COS3820: Compiling Techniques

Instructor: Zak Kincaid
TA: Vivienne Goyal

January 29,2026

What is a compiler?

* A compiler is a program that takes a program written in a source language and translates it
into a functionally equivalent program in a target language.

® gcc: C— x86/ARM assembly
javac: Java — Java bytecode

[]
: Cfron&
* .

<Bjarne Stroustrups 1983 C++ compile|>

What is a compiler?

* A compiler is a program that takes a program written in a source language and translates it
into a functionally equivalent program in a target language.

® gcc: C— x86/ARM assembly
® javac: Java — Java bytecode

® cfront : C++ — C
[]

® A compiler can also:
® Report errors & potential problems
® Uninitialized variables, type errors, ...
® |mprove (“optimize”) the program

Why take COS3207

You will learn:
¢ How high-level languages are translated to machine language

* How to be a better programmer

® What can a compiler do?
® What can a compiler not do?

Lexing & Parsing

(Some) functional programming in OCaml

A bit of programming language theory

A bit of computer architecture

Course resources

Website: http://www.cs.princeton.edu/courses/
archive/spr26/cos320/

. . modern
® Assignments available through canvas compiler
® Discussion forum on ed implementation

i in ML
Office hours:

® Monday 3:30-5:00pm (Zak)
Wednesday 10-11am (Vivienne)
Friday 10-11am (Vivienne)

or by appointment

Recommended textbook:
Modern compiler implementation in ML (Appel)

Real World OCaml (Minsky, Madhavapeddy, Hickey) Ry
realworldocaml.org

http://www.cs.princeton.edu/courses/archive/spr26/cos320/
http://www.cs.princeton.edu/courses/archive/spr26/cos320/
realworldocaml.org

Grading

Homework teaches the practice of building a compiler; midterm & final skew towards theory.
* 60% Homework

® 5 assignments, not evenly weighted
® Expect homework to be time consuming!

® 20% Midterm
® Thursday March 5, in class

® 20% Final

Homework policies

® Homework can be done individually or in pairs

¢ Due on Mondays at 11pm, with 1 hour grace period

¢ Can be submitted max 4 days late. 10% penalty per day late, with first four late days
(across all assignments) waived.

¢ Feel free to discuss with others or LLMs at conceptual level.
Submitted work should be your own.

Compilers

(Programming) language = syntax + semantics

¢ Syntax: what sequences of characters are valid programs?
* Typically specified by context-free grammar
<expr> ::=<integer>
|<variable>
|<expr> + <expr>
|<expr> % <expr>
|(<expr>)
* Semantics: what is the behavior of a valid program?
® QOperational semantics: how can we execute a program?
® |nessence: an interpreter

® Axiomatic semantics: what can we prove about a program?
® Denotational semantics: what mathematical function does the program compute?

(Programming) language = syntax + semantics

¢ Syntax: what sequences of characters are valid programs?
* Typically specified by context-free grammar
<expr> ::=<integer>
|<variable>
|<expr> + <expr>
|<expr> % <expr>
|(<expr>)
* Semantics: what is the behavior of a valid program?
® Operational semantics: how can we execute a program?
® |nessence: an interpreter
® Axiomatic semantics: what can we prove about a program?
® Denotational semantics: what mathematical function does the program compute?

The job of a compiler is to translate from the syntax of one language to another, but preserve
the semantics.

—_

OCQwo~NOO UV bW

#include <stdio.h>

int factorial(int n) {
int acc = 1;
while (n > 0) {
acc = acc * n;
n=mn-1;
}
return acc;

}

int main(int argc, char xargu[]) {
printf(”factorial (6)=u%d\n”, factorial(6));
3

CQOVWONOUVTAWN

—_
pury

factorial:
movl 81, %raz
cmpq $2, %rdi
jl .LBBO_2
.LBB0__1-
imulq Y%rdi, Yoraz
decq Yordi
cmpq 31, %rdi
jg .LBBO_1
.LBB0__2
retq

main:
movl $.str, %rdi
movl 3720, Y%rsi
callg printf
retq

.globl .str
.str

.asciz Factorial_is ,%ld\n"

Frontend

Backend

4

4

Compiler phases (simplified)

A\ 4

Lexing

A\

y

Parsing

Abstract syntax tree

Translatlon

Intermediate representatlon) Optimization

| (Code generation

Lexing

L LELLT PN
L]

