COS320: Compiling Techniques

Zak Kincaid

January 29, 2026

Lexing

Compiler phases (simplified)

Lexing
A\ 4

Parsing

i
Y

Abstract syntax tree

. (Translation

Intermediate representation) Optimization

. (Code generation

® The lexing (or lexical analysis) phase of a compiler breaks a stream of characters (source
text) into a stream of tokens.

® Whitespace and comments often discarded
* Atoken is a sequence of characters treated as a unit (a lexeme) along with an token type:

® identifier tokens: x, y, foo, ...

® integer tokens: 9, 1, 14,512, ...
e iftokens: if
[)

¢ Algebraic datatypes are a convenient representation for tokens

type token = IDENT of string
| INT of int
| IF
...

// compute absolute value
if (z<0) {

return -z;
} else {

return z;

}

JLexer

IF, LPAREN, IDENT ”x”, LT, INT 0, RPAREN, LBRACE,
RETURN, MINUS, IDENT ”x”, SEMI,

RBRACE, ELSE, LBRACE,

RETURN, IDENT ”x”, SEMI,

RBRACE

Implementing a lexer

¢ Option 1: write by hand
* Option 2: use a lexer generator

* Write a lexical specification in a domain-specific language
® Lexer generator compiles specification to a lexer (in language of choice)

® Many lexer generators available
® lex, flex, ocamlle, jflex, ...

Formal Languages

* Analphabet ¥ is a finite set of symbols (e.g., {0, 1}, ASCII, unicode, tokens).
e A word (or string) over X is a finite sequence w = w; wows...w,, with each w; € X.
® The empty word ¢ is a word over any alphabet
® The set of all words over X is typically denoted *
® Eg,01001 € {0,1}", embiggen € {a, ..., 2}*
e Alanguage over ¥ is a set of words over &
® |nteger literals form a language over {0, ..., 9, —
¢ The keywords of OCaml form a (finite) language over ASCII
¢ Syntactically-valid Java programs forms an (infinite) language over Unicode

Regular expressions (regex)

* Regular expressions are one mechanism for describing languages
® Eg,0[(1(0]1)") recognizes the language of all binary sequences without leading zeros
e Abstract syntax of regular expressions:

<RegExp> ::= € Empty word
| 3 Letter
| <RegExp><RegExp> Concatenation
| <RegExp>|<RegExp> Alternative

| <RegExp>* Repetition

Regular expressions (regex)

* Regular expressions are one mechanism for describing languages
® Eg,0[(1(0]1)") recognizes the language of all binary sequences without leading zeros
e Abstract syntax of regular expressions:

<RegExp> ::= € Empty word
| 3 Letter
| <RegExp><RegExp> Concatenation
| <RegExp>|<RegExp> Alternative
| <RegExp>* Repetition

* Meaning of regular expressions:

L(e) = {e}
L(a) = {a}
L(RiR2) ={uv:ue L(R1) ANveE L(R2)}
(R1|R2) L(R1) U L(R2)
R")

{e}UL(R)UL(RR)UL(RRR) U

ocamllex regex concrete syntax

‘a’ letter

“abc’: string (equiv. *a”b”c’)

R+: one or more repetitions of R (equiv. RRx)

R?: zero or one R (equiv. R | €)

[’a’-’z’]: character range (equiv. ’a’ |’b’|...|’z’)
R as x: bind string matched by R to variable x

Lexer generators

Lexer generators take as input a lexical specification, and output code that tokenizes a
character stream w.r.t. that specification
Example lexical specification:

token type pattern
—
identifier = [a — zA — Z][a — zA — 20 — 9]*
integer = [1 — 9][0 — 9]*
plus = +

Lexer generators

Lexer generators take as input a lexical specification, and output code that tokenizes a
character stream w.r.t. that specification
Example lexical specification:

token type pattern
—
identifier = [a — zA — Z][a — zA — 20 — 9]*
integer = [1 — 9][0 — 9]*
plus = +

