

COS320: Compiling Techniques

Zak Kincaid

January 29, 2026

Logistics

- Last HW is due on Dean's date. You will implement:
 - The worklist algorithm for dataflow analysis
 - Constant propagation
 - Alias analysis & dead code elimination
 - Register allocation

Loop transformations

Loops

- Almost all execution time is inside loops
- Many optimizations are centered around transforming loops
 - Loop invariant code motion: hoist expressions out of loops to avoid re-computation
 - Strength reduction: replace a costly operation inside a loop with a cheaper one
 - Loop unrolling: avoid branching by executing several iterations of a loop
 - Lots more: parallelization, tiling, vectorization, ...

What is a loop?

- We're after a *graph-theoretic* definition of a loop
 - Typically no explicit loop syntax at the IR level
 - Not sensitive to syntax of source language (loops can be created with while, for, goto, ...)

What is a loop?

- We're after a *graph-theoretic* definition of a loop
 - Typically no explicit loop syntax at the IR level
 - Not sensitive to syntax of source language (loops can be created with while, for, goto, ...)
- First attempt: strongly connected components (SCCs)
 - Not fine enough – nested loops have only one SCC, but we want to transform them separately
 - Too general – makes it difficult to apply transformations

What is a loop?

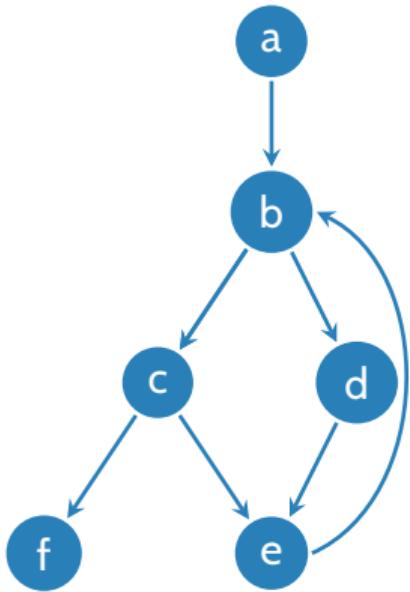
- We're after a *graph-theoretic* definition of a loop
 - Typically no explicit loop syntax at the IR level
 - Not sensitive to syntax of source language (loops can be created with while, for, goto, ...)
- First attempt: strongly connected components (SCCs)
 - Not fine enough – nested loops have only one SCC, but we want to transform them separately
 - Too general – makes it difficult to apply transformations
- Desiderata:
 - Want to *at least* capture loops that would result from structured programming (programs built with while, if, and sequencing (no goto!))
 - Many loop optimizations require inserting code *immediately before* the loop enters, so loop definition should make that easy

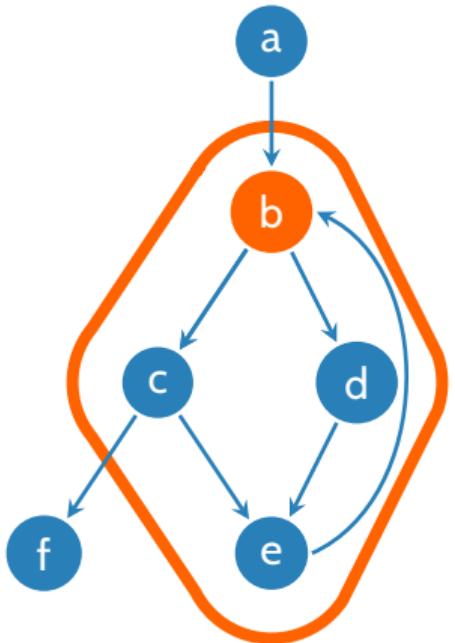
What is a loop?

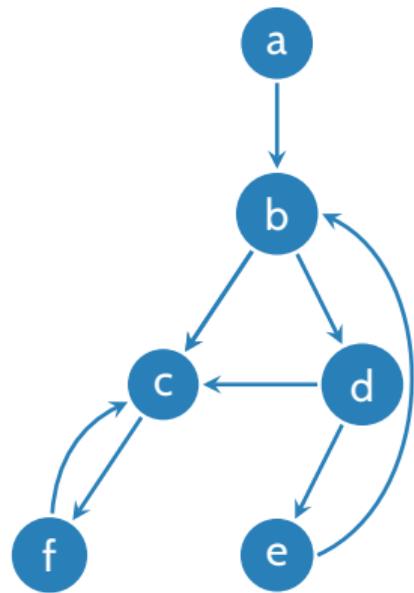
- A **loop** of a control flow graph is a set of nodes S such that with a distinguished *header* node h such that
 - 1 S is strongly connected
 - There is a directed path from h to every node in S
 - There is a directed path from any node in S to h
 - 2 There is no edge from any node *outside* of S to any node *inside* of S , except for h
 - Implies h dominates all nodes in S : every path from entry to a node in S **must** go through h

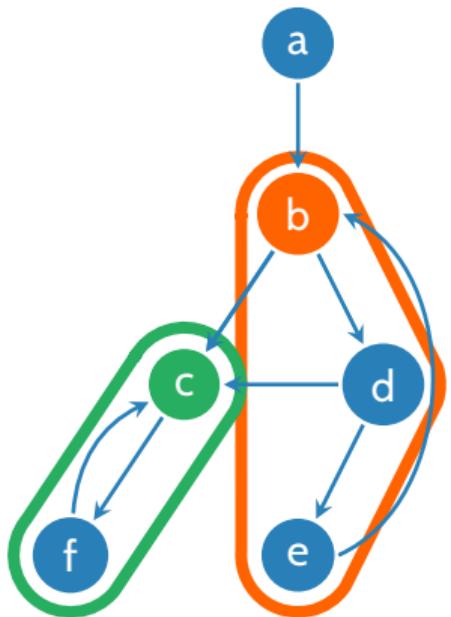
What is a loop?