NOUAs WN -

““' .'l
int acc = 1;
while (n > 0) { 1 INT, IDENT »acc”, EQUAL, INT 1, SEMI,
ace %= m: 2 WHILE, LPAREN, IDENT "n", GT, INT 0, RPAREN, LBRACE,
ne 3 IDENT »acc”, TIMESEQUAL, IDENT "n", SEMI,
) ’ 4 IDENT »n’, DECREMENT, SEMI,
5 RBRACE
return acc; 6 RETURN, IDENT "acc”, SEMI
“‘
““P .
arsin
block g
/ |
decl while return
int acc 1 > block acc
n 0 * --

Rd
VRN I
acc n n

block

1

decl while return
'..
/ | \ e,
* .
int acc 1 > block acc *.Jranslation
*
/' \ / ‘s
" 0 - N %count = alloca 164
/ \ | %acc = alloca i64
acc n n store i64 %n, i64* %count

store i64 1, i64x %acc
br label %loop

%t3 = load 164, i64* %acc
%t4 = mul 164 %tl, %t3
store i64 %t4, i64* %acc
%t5 = sub i64 %tl, 1

%tl = load 164, i64*x %count
%t2 = icmp sgt 164 %tl, @

br il %t2, label %body, label %exit store 164 %t5, i64% %count
\\\\\\\-_-_——— br label %loop
F
T

%t6 = load 164, i64* %acc
ret 164 %t6

%count = alloca i64

%acc = alloca i64

store i64 %n, i64* %count
store i64 1, i64% %acc

br label %loop

—

%t3 = load 164, i64* %acc
%tl = load 164, 164* %eount %t4 = mul 164 %tl, %t3
%t2 = icmp sgt 164 %tl. 0 store i64 %t4, i64x %acc
i P sg) %t5 = sub i64 %tl1, 1
br i1 %t2, label %body, label %exit store 164 %t5, i64x %count

%t6 = load 164, i64* %acc

ret i64 %t6

g

Optimization '

br label %loop

]
]
]
]
L]
-
L]
“,
LS

"ea,
B
“"=saapluacc2 = phi 164 %acc, %accl

%count = 164 %n
%acc = 164 1
br label %loop

el

%count2 = phi 164 %count, %countl

%t2 = icmp sgt i64 %count2, 1

%accl = mul i64 %acc2, %count2
%countl = sub i64 %count2, 1

br i1 %t2, label %body, label %exit

br label %loop

F

%t6 = load 164, i64* %acc
ret i64 %t6

-

%count = 164 %n
%acc = 164 1
br label %loop

1 factorial
/ 2 movl 81, %raz
Y - ramy Y o 3 cmpq $2, %rdi
%! 2 = ph 4 % %! 1 .
count P } 164 %count, %count %accl = mul i64 %acc2, %count2 4 j .LBB0O_2
%acc2 = phi i64 %acc, %accl . .
o . RO %countl = sub i64 %count2, 1 5 .LBBO_ 1
%t2 = icmp sgt i64 %count2, 1 6 imulg %rdi, %raz
1 1 %1 Y
br il %t2, label %body, label %exit br_label %1oop . 7 decq Y%rdi
/""----..---l"'ﬁ cmpq 81, %rdi
. 9 jg .LBBO_1
F T Code generation 10 .LbBO 2
" retq
%t6 = load 164, i64* %acc 12

ret i64 %t6

COS320 assignments

By the end of the course, you will build (in OCaml) a complete compiler from a high-level
type-safe language (“Oat”) to a subset of x86 assembly.

e HW1: X86lite interpreter

HW2: LLVMlite-to-X86lite code generation

HW3: Lexing, Parsing, Oat-to-LLVMlite translation
HW4: Higher-level features

HWS5: Analysis and Optimizations

We will use the assignments from Penn's CIS 341, provided by Steve Zdancevic.

Historical note

Fortran

* First “modern” compiler for FORTRAN developed at IBM in 1957 ’I_L'

® Grace Hoppers 1951 A-O loader/linker
* 18 person-years to complete
¢ Led by John Backus, who won 1977 Turing award

Historical note

First “modern” compiler for FORTRAN developed at IBM in 1957
® Grace Hoppers 1951 A-O loader/linker

18 person-years to complete
Led by John Backus, who won 1977 Turing award
You will implement one in a semester

Fortran

) - |

OCaml

modern
—ampiler
modern NEation
~smpiler In ML
modern AEation
compiler in C
implementation
in Java

andrew w. appel

e Why OCaml?