* “foo+42+bar’ — identifier “foo’, plus “+’, integer “42", plus “+", identifier “bar”
———

token type lexeme

Lexer generators

Lexer generators take as input a lexical specification, and output code that tokenizes a
character stream w.r.t. that specification
Example lexical specification:

token type pattern
—
identifier = [a — zA — Z][a — zA — 20 — 9]*
integer = [1 — 9][0 — 9]*
plus = +

* “foo+42+bar’ — identifier “foo’, plus “+’, integer “42", plus “+", identifier “bar”
———
token type lexeme

* Typically, lexical spec associates an action to each token type, which is code that is
evaluted on the lexeme (often: produce a token value)

Disambiguation

* May be more than one way to lex a string:

IF=if
IDENT = [a-zA-Z]1[a-zA-Z0-9]1"
INT = [1-91[e-9]"
LT =<

® |nput string ifx<10: ‘ IDENT “ifx”, LT, INT 10 ‘or‘ IF, IDENT “x”, LT, INT 10 ‘?
® |nputstring if x<9: ‘ IF, IDENT “x”, LT, INT 9‘or‘ IDENT “if”, IDENT “x”, LT, INT 9 ‘?

Disambiguation

* May be more than one way to lex a string:

IF=if
IDENT = [a-zA-Z]1[a-zA-Z0-9]1"
INT = [1-91[e-9]"
LT =<

® |nput string ifx<10: ‘ IDENT “ifx”, LT, INT 10 ‘or‘ IF, IDENT “x”, LT, INT 10 ‘?
® |nputstring if x<9: ‘ IF, IDENT “x”, LT, INT 9‘or‘ IDENT “if”, IDENT “x”, LT, INT 9 ‘?

e Two rules sufficient to disambiguate (remember these!)

@ The lexer is greedy: always prefer longest match
@ Order matters: prefer earlier patterns

How do lexer generators work?

Lexer generator pipeline

e Lexical specification is compiled to a deterministic finite automaton (DFA), which can be
executed efficiently

¢ Typical pipeline: lexical specification — nondeterministic FA — DFA

* Kleenes theorem: regular expressions, NFAs, and DFAs describe the same class of
languages
® Alanguage is regular if it is accepted by a regular expression (equiv., NFA, DFA).

Deterministic finite automata (DFA)

b a
OO O]

A deterministic finite automaton (DFA) A = (@, X, 4, s, F) consists of
e (2 finite set of states

¢ Y finite alphabet
® §: (@ x X — @ transition function
® Every state has exactly one outgoing edge per letter

* s € (@ initial state
e ['C @ final (accepting) states
DFA accepts a string w = wy...wy, € ¥ iff 6(...0(5(s, w1), wa), ..., wy) € F.

Non-deterministic finite automata

start

A non-deterministic finite automaton (NFA) A = (Q, 3, A, s, F) generalization of a DFA, where
°* ACQ@x (XU{e}) x @ transition relation
¢ A state can have more than one outgoing edge for a given letter

® A state can have no outgoing edges for a given letter
® A state can have e-transitions (read no input, but change state)

Non-deterministic finite automata

start

A non-deterministic finite automaton (NFA) A = (Q, 3, A, s, F) generalization of a DFA, where
°* ACQ@x (XU{e}) x @ transition relation
¢ A state can have more than one outgoing edge for a given letter
® A state can have no outgoing edges for a given letter
® A state can have e-transitions (read no input, but change state)
NFA accepts a string w = wy...w,, € X" iff there exists a w-labeled path from s to an final state
(i.e., there is some sequence (qo, u1, q1), (1, 42, G2)s -y (Gm—1, Um, @m) With g = s, ¢, € F, and
ULU... Uy, = W.