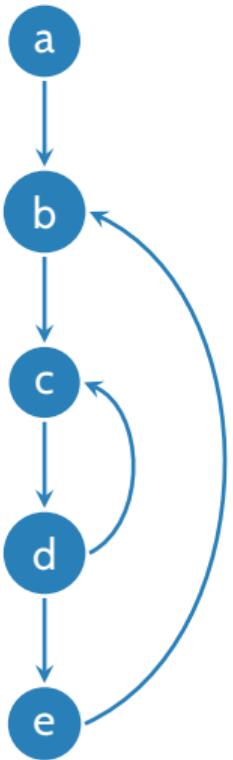
- A **loop** of a control flow graph is a set of nodes S such that with a distinguished *header* node h such that
 - 1 S is strongly connected
 - There is a directed path from h to every node in S
 - There is a directed path from any node in S to h
 - 2 There is no edge from any node *outside* of S to any node *inside* of S , except for h
 - Implies h dominates all nodes in S : every path from entry to a node in S must go through h
- Observe: a loop has one entry, but may have multiple exits (or none)
 - A *loop entry* is a node with some predecessor outside the loop
 - A *loop exit* is a node with some successor outside the loop

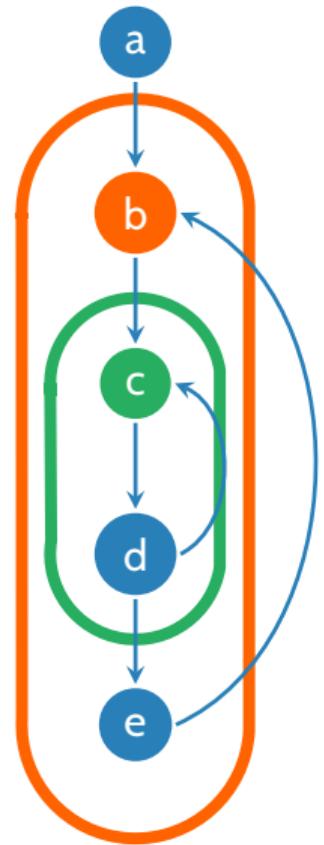


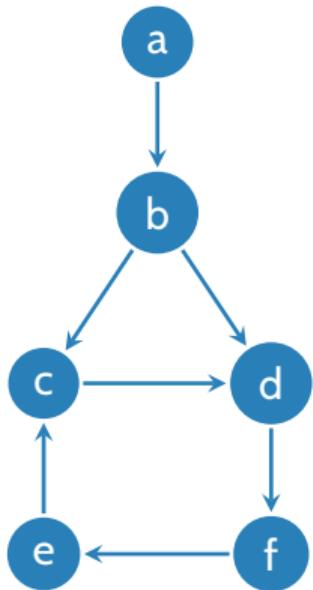


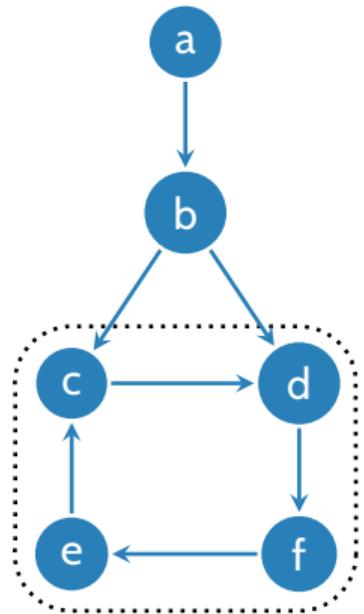






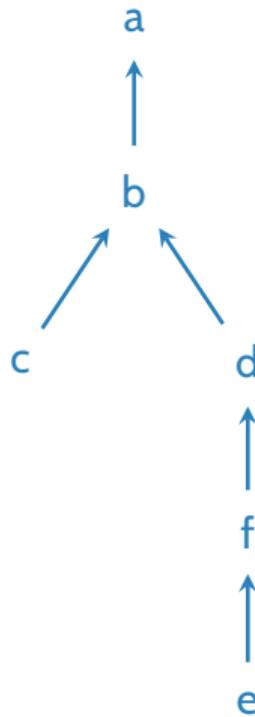






Strongly connected subgraph

Dominator tree



Identifying loops

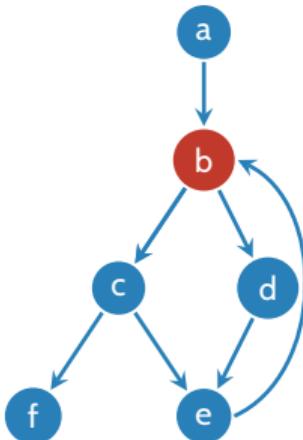
- A **back edge** is an edge $u \rightarrow v$ such that v dominates u

Identifying loops

- A **back edge** is an edge $u \rightarrow v$ such that v dominates u
- The **natural loop** of a back edge $u \rightarrow v$ is the set of nodes n such that v dominates n and there is a path from n to u not containing v .

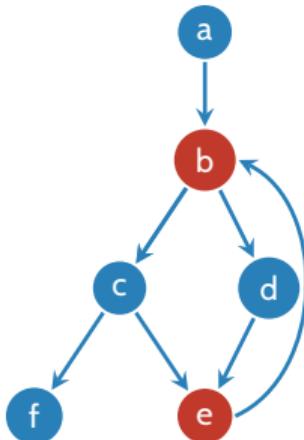
Identifying loops

- A **back edge** is an edge $u \rightarrow v$ such that v dominates u
- The **natural loop** of a back edge $u \rightarrow v$ is the set of nodes n such that v dominates n and there is a path from n to u not containing v .
 - The natural loop of a back edge can be computed with a DFS on the *reversal* of the CFG, starting from u



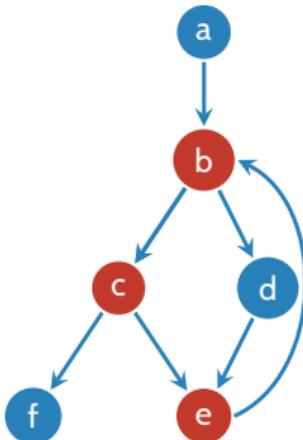
Identifying loops

- A **back edge** is an edge $u \rightarrow v$ such that v dominates u
- The **natural loop** of a back edge $u \rightarrow v$ is the set of nodes n such that v dominates n and there is a path from n to u not containing v .
 - The natural loop of a back edge can be computed with a DFS on the *reversal* of the CFG, starting from u



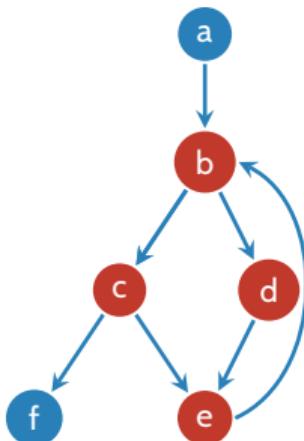
Identifying loops

- A **back edge** is an edge $u \rightarrow v$ such that v dominates u
- The **natural loop** of a back edge $u \rightarrow v$ is the set of nodes n such that v dominates n and there is a path from n to u not containing v .
 - The natural loop of a back edge can be computed with a DFS on the *reversal* of the CFG, starting from u



Identifying loops

- A **back edge** is an edge $u \rightarrow v$ such that v dominates u
- The **natural loop** of a back edge $u \rightarrow v$ is the set of nodes n such that v dominates n and there is a path from n to u not containing v .
 - The natural loop of a back edge can be computed with a DFS on the *reversal* of the CFG, starting from u



Every natural loop is a loop:

