COS320: Compiling Techniques

Zak Kincaid

January 29, 2026

Logistics

e Last HW is due on Dean’s date. You will implement:
® The worklist algorithm for dataflow analysis
* Constant propagation
e Alias analysis & dead code elimination
® Register allocation

Loop transformations

Loops

® Almost all execution time is inside loops

* Many optimizations are centered around transforming loops

Loop invariant code motion: hoist expressions out of loops to avoid re-computation
Strength reduction: replace a costly operation inside a loop with a cheaper one
Loop unrolling: avoid branching by excecuting several iterations of a loop

Lots more: parallelization, tiling, vectorization, ...

What is a loop?

e We'e after a graph-theoretic definition of a loop

¢ Typically no explicit loop syntax at the IR level
* Not sensitive to syntax of source language (loops can be created with while, for, goto, ...)

What is a loop?

e We'e after a graph-theoretic definition of a loop

¢ Typically no explicit loop syntax at the IR level

* Not sensitive to syntax of source language (loops can be created with while, for, goto, ...)
e First attempt: strongly connected components (SCCs)

® Not fine enough - nested loops have only one SCC, but we want to transform them
separately
® Too general - makes it difficult to apply transformations

What is a loop?

e We'e after a graph-theoretic definition of a loop
¢ Typically no explicit loop syntax at the IR level
* Not sensitive to syntax of source language (loops can be created with while, for, goto, ...)
e First attempt: strongly connected components (SCCs)
® Not fine enough - nested loops have only one SCC, but we want to transform them
separately
® Too general - makes it difficult to apply transformations
¢ Desiderata:
® Want to at least capture loops that would result from structured programming (programs built
with while, if, and sequencing (no goto!))

® Many loop optimizations require inserting code immediately before the loop enters, so loop
definition should make that easy

What is a loop?

* Aloop of a control flow graph is a set of nodes S such that with a distinguished header
node A such that

© GS'is strongly connected

® There is a directed path from h to every node in S
® There is a directed path from any to in Sto h

@ There is no edge from any node outside of Sto any node inside of .S, except for h
® Implies h dominates all nodes in S: every path from entry to a node in S must go through &

What is a loop?

* Aloop of a control flow graph is a set of nodes S such that with a distinguished header
node A such that

© GS'is strongly connected

® There is a directed path from h to every node in S
® There is a directed path from any to in Sto h

@ There is no edge from any node outside of Sto any node inside of .S, except for h
® Implies h dominates all nodes in S: every path from entry to a node in S must go through &
® Observe: a loop has one entry, but may have multiple exits (or none)

® Aloop entry is a node with some predecessor outside the loop
® Aloop exit is a node with some successor outside the loop

daod

Dominator tree
a

©
l T
(b] b

Strongly connected subgraph

D —> -~ —> O

|dentifying loops

e Aback edge is an edge u — vsuch that v dominates u

|dentifying loops

e Aback edge is an edge u — vsuch that v dominates u

® The natural loop of a back edge u — vis the set of nodes n such that v dominates » and
there is a path from n to « not containing v.

|dentifying loops

e Aback edge is an edge u — vsuch that v dominates u

® The natural loop of a back edge u — vis the set of nodes n such that v dominates » and
there is a path from n to « not containing v.

® The natural loop of a back edge can be computed with a DFS on the reversal of the CFG,
starting from u

o
|

o
/
© ©

d o

|dentifying loops

e Aback edge is an edge u — vsuch that v dominates u

® The natural loop of a back edge u — vis the set of nodes n such that v dominates » and
there is a path from n to « not containing v.

® The natural loop of a back edge can be computed with a DFS on the reversal of the CFG,
starting from u

o
|

o
/
© ©

d o

|dentifying loops

e Aback edge is an edge u — vsuch that v dominates u

® The natural loop of a back edge u — vis the set of nodes n such that v dominates » and
there is a path from n to « not containing v.

® The natural loop of a back edge can be computed with a DFS on the reversal of the CFG,
starting from u

o
|

o
/
© ©

d o

|dentifying loops

e Aback edge is an edge u — vsuch that v dominates u

® The natural loop of a back edge u — vis the set of nodes n such that v dominates » and
there is a path from n to « not containing v.

