a store x->f =y

—| ref+

y->count ++

— ref

ref

Reference counting

e Each memory location gets an extra int field to hold the number of active references to
that memory

¢ Collect when count is zero

¢ Example: compiling a store x->f =y

—| ref+

y->count ++

= x->f
tmp X _ —

tmp 7 ref

Reference counting

e Each memory location gets an extra int field to hold the number of active references to
that memory

e Collect when count is zero
¢ Example: compiling a store x->f =y

—| ref+

y->count ++

tmp = x—>f
P X — ref
tmp->count -- 7

if (tmp->count == @) free(tmp);

tmp

Reference counting

e Each memory location gets an extra int field to hold the number of active references to
that memory

e Collect when count is zero
¢ Example: compiling a store x->f =y

y->count ++

tmp = x->f > ;
tmp->count -- r
if (tmp->count == @) free(tmp);

x=—>f =y tmp

Problem: cyclic data structures never get collected

Problem: cyclic data structures never get collected

ref: 1
dl] =———lforward
back

Problem: cyclic data structures never get collected

ref: 2 ref: 1
dl] =———>1forward >| forward
back back

A

Problem: cyclic data structures never get collected

ref: 2 ref: 2 ref: 1
dl] =———lforward >| forward »| forward
back back back

A
A

Problem: cyclic data structures never get collected

ref: 1 ref: 2 ref: 1
forward >| forward »| forward
back back back

A
A

Tracing-based GC

e Tracing garbage collection: a memory location is garbage if it is unreachable from the
programs roots

® roots = registers, stack, global static data

Tracing-based GC

e Tracing garbage collection: a memory location is garbage if it is unreachable from the
programs roots

® roots = registers, stack, global static data
¢ Mark-and-sweep:
® Each memory location gets an extra bit to hold a “mark”
® Mark: When there is no remaining free memory, run a DFS search from the roots, marking all
memory locations
® Sweep: Traverse the entire heap; unmarked nodes are collected; marked nodes are unmarked

Memory layout

* Boxing: every value is a pointer to a block of memory that begins with metadata. In
OCaml:

size > 54 bits

X —| header
value[O] .
value[1] RIS . = (}S_bitsz bits for GC
value[2]

Memory layout

* Boxing: every value is a pointer to a block of memory that begins with metadata. In
OCaml:

,17‘
< # values in this block Z>

e > 54 bits
«—|__header
value[O] .
valuel[1] ————2 bits for GC
value[2] S g } 8 bits

Memory layout

* Boxing: every value is a pointer to a block of memory that begins with metadata. In
OCaml:

size > 54 bits

.
—_—

X — | &~ Mark block as reachable
value ———

value[1]
value[2]

.. f«—— 2 bits for GC
.| tag |} 8bits

Memory layout

* Boxing: every value is a pointer to a block of memory that begins with metadata. In
OCaml:

54 bit
e Variants for algebraic datatypes [s

e Mark block as no scan:
value[O]...value[n] not scanned by GC

f«— 2 bits for GC

> 8 bits

value[2]

Finding roots

Stack is a sequence of 64-bit values
¢ Values (pointers in the heap); i.e., roots
¢ Saved frame pointers (pointers in the stack)
¢ Saved return addresses (pointers in code)

0x00000000
Code & Data

Heap

rsp
Grows up
T(lower addresses)
OxXFfffffff

Tagged pointers

* Boxing has high overhead

header
p —| header 320
X
Y —
header
2026

type point = { x :

int; y : int }

Tagged pointers

* Boxing has high overhead

header
p —| header 320
X
Y —
header
2026

type point = { x :

int; y : int }

* Pointers are quadword aligned = last four (low-order) bits are O

Tagged pointers

* Boxing has high overhead

header
p —| header 320
X

Y —

header
2026

type point = { x : int; y : int }
* Pointers are quadword aligned = last four (low-order) bits are O

e If values for a type fit into 63 bits, can used unboxed value, marked with a last (low-order)
bit so GC does not scan

® Integers are 63 bit: x is represented as x«1 | 1

Copying GC

¢ Mark-and-sweep can lead to memory fragmentation

Copying GC

¢ Mark-and-sweep can lead to memory fragmentation
* Since GC traverses the heap anyway, might as well compact as it goes