Every natural loop is a loop:

① Strongly connected

- By DFS construction every node has a path to u (that doesn't pass through v)
- Every node has a path from v (path from entry to node to u must include v)

Every natural loop is a loop:

1 Strongly connected

- By DFS construction every node has a path to u (that doesn't pass through v)
- Every node has a path from v (path from entry to node to u must include v)

2 Single entry v

Every natural loop is a loop:

1 Strongly connected

- By DFS construction every node has a path to u (that doesn't pass through v)
- Every node has a path from v (path from entry to node to u must include v)

2 Single entry v

- By DFS construction, all predecessors of any node except v belong to the loop

Every natural loop is a loop:

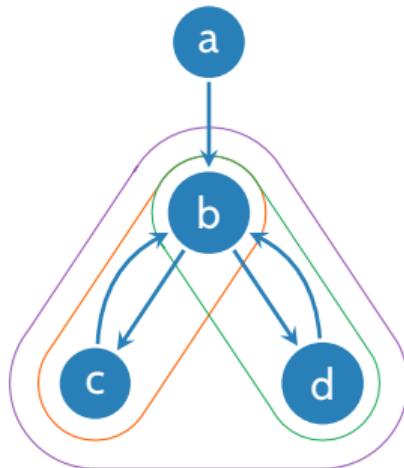
1 Strongly connected

- By DFS construction every node has a path to u (that doesn't pass through v)
- Every node has a path from v (path from entry to node to u must include v)

2 Single entry v

- By DFS construction, all predecessors of any node except v belong to the loop

But not every loop is natural:



Nested loops

- Say that a loop B is *nested* within A if $B \subseteq A$
- A node can be the header of more than one natural loop.
 - Neither is nested inside the other

Nested loops

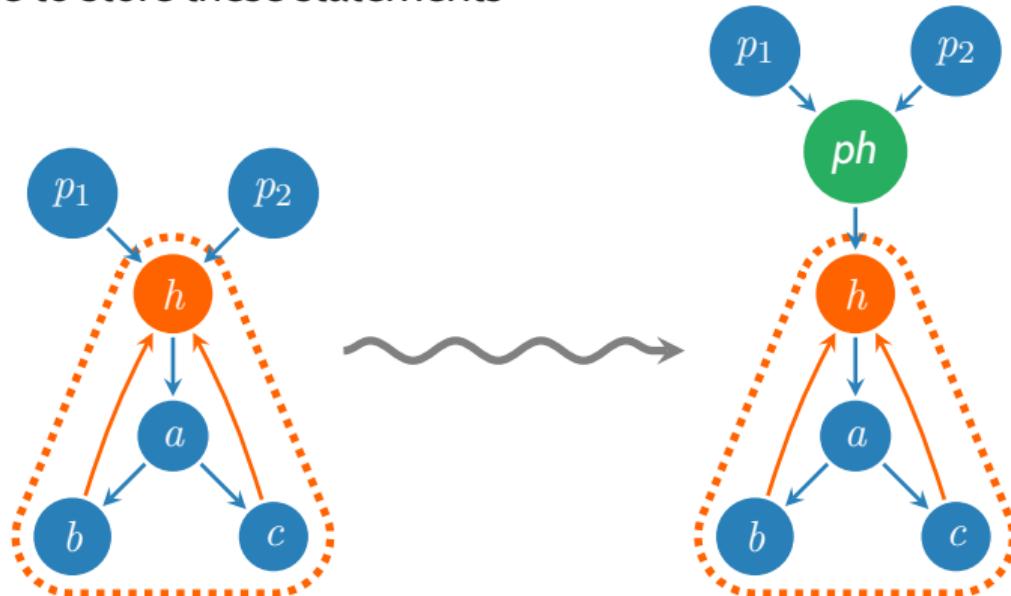
- Say that a loop B is *nested* within A if $B \subseteq A$
- A node can be the header of more than one natural loop.
 - Neither is nested inside the other
- Commonly, we resolve this issue by merging natural loops with the same header
 - Loops obtained by merging natural loops with the same header are either disjoint or nested
 - Loops can be organized into a forest

Nested loops

- Say that a loop B is *nested* within A if $B \subseteq A$
- A node can be the header of more than one natural loop.
 - Neither is nested inside the other
- Commonly, we resolve this issue by merging natural loops with the same header
 - Loops obtained by merging natural loops with the same header are either disjoint or nested
 - Loops can be organized into a forest
- We typically apply loop transformations “bottom-up”, starting with innermost loops

Loop preheaders

- Some optimizations (e.g., loop-invariant code motion) require inserting statements immediately before a loop executes
- A *loop preheader* is a basic block that is inserted immediately before the loop header, to serve as a place to store these statements



Loop invariant code motion

- Loop invariant code motion saves the cost of re-computing expressions that are left invariant (i.e., do not change) in the loop.
 - Such computations can be moved the loop's preheader, as long as they are not side-effecting

Loop invariant code motion

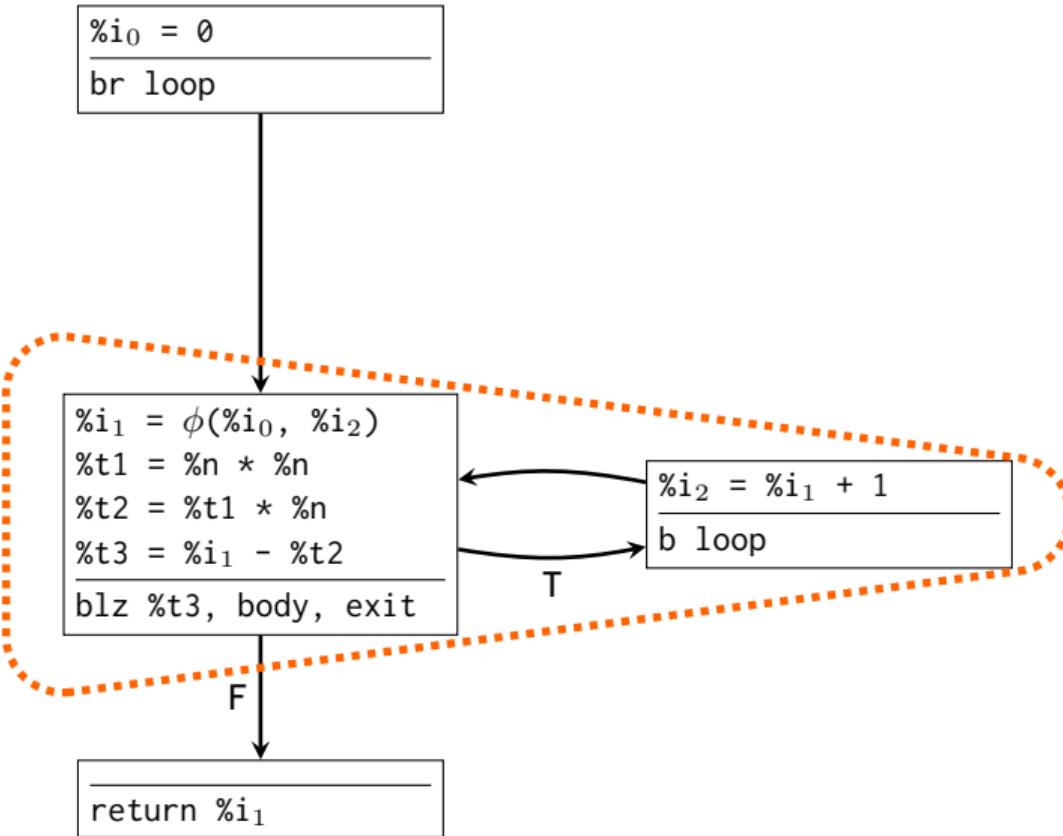
- Loop invariant code motion saves the cost of re-computing expressions that are left invariant (i.e., do not change) in the loop.
 - Such computations can be moved the loop's preheader, as long as they are not side-effecting
- SSA based LICM:
 - An operand is *invariant* in a loop L if
 - 1 It is a constant, or
 - 2 It is a gid, or
 - 3 It is a uid whose definition does not belong to L