® The natural loop of a back edge can be computed with a DFS on the reversal of the CFG,
starting from u

o
|

o

/

o O
0/\9/

Every natural loop is a loop:

Every natural loop is a loop:
@ Strongly connected

® By DFS construction every node has a path to « (that doesn't pass through v)
® Every node has a path from v (path from entry to node to « must include)

Every natural loop is a loop:
@ Strongly connected

® By DFS construction every node has a path to « (that doesn't pass through v)
® Every node has a path from v (path from entry to node to « must include)

@ Single entry v

Every natural loop is a loop:
@ Strongly connected

® By DFS construction every node has a path to « (that doesn't pass through v)
® Every node has a path from v (path from entry to node to « must include)

@ Single entry v

® By DFS construction, all predecessors of any node except v belong to the loop

Every natural loop is a loop:
@ Strongly connected

® By DFS construction every node has a path to « (that doesn't pass through v)
® Every node has a path from v (path from entry to node to « must include)

@ Single entry v

® By DFS construction, all predecessors of any node except v belong to the loop

But not every loop is natural:

Nested loops

e Say that a loop Bis nested within Aif BC A
® A node can be the header of more than one natural loop.
® Neither is nested inside the other

Nested loops

e Say that a loop Bis nested within Aif BC A
® A node can be the header of more than one natural loop.
® Neither is nested inside the other
e Commonly, we resolve this issue by merging natural loops with the same header

® Loops obtained by merging natural loops with the same header are either disjoint or nested
® Loops can be organized into a forest

Nested loops

Say that a loop Bis nested within Aif BC A

A node can be the header of more than one natural loop.
® Neither is nested inside the other

Commonly, we resolve this issue by merging natural loops with the same header
® Loops obtained by merging natural loops with the same header are either disjoint or nested
® Loops can be organized into a forest

We typically apply loop transformations “bottom-up’, starting with innermost loops

Loop preheaders

* Some optimizations (e.g., loop-invariant code motion) require inserting statements
immediately before a loop executes
* A loop preheader is a basic block that is inserted immediately before the loop header, to

serve as a place to store these statements
Q@,@

Loop invariant code motion

¢ Loop invariant code motion saves the cost of re-computing expressions that are left
invariant (i.e., do not change) in the loop.

® Such computations can be moved the loops preheader, as long as they are not side-effecting

Loop invariant code motion

¢ Loop invariant code motion saves the cost of re-computing expressions that are left
invariant (i.e., do not change) in the loop.

® Such computations can be moved the loops preheader, as long as they are not side-effecting
e SSA based LICM:
® An operand is invariant in a loop L if

@ Itis aconstant, or
@ ltisagid, or
© Itis a uid whose definition does not belong to L

Loop invariant code motion

¢ Loop invariant code motion saves the cost of re-computing expressions that are left
invariant (i.e., do not change) in the loop.

® Such computations can be moved the loops preheader, as long as they are not side-effecting
¢ SSA based LICM:

® An operand is invariant in a loop L if

@ Itis aconstant, or

@ ltisagid, or

© Itis a uid whose definition does not belong to L
® For each computation %z = opn, op opn,, if opn, and opn, are both invariant, move

%z = opn, op opn, to pre-header

Loop invariant code motion

¢ Loop invariant code motion saves the cost of re-computing expressions that are left
invariant (i.e., do not change) in the loop.

® Such computations can be moved the loops preheader, as long as they are not side-effecting

¢ SSA based LICM:

® An operand is invariant in a loop L if
@ Itis aconstant, or
@ ltisagid, or
© Itis a uid whose definition does not belong to L

® For each computation %z = opn, op opn,, if opn, and opn, are both invariant, move

%z = opn, op opn, to pre-header
® This moves definition of %z outside of the loop, so %z is now invariant

%10:0
br loop

e "Vagg,
* "Eamag,

%11

G(%io, %i2)

%t2 = %tl * %n

blz %t3, body, exit

gSEEEEEEEEEEEEEEENY,

NI L
aus
*egmunnnnt®

return %i;