Regex — NFA

Case: € (empty word)

€
start a

Regex — NFA

Case: a (letter)

a
start a

Regex — NFA

Case: R R (concatenation)

s--m Ry - o--= Ry ---
// ‘\\ ,/ ‘\\
1 1
start => ! start => @ !
\ , \ ,
N ’ \\ ,

Regex — NFA

Case: R R (concatenation)

S L: By A i I

Regex — NFA
Case: Ri|R; (alternative)

- Ry -

Regex — NFA

Case: Ri|R; (alternative)

Regex — NFA

Case: R* (iteration)

Regex — NFA

Case: R* (iteration)

start

NFA — DFA

* For any NFA, there is a DFA that recognizes the same language
¢ Intuition: the DFA simulates all possible paths of the NFA simultaneously

® There is an unbounded number of paths but we only care about the “end state” of each path,
not its history

® States of the DFA track the set of possible states the NFA could be in
® DFA accepts when some path accepts

NFA — DFA

start

start

NFA — DFA

start

NFA — DFA

start

NFA — DFA

start

NFA — DFA

start

NFA — DFA

start

NFA — DFA

start

NFA — DFA

start

NFA — DFA

start

NFA — DFA

start

NFA — DFA, formally

* Have: NFA A = (Q,X,6,s, F). Want: DFA A’ = (@, X, ¢, ¢, F') that accepts same
language.
® Forany S C (@, define the e-closure of Sto be the set of states reachable from Sby e

transitions (incl. .9)
e-cl(S) = smallest set that contains Sand such that V(q,e, ¢) € A, g€ S= ¢ € S

NFA — DFA, formally

* Have: NFA A = (Q,X,6,s, F). Want: DFA A’ = (@, X, ¢, ¢, F') that accepts same
language.

® Forany S C (@, define the e-closure of Sto be the set of states reachable from Sby e
transitions (incl. .9)
e-cl(S) = smallest set that contains Sand such thatV(q,¢e,¢) € A, ge S= ¢ € S

e Construct DFA as follows:

e () =setof all e-closed subsets of Q
§'(S, a) = e-closure of { g2 : Aq1 € S.(q1, a, ¢2) € A}
§ = e-closure of {s}

F={Se@:5nF+0}

NFA — DFA, formally

Have: NFA A = (Q, %, 4, s, F). Want: DFA A’ = (@, %, ¢, ¢/, F') that accepts same
language.

Forany S C (@, define the e-closure of S'to be the set of states reachable from Sby e
transitions (incl. .9)

e-cl(S) = smallest set that contains Sand such that V(q,e, ¢) € A, g€ S= ¢ € S
Construct DFA as follows:

e () =setof all e-closed subsets of Q
® §'(S,a) = e-closure of { g2 : I¢1 € S.(q1, a, 2) € A}
® ¢ = e-closure of {s}

e F={SecqQ:SNF+0}
Crucial optimization: only construct states that are reachable from ¢

NFA — DFA, formally

Have: NFA A = (Q, %, 4, s, F). Want: DFA A’ = (@, %, ¢, ¢/, F') that accepts same
language.

Forany S C (@, define the e-closure of S'to be the set of states reachable from Sby e
transitions (incl. .9)

e-cl(S) = smallest set that contains Sand such thatV(q,¢e,¢) € A, ge S= ¢ € S
Construct DFA as follows:

e () =setof all e-closed subsets of Q

® §'(S,a) = e-closure of{ g2 : 3q1 € S.(qu, a, ¢2) € A}
® ¢ = e-closure of {s}

e F={Se @ :SNnF+0}

Crucial optimization: only construct states that are reachable from ¢
Less crucial, stillimportant: minimize DFA (Hopcrofts algorithm, O(nlog n))

Lexical specification — String classifier

e Want: partial function match mapping strings to token types
® match(s) = highest-priority token type whose pattern matches s (undef otherwise)
® Process:

@ Convert each pattern to an NFA. Label accepting states w/ token types.
@ Take the union of all NFAs
© Convert to DFA

® States of the DFA labeled with sets of token types.
® Take highest priority.

identifier = [a — 24 — Z][a — zA — Z0 — 9]"
integer = [1 — 9][0 — 9]"
float = ([1 — 9][0 — 9]*]0).[0 — 9] "

identifier

[a—2A —
identifier @ 2)@

la—zA — 70 — 9]

int

. [1-9]
integer @ > @

float

identifier

float

float

Compiler phases (simplified)

Lexing
A\ 4

Parsing

i
Y

Abstract syntax tree

. (Translation

Intermediate representation) Optimization

. (Code generation