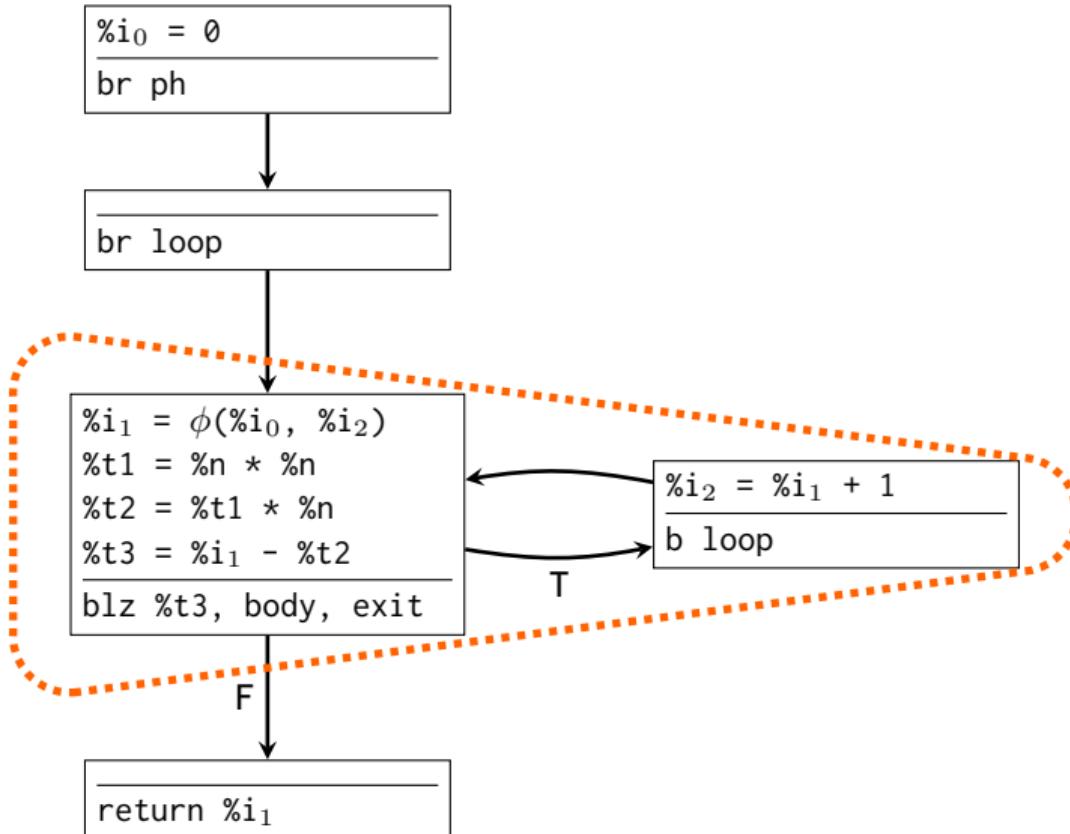
Loop invariant code motion

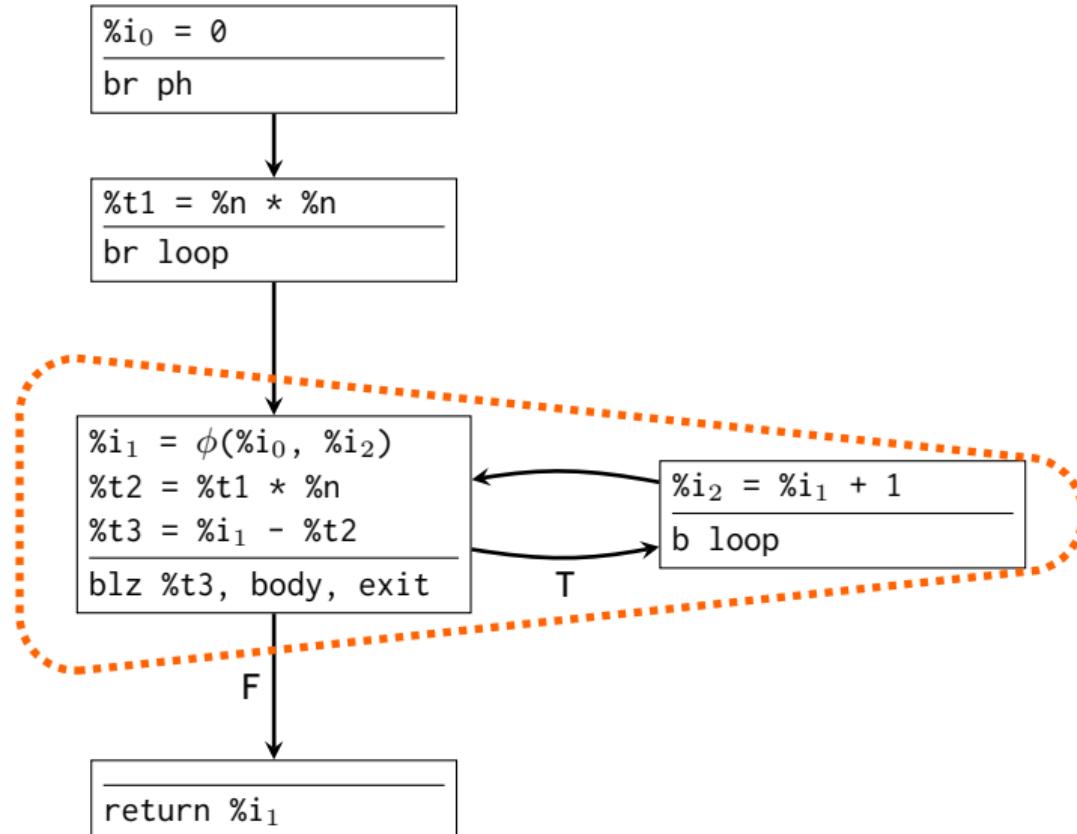
- Loop invariant code motion saves the cost of re-computing expressions that are left invariant (i.e., do not change) in the loop.
 - Such computations can be moved the loop's preheader, as long as they are not side-effecting
- SSA based LICM:
 - An operand is *invariant* in a loop L if
 - 1 It is a constant, or
 - 2 It is a gid, or
 - 3 It is a uid whose definition does not belong to L
 - For each computation $\%x = opn_1 \ op \ opn_2$, if opn_1 and opn_2 are both invariant, move $\%x = opn_1 \ op \ opn_2$ to pre-header