A1 = %n x %n %y = %i, + 1

%3 = %i; - %t2 — b loop

%10:0
br ph

br loop

e "Vagg,
* "Eamag,

%11

d(%io, %iz)

%t2 = %tl * %n

blz %t3, body, exit

gSEEEEEEEEEEEEEEENY,

NI L
aus
*egmunnnnt®

return %i;

A1 = %n x %n %y = %i, + 1

%3 = %i; - %t2 — b loop

%io =0
br ph

|

%tl = %n * %n
br loop

wen
o* "TrEmama,,

%i1
%t2
%t3 = %i1 - %t2

¢ (%io, %iz)

%tl * %n < —%iz = %ip + 1

__»|b loop

blz %t3, body, exit

gsEEEEEEEEEENEEEY,

.
*epmuannnnnnnt®

F

return %i;

.t

0
L

%ig = 0

br ph

v

%tl
%t2 = %tl

%N * %N

* %N

br loop

”------......“

%i1
%t3

@(%io, %iz2)
%i1 - %t2

. ——

blz

%t3, body, exit

%io = %i1 + 1

guEEEEEEEEEEN,

*
L L L L L

F

return %i;

Yo

Induction variables

e An induction variable is a variable %z such that the difference between successive values
of %xzin aloop is constant.
® Common example: the loop counter in a for loop
for (int i = @; i < n; i++)

Induction variables

® An induction variable is a variable %z such that the difference between successive values
of %xzin aloop is constant.

® Common example: the loop counter in a for loop
for (int i = @; i < n; i++)
e Useful for several optimizations

¢ Strength reduction, loop unrolling, induction variable elimination, parallelization, array
bound-check elision

Induction variables, formally

¢ Use %uz(k) to denote the value of %z in the ith iteration of a loop. %z is an induction
variable if there is some constant (loop-invariant) A(%z) such that

%ox(k+ 1) = %x(k) + A(%x)

for all &

Induction variables, formally

¢ Use %uz(k) to denote the value of %z in the ith iteration of a loop. %z is an induction
variable if there is some constant (loop-invariant) A(%z) such that

%ox(k+ 1) = %x(k) + A(%x)

forall &
e Avariable %xis an basic induction variable for a loop L if it is increased / decreased by a
fixed loop-invariant quantity in any iteration of the loop.
® %a(i+ 1) = %a(i) + c= A(%z) = ¢

Induction variables, formally

¢ Use %uz(k) to denote the value of %z in the ith iteration of a loop. %z is an induction
variable if there is some constant (loop-invariant) A(%z) such that

%ox(k+ 1) = %x(k) + A(%x)

forall &
e Avariable %xis an basic induction variable for a loop L if it is increased / decreased by a
fixed loop-invariant quantity in any iteration of the loop.
* %x(i+1) = %z(i) + c= A(%x) = ¢
* Avariable %y is an derived induction variable for a loop L if it is an affine function of a basic
induction variable
* %yi) = a- %a(i) + b= A(%y) =a- ¢

Finding induction variables

¢ Basic induction variable detection:
® Look for ¢ statements %z = ¢(%x1, ..., %x,,) in header
® Each position %z; corresponding to a back edge of the loop must be the same uid, say %z

® Find chain of assignments for %z, leading back to %, such that each either adds or subtracts
an invariant quantity. Success = %z is an basic induction var.

Finding induction variables

¢ Basic induction variable detection:
® Look for ¢ statements %z = ¢(%x1, ..., %x,,) in header
® Each position %z; corresponding to a back edge of the loop must be the same uid, say %z
® Find chain of assignments for %z, leading back to %, such that each either adds or subtracts
an invariant quantity. Success = %z is an basic induction var.
e To detect derived induction variables:
® Choose a basic induction variable %z
* Find assignments of the form %y = opn, op opn, where

® opis+ or —andopn, and opn, are either %z, derived induction variables of %, or loop invariant
quantities
® opis*andopn, and opn, are as above, and at least one is a loop invariant quantity

Strength reduction

Idea: replace expensive operation with cheaper one (e.g., replace multiplication w/ addition).

