COS320: Compiling Techniques

Zak Kincaid

January 29, 2026

Today: OCaml cont'd

OCaml review session today 6-8pm, room TBD

OCaml is an expression-oriented language

¢ An expression is something that evaluates to a value
® Contrast to a statement, which expresses an action
¢ Example: In OCaml, variables are immutable
® There is no statement can be used to over-write the value of a variable

OCaml is an expression-oriented language

¢ An expression is something that evaluates to a value

® Contrast to a statement, which expresses an action
¢ Example: In OCaml, variables are immutable

® There is no statement can be used to over-write the value of a variable
¢ Example: conditionals

® InJava: if is a statement

if (1<0 {z=-2;}%

® |n OCaml: if is an expression

if (x < 0) then -z else z

This is a matter of taste:
e OCaml has reference cells

® Jlet x = ref @ in exp (ref ~ mallocin C)

® Can over-write contents of reference cells: x := e

® Can over-write fields of mutable records (~ C structs): rec.field <- e
® Can over-write arrays: array. (i) <- e

This is a matter of taste:
e OCaml has reference cells
let x = ref @ in exp (ref ~ mallocin C)
Can over-write contents of reference cells: x := e
Can over-write fields of mutable records (~ C structs): rec.field <- e
Can over-write arrays: array. (i) <- e
¢ OCaml has statements: ref cell assignment, for and while loops, sequencing
® statements are expressions, which evaluate to () “unit”

let z = ref exp in (if (!z < @) then z := -(!2) else (); 'z)

This is a matter of taste:
e OCaml has reference cells
let x = ref @ in exp (ref ~ mallocin C)
Can over-write contents of reference cells: x := e
Can over-write fields of mutable records (~ C structs): rec.field <- e
Can over-write arrays: array. (i) <- e
¢ OCaml has statements: ref cell assignment, for and while loops, sequencing
® statements are expressions, which evaluate to () “unit”

let z = ref exp in (if (!z < @) then z := -(!2) else (); 'z)

Use sparingly

Imperative

BST

type 'a node =
| Node of (int x"a ref x "a tree x "a tree)
| Leaf
and a tree = (a node) ref
let insert key value tree =
let current = ref treecin
let continue = ref truein
while lcontinue do
match ('current) with
| Leaf >
('current) := Node (key, refvalue, ref Leaf, ref Leaf)
| Node (k, v, left, Tight) ->
if k= key then begin
v:=value;
continue = false;
end else if k< key then
current = left
else
current = right
done

Functional BST

type ‘a tree =
| Node of (int x'a*a tree x 'a tree)
| Leaf
let rec insert key value tree =
match ¢ree with
| Leaf > Node (key, value, Leaf, Leaf)
| Node (k, v, left, Tight) ->
if k= key then
Node (k, value, left right)
else if k< key then
Node (k, v, insert key value left, right)
else
Node (k, v, left, insert key value right)

Functions

e (fun v -> e) is an expression, which evaluates to a value (closure)
e let f x y z = eissyntactic sugar for let f = fun x -> (fun y -> (fun z -> e))
° Eg., thetypeof xisnotint * int -> int,itsint -> (int -> int)

let rec iterate =
fun (fint > int) >
fun (n:int) >
if n=0 then
(fun (z:int) > 2)
else
(fun (zint) -> f(iterate f(n-1) 2))
let exp base n = iterate((*) base) n1
let two__to_five=exp25

Algebraic data types

Simplest use-case: C-style enums

type color= Red| Green| Blue

(x This type definition defines three constructors (Red, Green, and Blue),
which evaluate to values of type color *)

let mycolor:color = Green

(* Can deconstruct using pattern matching (~ switch in C) *)
let to__string(c:.color) =

match c with

| Red > "red”

| Green > "green”

| Blue -> "blue”

Unlike enums, each variant may contain a payload:

type point = float * float
type shape =
| Rectangle of point x point
| Circle of point x float

¢ Can be parameterized:

type ’a option = None | Some of ’a
e Can be recursive:

type expr = Var of string | Add of expr x expr | Mul of expr * expr
e Can be both:

type ’a list = Nil | Cons (’a * ’a list)

Pattern matching binds variables to payload

type point = float * float
type shape =

| Rectangle of point *x point
| Circle of point * float

let area (s:shape) =
match s with

| Rectangle (topleft, bottomright) ->
(match topleft with

| (tlz,tly) -> match bottomright with

| Cbrz,bry) -> (brx -. tlx) *. (tly -. bry))
| Circle (center, radius) -> pi *. radius *. radius

Pattern matching binds variables to payload

type point = float * float
type shape =
| Rectangle of point x point
| Circle of point * float

let area (s:shape) =
match s with
| Rectangle (topleft, bottomright) ->
match topleft with
| (tlz,tly) -> match bottomright with
| Cbrz,bry) -> (brx -. tlx) *. (tly -. bry)
| Circle (center, radius) -> pi *. radius *. radius

Ambiguous!

Patterns can be nested

type point = float * float
type shape =
| Rectangle of point *x point
| Circle of point * float

let area (s:shape) =
match s with
| Rectangle ((tlx,tly), (brx,bry)) -> (brz -. tlr) *. (tly -. bry))
| Circle (_, radius) -> pi *. radius *. radius

Modules

A module groups together a collection of types and values

module IntSet = struct
type elt = int
type t = Leaf | Node of int x t * ¢
let empty = Leaf
let rec insert (e:elt) (s:t) = ...
end
module StringSet = struct
type elt = string
type ¢ = Leaf | Node of string *x t * ¢
let empty = Leaf
let rec insert (e:elt) (s:t) = ...
end
(* IntSet.empty != StringSet.empty *)

Modules

A module groups together a collection of types and values

module IntSet = struct
type elt = int
type t = Leaf | Node of int x t * ¢
let empty = Leaf
let rec insert (e:elt) (s:t) =
end
module StringSet = struct
type elt = string
type ¢ = Leaf | Node of string *x t * ¢
let empty = Leaf
let rec insert (e:elt) (s:t) =
end
(* IntSet.empty != StringSet.empty *)

e Each filename.ml file defines a module Filename
e Each filename.mli file defines the interface of Filename

L g r 1 1 1 - 1 o 1 11+

Functors

A functor is a module that is parameterized by another module.
® Set.Make

® Input: OrderedType module Ord, containing a type t and a function compare for comparing
them
® Output: Data structure representing sets of Ord. t's

® Map.Make

® Input: OrderedType module Ord, containing a type t and a function compare for comparing
them
® Output: Data structure representing maps with Ord. t keys