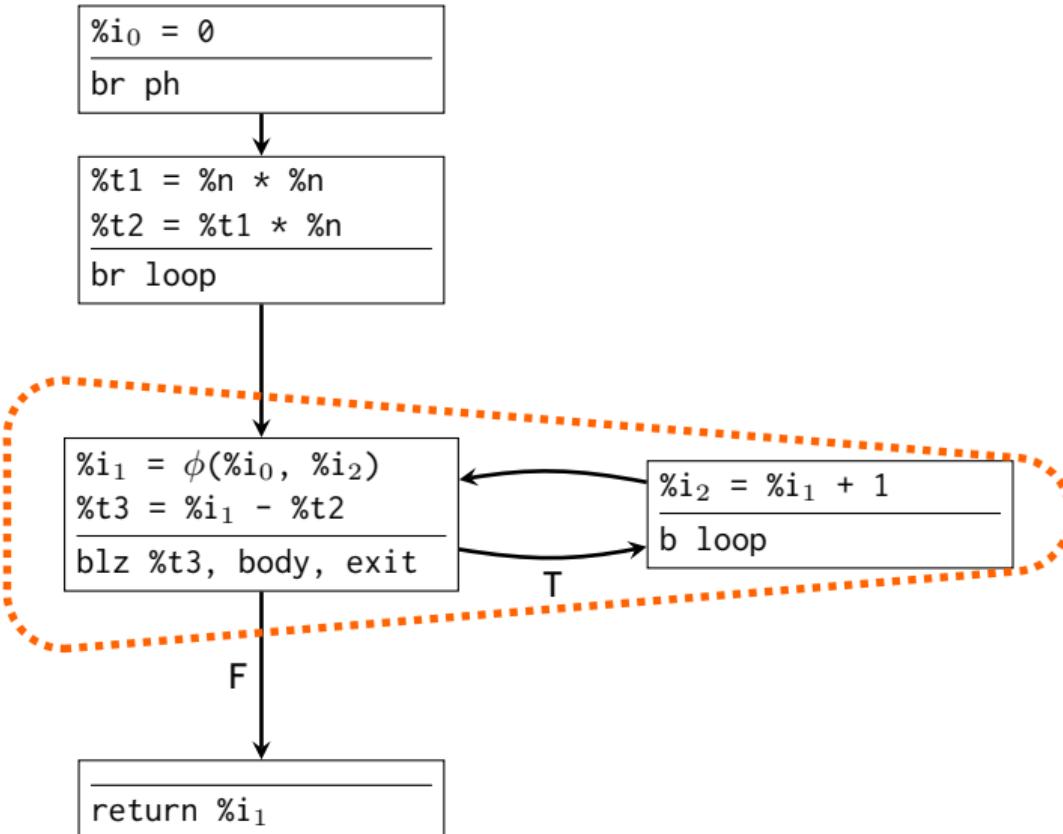
Loop invariant code motion

- Loop invariant code motion saves the cost of re-computing expressions that are left invariant (i.e., do not change) in the loop.
 - Such computations can be moved the loop's preheader, as long as they are not side-effecting
- SSA based LICM:
 - An operand is *invariant* in a loop L if
 - 1 It is a constant, or
 - 2 It is a gid, or
 - 3 It is a uid whose definition does not belong to L
 - For each computation $\%x = opn_1 \text{ op } opn_2$, if opn_1 and opn_2 are both invariant, move $\%x = opn_1 \text{ op } opn_2$ to pre-header
 - This moves definition of $\%x$ outside of the loop, so $\%x$ is now invariant









Induction variables

- An *induction variable* is a variable $\%x$ such that the difference between successive values of $\%x$ in a loop is constant.
 - Common example: the loop counter in a for loop

```
for (int i = 0; i < n; i++)
```

Induction variables

- An *induction variable* is a variable $\%x$ such that the difference between successive values of $\%x$ in a loop is constant.
 - Common example: the loop counter in a for loop

```
for (int i = 0; i < n; i++)
```
- Useful for several optimizations
 - Strength reduction, loop unrolling, induction variable elimination, parallelization, array bound-check elision

Induction variables, formally

- Use $\%x(k)$ to denote the value of $\%x$ in the k th iteration of a loop. $\%x$ is an induction variable if there is some constant (loop-invariant) $\Delta(\%x)$ such that

$$\%x(k+1) = \%x(k) + \Delta(\%x)$$

for all k

Induction variables, formally

- Use $\%x(k)$ to denote the value of $\%x$ in the k th iteration of a loop. $\%x$ is an induction variable if there is some constant (loop-invariant) $\Delta(\%x)$ such that

$$\%x(k+1) = \%x(k) + \Delta(\%x)$$

for all k

- A variable $\%x$ is an *basic induction variable* for a loop L if it is increased / decreased by a fixed loop-invariant quantity in any iteration of the loop.
 - $\%x(i+1) = \%x(i) + c \Rightarrow \Delta(\%x) = c$

Induction variables, formally

- Use $\%x(k)$ to denote the value of $\%x$ in the k th iteration of a loop. $\%x$ is an induction variable if there is some constant (loop-invariant) $\Delta(\%x)$ such that

$$\%x(k+1) = \%x(k) + \Delta(\%x)$$

for all k

- A variable $\%x$ is an *basic induction variable* for a loop L if it is increased / decreased by a fixed loop-invariant quantity in any iteration of the loop.
 - $\%x(i+1) = \%x(i) + c \Rightarrow \Delta(\%x) = c$
- A variable $\%y$ is an *derived induction variable* for a loop L if it is an affine function of a basic induction variable
 - $\%y(i) = a \cdot \%x(i) + b \Rightarrow \Delta(\%y) = a \cdot c$

Finding induction variables

- Basic induction variable detection:
 - Look for ϕ statements $\%x = \phi(\%x_1, \dots, \%x_n)$ in header
 - Each position $\%x_i$ corresponding to a back edge of the loop must be the same uid, say $\%x_k$
 - Find chain of assignments for $\%x_k$ leading back to $\%x$, such that each either adds or subtracts an invariant quantity. Success $\Rightarrow \%x$ is a basic induction var.