long irace (long *m, long n) {

long trace (long *m, long n) { long i;
long i; long result = 0;
long result = 0; long *next = m;
for (i =0; ¢ < n; #++) { for (i = 0; i< n; #++) {
result += *(m + *n + 7); — result += *next;
} next += ¢ + 1;
return result; 3
3} return result;

%i1 = ¢(%io, %i2)

%result; = ¢(%resulty, %results)
%tl = %i; - %n

blz %tl1, body, exit

%t2 = %i; * %n
%t3 = %m + %t2
%td = %t3 + %ig

%t5 = load %t4

%results = %result; + %t5
%iog = %ip + 1

b loop

%i[= ()(o/oi(), %12)

%result; = ¢(%resulty, %results)
%tl = %i; - %n

blz %t1, body, exit

%t2 = %i; * %n
%t3 = %m + %t2
%td = %t3 + %ig

%t5 = load %t4

%results = %result; + %t5
%iog = %ip + 1

b loop

%ip = O(%iu, %12)

%result; = ¢(%resulty, %results)
%tl = %i; - %n

blz %t1, body, exit

%t2 = %i; * %n
%t3 = %m + %t2
%t4 = %t3 + %ip
%t5 = load %t4

%resulty = %result; + %t5
%io = %ip + 1
b loop

i=i+1

%ip = O(%io, %ig)

%result; = ¢@(%resulty, %results)
%tl = %i; - %n

blz %t1, body, exit

%t2 = %i; * %n
%t3 = %m + %t2
%t4 = %t3 + %ip
%t5 = load %t4

%resulty = %result; + %t5
%io = %ip + 1
b loop

i=i+1

%ip = O(%io, %ig) =i+
%result; = ¢(%resulty, %results)

%tl = %i; - %n tl:=i+n
blz %t1, body, exit

%t2 = %i; * %n 12 :=n"i
%t3 = %m + %t2
%t4 = %t3 + %ip
%t5 = load %t4

%resulty = %result; + %t5
%io = %ip + 1
b loop

%ip = O(%io, %ig) i=i+1
%result; = ¢(%resulty, %results)

%tl = %i; - %n tl:=i+n
blz %t1, body, exit

%t2 = %i; * %n 12 := n*i
%t3 = %m + %t2 t3:=n%i+m
%td = %t3 + %iy
%t5 = load %t4

%resulty = %result; + %t5
%io = %ip + 1
b loop

%il = @(%io, %ig) i=i+1
%result; = ¢(%resulty, %results)

%tl = %i; - %n tl:=i+n
blz %t1, body, exit

%t2 = %i1 * %n 12 := N7
%t3 = %m + %t2 t3:=n%i+m
%t4 = %t3 + %iq t4:=(n+1)*i+ m
%t5 = load %t4

%resulty = %result; + %t5
%io = %ip + 1
b loop

%t20 = @
%t30 = %m
%tdg = %m

%i1 = @(%ig, %iz2)

%t21 = d(%t20, %t22)

%t31 = d(%t30, %t32)

%td1 = o(%tdo, %tds)

%result; = ¢(%resulty, %results)
%tl = %i; - %n

blz %tl, body, exit

%t2o = %t21 + %n

%t3o = %t3; + %n

%t6 = %t4y + %n

%tdo = %t6 + 1

%t5 = load %t4q

%results = %result; + %t5
%io = %ip + 1

b loop

i=i+1
tl:=i+n
12 :=n%i
t3:=n"i+m

t4:= (n+1)"i + m

Loop unrolling

¢ Can expose opportunities for using Single Instruction Multiple Data (SIMD) instructions

* Some loops are so small that a significant portion of the running time is due to testing the
loop exit condition

® We can avoid branching by executing several iterations of the loop at once
* Loop unrolling trades (potential) run-time performance with code size.

Single exit: bgz t, in, out
tanind. varw/ A(t) = ¢<0

= 2N
bgz t + 3A(¢), in, out
>

Conditional branch ~ unconditional branch

Redirect back-edges to next loop copy

Insert epilogue, in case # iterations is not divisible by 4

Optimization wrap-up

Optimizer operates as a series of IR-to-IR transformations

Transformations are typically supported by some analysis that proves the transformation
is safe

Each transformation is simple

Transformations are mutually beneficial
® Series of transformations can make drastic changes!

