
COS320: Compiling Techniques

Zak Kincaid

January 29, 2026

Today: OCaml cont’d

OCaml review session today 6-8pm, room TBD

OCaml is an expression-oriented language

• An expression is something that evaluates to a value
• Contrast to a statement, which expresses an action

• Example: In OCaml, variables are immutable
• There is no statement can be used to over-write the value of a variable

• Example: conditionals
• In Java: if is a statement

if (x < 0) { x = -x; }

• In OCaml: if is an expression

if (x < 0) then -x else x

OCaml is an expression-oriented language

• An expression is something that evaluates to a value
• Contrast to a statement, which expresses an action

• Example: In OCaml, variables are immutable
• There is no statement can be used to over-write the value of a variable

• Example: conditionals
• In Java: if is a statement

if (x < 0) { x = -x; }

• In OCaml: if is an expression

if (x < 0) then -x else x

This is a matter of taste:
• OCaml has reference cells

• let x = ref 0 in exp (ref ∼ malloc in C)
• Can over-write contents of reference cells: x := e
• Can over-write fields of mutable records (∼ C structs): rec.field <- e
• Can over-write arrays: array.(i) <- e

• OCaml has statements: ref cell assignment, for and while loops, sequencing
• statements are expressions, which evaluate to () “unit”

let x = ref exp in (if (!x < 0) then x := -(!x) else (); !x)

Use sparingly

This is a matter of taste:
• OCaml has reference cells

• let x = ref 0 in exp (ref ∼ malloc in C)
• Can over-write contents of reference cells: x := e
• Can over-write fields of mutable records (∼ C structs): rec.field <- e
• Can over-write arrays: array.(i) <- e

• OCaml has statements: ref cell assignment, for and while loops, sequencing
• statements are expressions, which evaluate to () “unit”

let x = ref exp in (if (!x < 0) then x := -(!x) else (); !x)

Use sparingly

This is a matter of taste:
• OCaml has reference cells

• let x = ref 0 in exp (ref ∼ malloc in C)
• Can over-write contents of reference cells: x := e
• Can over-write fields of mutable records (∼ C structs): rec.field <- e
• Can over-write arrays: array.(i) <- e

• OCaml has statements: ref cell assignment, for and while loops, sequencing
• statements are expressions, which evaluate to () “unit”

let x = ref exp in (if (!x < 0) then x := -(!x) else (); !x)

Use sparingly

Imperative BST

type ’a node =
| Node of (int * ’a ref * ’a tree * ’a tree)
| Leaf

and ’a tree = (’a node) ref
let insert key value tree =
let current = ref tree in
let continue = ref true in
while !continue do
match !(!current) with
| Leaf �>
(!current) := Node (key, ref value, ref Leaf, ref Leaf)

| Node (k, v, left, right) �>
if k = key then begin
v := value;
continue := false;

end else if k < key then
current := left

else
current := right

done

Functional BST

type ’a tree =
| Node of (int * ’a * ’a tree * ’a tree)
| Leaf

let rec insert key value tree =
match tree with
| Leaf �> Node (key, value, Leaf, Leaf)
| Node (k, v, left, right) �>
if k = key then
Node (k, value, left right)

else if k < key then
Node (k, v, insert key value left, right)

else
Node (k, v, left, insert key value right)

Functions

• (fun v -> e) is an expression, which evaluates to a value (closure)
• let f x y z = e is syntactic sugar for let f = fun x -> (fun y -> (fun z -> e))

• E.g., the type of * is not int * int -> int, it’s int -> (int -> int)

let rec iterate =
fun (f:int �> int) �>
fun (n:int) �>
if n = 0 then
(fun (x:int) �> x)

else
(fun (x:int) �> f (iterate f (n�1) x))

let exp base n = iterate ((*) base) n 1
let two_to_five = exp 2 5

Algebraic data types

Simplest use-case: C-style enums

type color = Red | Green | Blue
(* This type definition defines three constructors (Red, Green, and Blue),

which evaluate to values of type color *)
let mycolor:color = Green

(* Can deconstruct using pattern matching (~ switch in C) *)
let to_string (c:color) =
match c with
| Red �> ”red”
| Green �> ”green”
| Blue �> ”blue”

Unlike enums, each variant may contain a payload:

type point = float * float
type shape =
| Rectangle of point * point
| Circle of point * float

• Can be parameterized:
type ’a option = None | Some of ’a

• Can be recursive:
type expr = Var of string | Add of expr * expr | Mul of expr * expr

• Can be both:
type ’a list = Nil | Cons (’a * ’a list)

Pattern matching binds variables to payload

type point = float * float
type shape =
| Rectangle of point * point
| Circle of point * float

let area (s:shape) =
match s with
| Rectangle (topleft, bottomright) ->

(match topleft with
| (tlx,tly) -> match bottomright with

| (brx,bry) -> (brx -. tlx) *. (tly -. bry))
| Circle (center, radius) -> pi *. radius *. radius

Ambiguous!

Pattern matching binds variables to payload

type point = float * float
type shape =
| Rectangle of point * point
| Circle of point * float

let area (s:shape) =
match s with
| Rectangle (topleft, bottomright) ->

match topleft with
| (tlx,tly) -> match bottomright with

| (brx,bry) -> (brx -. tlx) *. (tly -. bry)
| Circle (center, radius) -> pi *. radius *. radius

Ambiguous!

Patterns can be nested

type point = float * float
type shape =
| Rectangle of point * point
| Circle of point * float

let area (s:shape) =
match s with
| Rectangle ((tlx,tly), (brx,bry)) -> (brx -. tlx) *. (tly -. bry))
| Circle (_, radius) -> pi *. radius *. radius

Modules

A module groups together a collection of types and values
module IntSet = struct

type elt = int
type t = Leaf | Node of int * t * t
let empty = Leaf
let rec insert (e:elt) (s:t) = ...

end
module StringSet = struct

type elt = string
type t = Leaf | Node of string * t * t
let empty = Leaf
let rec insert (e:elt) (s:t) = ...

end
(* IntSet.empty != StringSet.empty *)

• Each filename.ml file defines a module Filename
• Each filename.mli file defines the interface of Filename
• Some useful modules in the standard library: Int32, Int64, List, Printf, Format

Modules

A module groups together a collection of types and values
module IntSet = struct

type elt = int
type t = Leaf | Node of int * t * t
let empty = Leaf
let rec insert (e:elt) (s:t) = ...

end
module StringSet = struct

type elt = string
type t = Leaf | Node of string * t * t
let empty = Leaf
let rec insert (e:elt) (s:t) = ...

end
(* IntSet.empty != StringSet.empty *)

• Each filename.ml file defines a module Filename
• Each filename.mli file defines the interface of Filename
• Some useful modules in the standard library: Int32, Int64, List, Printf, Format

Functors

A functor is a module that is parameterized by another module.
• Set.Make

• Input: OrderedType module Ord, containing a type t and a function compare for comparing
them

• Output: Data structure representing sets of Ord.t’s
• Map.Make

• Input: OrderedType module Ord, containing a type t and a function compare for comparing
them

• Output: Data structure representing maps with Ord.t keys