Finding induction variables

- Basic induction variable detection:
 - Look for ϕ statements $\%x = \phi(\%x_1, \dots, \%x_n)$ in header
 - Each position $\%x_i$ corresponding to a back edge of the loop must be the same uid, say $\%x_k$
 - Find chain of assignments for $\%x_k$ leading back to $\%x$, such that each either adds or subtracts an invariant quantity. Success $\Rightarrow \%x$ is a basic induction var.
- To detect derived induction variables:
 - Choose a basic induction variable $\%x$
 - Find assignments of the form $\%y = opn_1 op opn_2$ where
 - op is $+$ or $-$ and opn_1 and opn_2 are either $\%x$, derived induction variables of $\%x$, or loop invariant quantities
 - op is $*$ and opn_1 and opn_2 are as above, and at least one is a loop invariant quantity

Strength reduction

Idea: replace expensive operation with cheaper one (e.g., replace multiplication w/ addition).

```
long trace (long *m, long n) {
    long i;
    long result = 0;
    for (i = 0; i < n; i++) {
        result += *(m + i*n + i);
    }
    return result;
}
```

```
long trace (long *m, long n) {
    long i;
    long result = 0;
    long *next = m;
    for (i = 0; i < n; i++) {
        result += *next;
        next += i + 1;
    }
    return result;
}
```

```
%i1 =  $\phi$ (%i0, %i2)
%result1 =  $\phi$ (%result0, %result2)
%t1 = %i1 - %n
blz %t1, body, exit
```

```
%t2 = %i1 * %n
%t3 = %m + %t2
%t4 = %t3 + %i1
%t5 = load %t4
%result2 = %result1 + %t5
%i2 = %i1 + 1
b loop
```

```
%i1 =  $\phi$ (%i0, %i2)
%result1 =  $\phi$ (%result0, %result2)
%t1 = %i1 - %n
blz %t1, body, exit
```

```
%t2 = %i1 * %n
%t3 = %m + %t2
%t4 = %t3 + %i1
%t5 = load %t4
%result2 = %result1 + %t5
%i2 = %i1 + 1
b loop
```

```
%i1 =  $\phi$ (%i0, %i2)                                i := i + 1
%result1 =  $\phi$ (%result0, %result2)
%t1 = %i1 - %n
blz %t1, body, exit
```

```
%t2 = %i1 * %n
%t3 = %m + %t2
%t4 = %t3 + %i1
%t5 = load %t4
%result2 = %result1 + %t5
%i2 = %i1 + 1
b loop
```

```
%i1 =  $\phi$ (%i0, %i2)                                i := i + 1
%result1 =  $\phi$ (%result0, %result2)
%t1 = %i1 - %n
blz %t1, body, exit
```

```
%t2 = %i1 * %n
%t3 = %m + %t2
%t4 = %t3 + %i1
%t5 = load %t4
%result2 = %result1 + %t5
%i2 = %i1 + 1
b loop
```

```
%i1 =  $\phi$ (%i0, %i2)                                i := i + 1
%result1 =  $\phi$ (%result0, %result2)
%t1 = %i1 - %n
blz %t1, body, exit
```

```
%t2 = %i1 * %n                                     t2 := n*i
%t3 = %m + %t2
%t4 = %t3 + %i1
%t5 = load %t4
%result2 = %result1 + %t5
%i2 = %i1 + 1
b loop
```

```
%i1 =  $\phi$ (%i0, %i2)                                i := i + 1
%result1 =  $\phi$ (%result0, %result2)
%t1 = %i1 - %n
blz %t1, body, exit
```

```
%t2 = %i1 * %n                                     t2 := n*i
%t3 = %m + %t2                                     t3 := n*i + m
%t4 = %t3 + %i1
%t5 = load %t4
%result2 = %result1 + %t5
%i2 = %i1 + 1
b loop
```

```
%i1 =  $\phi$ (%i0, %i2)                                i := i + 1
%result1 =  $\phi$ (%result0, %result2)
%t1 = %i1 - %n
blz %t1, body, exit
```

```
%t2 = %i1 * %n                                     t2 := n*i
%t3 = %m + %t2                                     t3 := n*i + m
%t4 = %t3 + %i1                                 t4 := (n+1)*i + m
%t5 = load %t4
%result2 = %result1 + %t5
%i2 = %i1 + 1
b loop
```

```
%t20 = 0  
%t30 = %m  
%t40 = %m
```

```
%i1 =  $\phi$ (%i0, %i2)  
%t21 =  $\phi$ (%t20, %t22)  
%t31 =  $\phi$ (%t30, %t32)  
%t41 =  $\phi$ (%t40, %t42)  
%result1 =  $\phi$ (%result0, %result2)  
%t1 = %i1 - %n  
blz %t1, body, exit
```

i := i + 1

t1 := i + n

```
%t22 = %t21 + %n  
%t32 = %t31 + %n  
%t6 = %t41 + %n  
%t42 = %t6 + 1  
%t5 = load %t42  
%result2 = %result1 + %t5  
%i2 = %i1 + 1  
b loop
```