Copying GC

¢ Mark-and-sweep can lead to memory fragmentation
* Since GC traverses the heap anyway, might as well compact as it goes
¢ Copying (or Moving) GC:

® Maintain two heaps (roughly equal size), old and new

® GC sequentially copies reachable blocks from old heap to new heap

root

old new

Copying GC

¢ Mark-and-sweep can lead to memory fragmentation
* Since GC traverses the heap anyway, might as well compact as it goes
¢ Copying (or Moving) GC:

® Maintain two heaps (roughly equal size), old and new

® GC sequentially copies reachable blocks from old heap to new heap

root
X LLLLLLLLLLLLELEEY = X
w
y4
y

old new

Copying GC

¢ Mark-and-sweep can lead to memory fragmentation
* Since GC traverses the heap anyway, might as well compact as it goes
¢ Copying (or Moving) GC:

® Maintain two heaps (roughly equal size), old and new

® GC sequentially copies reachable blocks from old heap to new heap

root
X = |gessssssssssssssass > X l
w 7 Y
yA “"‘
y *

old new

¢ Mark-and-sweep can lead to memory fragmentation
* Since GC traverses the heap anyway, might as well compact as it goes

¢ Copying (or Moving) GC:

® Maintain two heaps (roughly equal size), old and new

Copying GC

® GC sequentially copies reachable blocks from old heap to new heap

old

root
................. > X
7 Y
.......... X syetiaad y4
new

Copying

GC

¢ Mark-and-sweep can lead to memory fragmentation

* Since GC traverses the heap anyway, might as well compact as it goes

¢ Copying (or Moving) GC:

® Maintain two heaps (roughly equal size), old and new
® GC sequentially copies reachable blocks from old heap to new heap

new

root

~

X

old

Generational GC

* Generational hypothesis:

® Most memory becomes garbage quickly after allocation
® Memory that does not quickly become garbage is likely to not be garbage for a very long time

Generational GC

* Generational hypothesis:

® Most memory becomes garbage quickly after allocation

® Memory that does not quickly become garbage is likely to not be garbage for a very long time
¢ Generational GC: maintain several heaps (“generations”) Gy, G1, . ..

¢ Allocate in Gy, and scan frequently
® Scan G less frequently, G- less frequently than that, ...
® After collecting garbage in G;, non-garbage is promoted to G4

Generational GC

* Generational hypothesis:

® Most memory becomes garbage quickly after allocation

® Memory that does not quickly become garbage is likely to not be garbage for a very long time
¢ Generational GC: maintain several heaps (“generations”) Gy, G1, . ..

¢ Allocate in Gy, and scan frequently

® Scan G less frequently, G5 less frequently than that, ...

® After collecting garbage in G;, non-garbage is promoted to G4
¢ Complication: inter-generational pointers (from older to newer generation) are new roots

that must be managed

Summary

¢ Reference counting

® No long pauses (as for tracing GC)
® Performance penalty for maintaining refcounts, cycles cause leaks

Summary

¢ Reference counting

® No long pauses (as for tracing GC)
® Performance penalty for maintaining refcounts, cycles cause leaks

* Mark-and-sweep GC

® Low memory requirements
® Memory fragmentation, long pauses

Summary

¢ Reference counting

® No long pauses (as for tracing GC)
® Performance penalty for maintaining refcounts, cycles cause leaks

* Mark-and-sweep GC
® Low memory requirements
® Memory fragmentation, long pauses
¢ Copying GC
® Simple (no free list), Less memory fragmentation
¢ Cuts available memory in half, long pauses

Summary

Reference counting

® No long pauses (as for tracing GC)
® Performance penalty for maintaining refcounts, cycles cause leaks

Mark-and-sweep GC
® Low memory requirements
® Memory fragmentation, long pauses
Copying GC
® Simple (no free list), Less memory fragmentation
¢ Cuts available memory in half, long pauses
Generational GC

® Shortens average GC pauses; can combine mark-and-sweep & copying GC
® Relatively complicated, performance penalty for managing intergenerational pointers