® Algebraic data types + pattern matching are very convenient features for writing compilers
e OCamlis a functional programming language

® Imperative languages operate by mutating data

® Functional languages operate by producing new data
e OCamlis a typed language

® Contracts on the values produced and consumed by each expression
® Types are (for the most part) automatically inferred.

® Good style to write types for top-level definitions

* We recommend using VSCode + Docker for OCaml development

® Each assignment comes with a dev container to make this simple
® See “Toolchain” instructions on the HW page to get started

¢ If you have difficulty with installation, ask on ed

Intro to Formal Language Theory

Formal Languages

* Analphabet ¥ is a finite set of symbols (e.g., {0, 1}, ASCII, unicode, tokens).
e A word (or string) over X is a finite sequence w = w; wows...w,, with each w; € X.
® The empty word ¢ is a word over any alphabet
® The set of all words over X is typically denoted *
® Eg,01001 € {0,1}", embiggen € {a, ..., 2}*
e Alanguage over ¥ is a set of words over &
® |nteger literals form a language over {0, ..., 9, —
¢ The keywords of OCaml form a (finite) language over ASCII
¢ Syntactically-valid Java programs forms an (infinite) language over Unicode

Regular expressions (regex)

® Regular expressions are a formal language for describing formal languages.
® Eg,0[(1(0]1)*) recognizes the language of all binary sequences without leading zeros

Regular expressions (regex)

® Regular expressions are a formal language for describing formal languages.
® Eg,0[(1(0]1)*) recognizes the language of all binary sequences without leading zeros
¢ Syntax of regular expressions:
® cis aregular expression
() is a regular expression
For any letter a € ¥, ais a regular expression
For any regular expressions Ry and Ry, Ry R2 and Ry | R, are regular expressions
For any regular expression R, R* and (R) are regular expressions

Regular expressions (regex)

® Regular expressions are a formal language for describing formal languages.

® Eg,0[(1(0]1)*) recognizes the language of all binary sequences without leading zeros
¢ Syntax of regular expressions:

® cis aregular expression

* ()is a regular expression

® For any letter a € X, ais a regular expression

® For any regular expressions Ry and Ry, R Rz and Ry | R, are regular expressions

® For any regular expression R, R* and (R) are regular expressions
* Meaning of regular expressions:

L(e) = {e}
L(B)=10
£(0) = {a}
L(R1R2) ={w:ue L(Ri)ANvE L(R2)}
L(R1|R2) = L(R1) U L(R2)
LR)={e} UL(R)UL(RR)UL(RRR)U

* Regular languages are useful in compilers - typically used in the lexing phase. Examples of
regular languages:

® Keywords
* Integer / floating point constants

® |dentifiers
[]

* Regular languages are useful in compilers - typically used in the lexing phase. Examples of
regular languages:

® Keywords
* Integer / floating point constants
* |dentifiers

o s
* But not always enough!. Examples of non-regular languages:
® The language of regular expressions

Syntactically valid C expressions
Syntacically valid OCaml programs

The language of regular expressions

¢ Recall syntax of regular expressions:
® cis aregular expression

() is a regular expression

For any letter a € ¥, ais a regular expression

For any regular expressions Ry and Ry, Ry Rs and Ry | R, are regular expressions
For any regular expression R, R* and (R) are regular expressions

* Context-free grammar for regular expressions:

<regexp> ::=¢

| 0
| a foreacha € ¥
| <regexp><regexp> | <regexp>|<regexp>

| <regexp>* | (<regexp>)

Anatomy of context-free grammars

<regexp> is a non-terminal symbol.
€,0,a,l,*,(,) are terminal symbols.
Grammar consists of a set of rules, written as
<nonterminal> ::= sequence of terminal and nonterminal symbols
® | abbreviates multiple productions w/ same left-hand side

® <regexp> ::= (<regexp>) | <regexp>" means
<regexp> ::= (<regexp>)
<regexp> ::= <regexp>"

Grammar recognizes the set of words over the terminal symbols that can be obtained from
a designated non-terminal by (repeatedly) replacing the left-hand side of some rule with
its right-hand side

® <regexp> — <regexp><regexp> — a<regexp> — a<regexp>* — abx

® Thursday’s lecture: x86lite
® Simple subset of x86 (~20 instructions)
® Suitable as a compilation target for Oat
* HW1 on canvas. Due Feb 9.
® You will implement:

® A simulator for X86lite machine code
® Anassembler
® Aloader

® You may work individually or in pairs