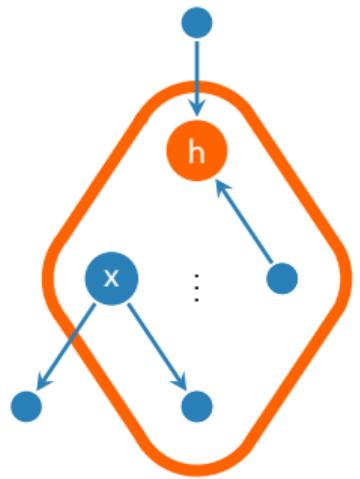
t2 := n*i

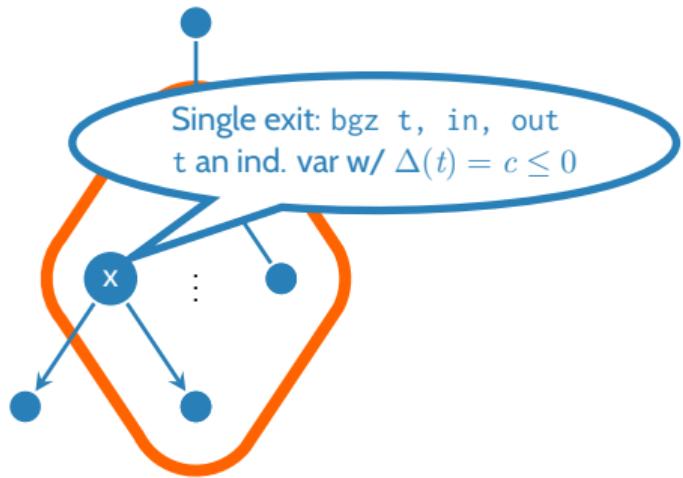
t3 := n*i + m

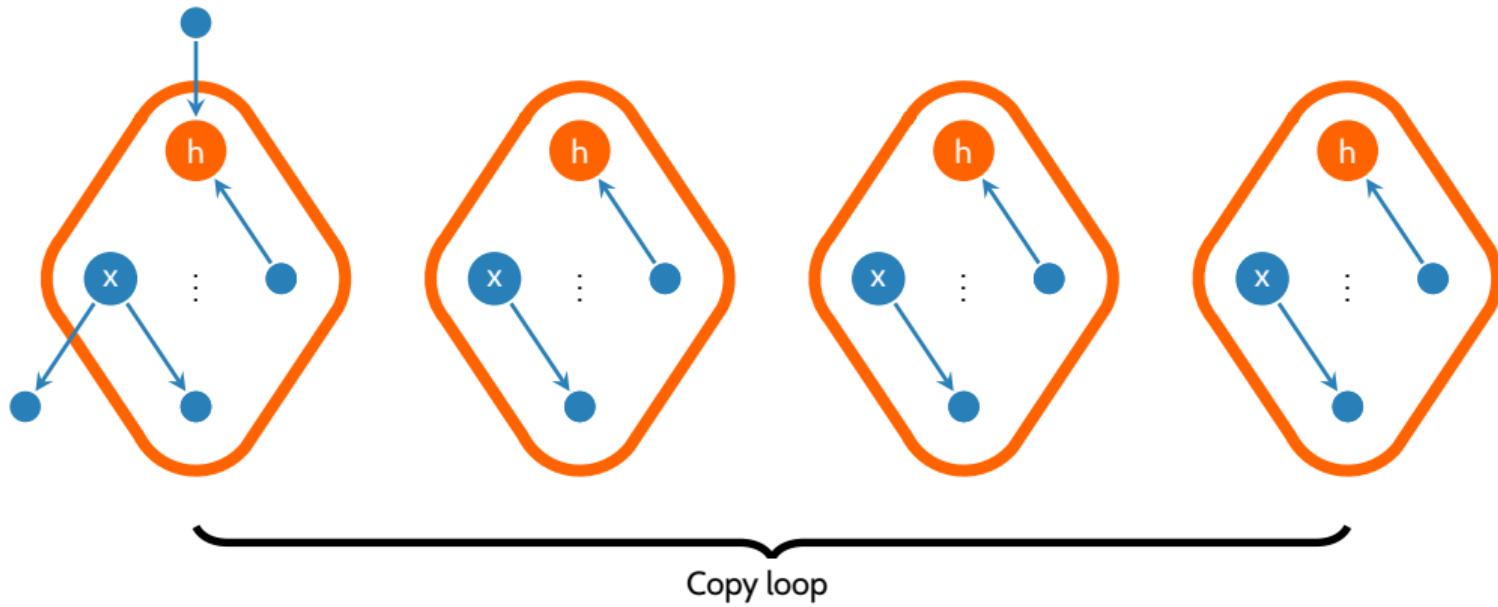
t4 := (n+1)*i + m

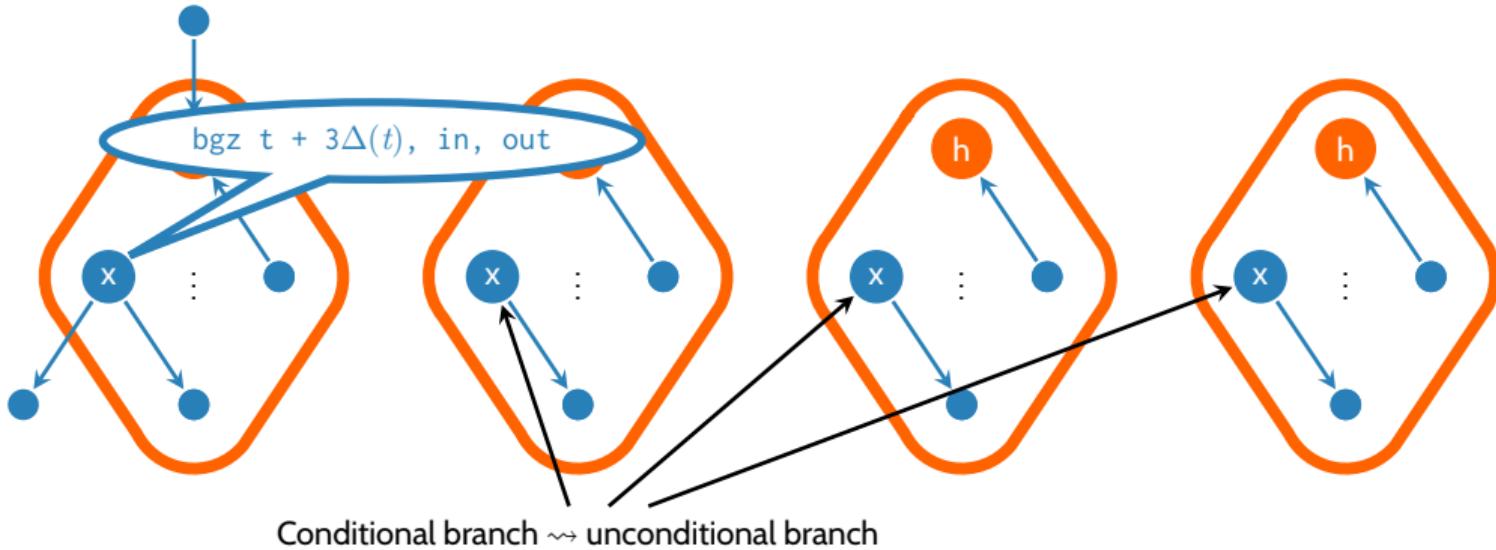
Loop unrolling

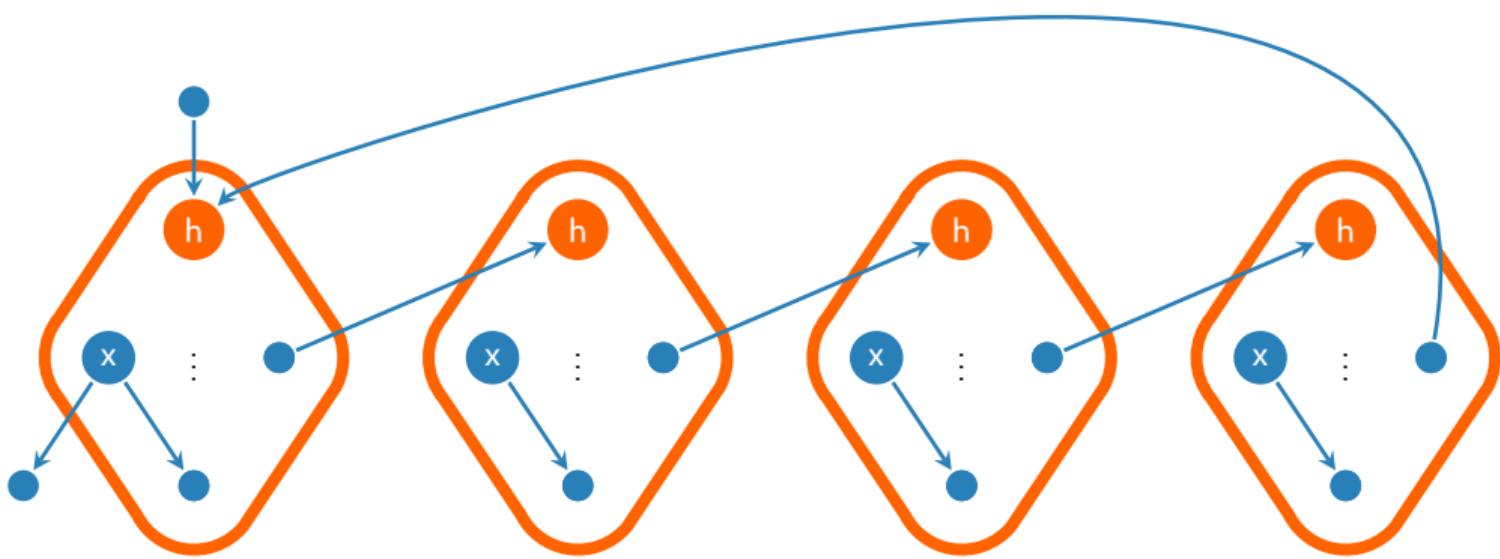
- Can expose opportunities for using Single Instruction Multiple Data (SIMD) instructions
- Some loops are so small that a significant portion of the running time is due to testing the loop exit condition
 - We can avoid branching by executing several iterations of the loop at once
- Loop unrolling trades (potential) run-time performance with code size.



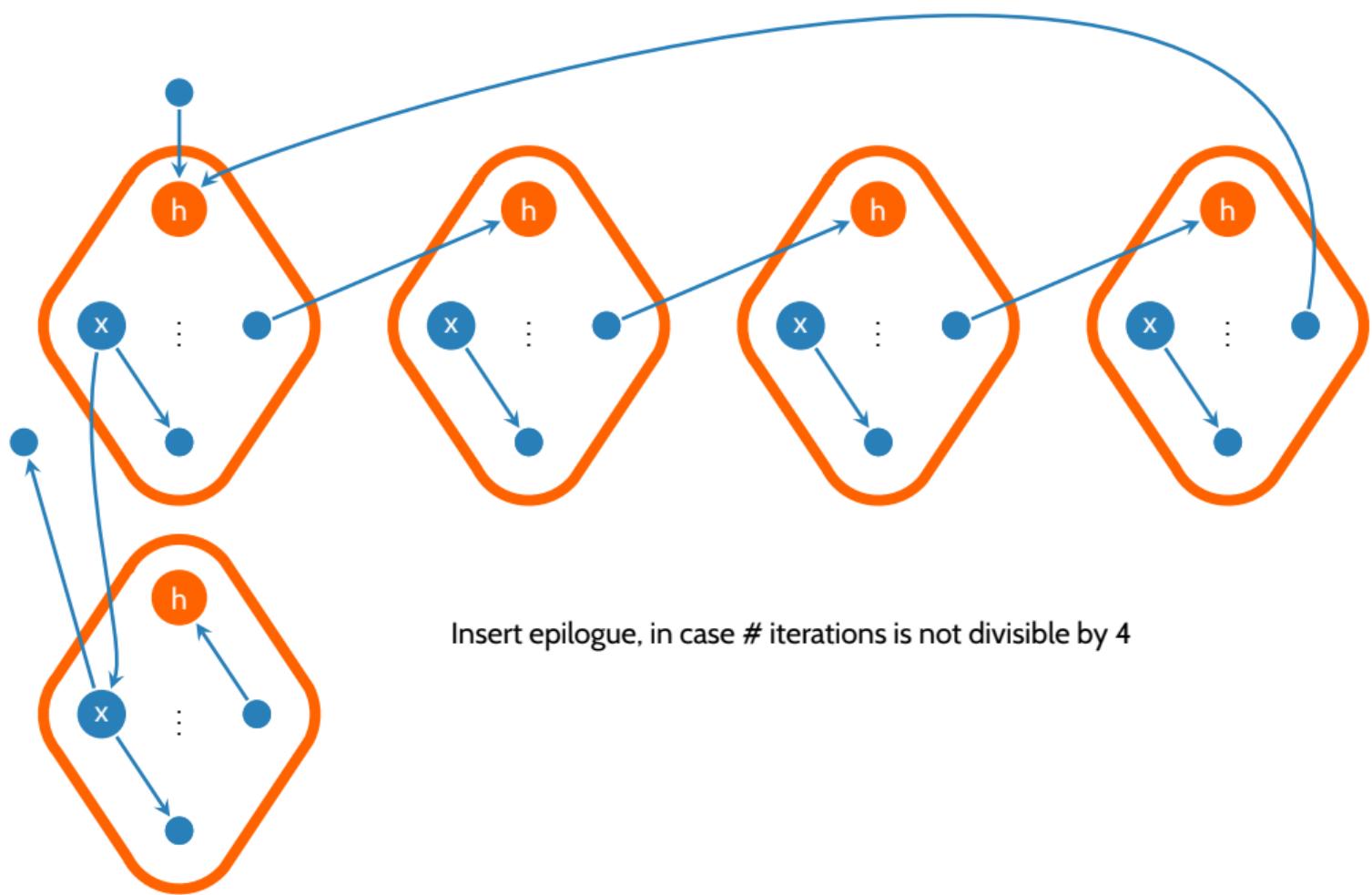








Redirect back-edges to next loop copy



Insert epilogue, in case # iterations is not divisible by 4

Optimization wrap-up

- Optimizer operates as a series of IR-to-IR transformations
- Transformations are typically supported by some analysis that proves the transformation is safe
- Each transformation is simple
- Transformations are mutually beneficial
 - Series of transformations can make drastic changes!