
COS320: Compiling Techniques

Instructor: Zak Kincaid
TA: Vivienne Goyal

January 29, 2026

What is a compiler?

• A compiler is a program that takes a program written in a source language and translates it
into a functionally equivalent program in a target language.

• gcc : C → x86/ARM assembly
• javac : Java → Java bytecode
• cfront : C++ → C
•

Bjarne Stroustrup’s 1983 C++ compiler

• A compiler can also:
• Report errors & potential problems

• Uninitialized variables, type errors, ...
• Improve (“optimize”) the program

What is a compiler?

• A compiler is a program that takes a program written in a source language and translates it
into a functionally equivalent program in a target language.

• gcc : C → x86/ARM assembly
• javac : Java → Java bytecode
• cfront : C++ → C
•

• A compiler can also:
• Report errors & potential problems

• Uninitialized variables, type errors, ...
• Improve (“optimize”) the program

Why take COS320?

You will learn:
• How high-level languages are translated to machine language
• How to be a better programmer

• What can a compiler do?
• What can a compiler not do?

• Lexing & Parsing
• (Some) functional programming in OCaml
• A bit of programming language theory
• A bit of computer architecture

Course resources

• Website: http://www.cs.princeton.edu/courses/
archive/spr26/cos320/

• Assignments available through canvas
• Discussion forum on ed

• Office hours:
• Monday 3:30–5:00pm (Zak)
• Wednesday 10–11am (Vivienne)
• Friday 10–11am (Vivienne)
• or by appointment

• Recommended textbook:
Modern compiler implementation in ML (Appel)

• Real World OCaml (Minsky, Madhavapeddy, Hickey)
realworldocaml.org

http://www.cs.princeton.edu/courses/archive/spr26/cos320/
http://www.cs.princeton.edu/courses/archive/spr26/cos320/
realworldocaml.org

Grading

Homework teaches the practice of building a compiler; midterm & final skew towards theory.
• 60% Homework

• 5 assignments, not evenly weighted
• Expect homework to be time consuming!

• 20% Midterm
• Thursday March 5, in class

• 20% Final

Homework policies

• Homework can be done individually or in pairs
• Due on Mondays at 11pm, with 1 hour grace period
• Can be submitted max 4 days late. 10% penalty per day late, with first four late days

(across all assignments) waived.
• Feel free to discuss with others or LLMs at conceptual level.

Submitted work should be your own.

Compilers

(Programming) language = syntax + semantics

• Syntax: what sequences of characters are valid programs?
• Typically specified by context-free grammar

<expr> ::=<integer>

|<variable>
|<expr>+ <expr>

|<expr> ∗ <expr>
|(<expr>)

• Semantics: what is the behavior of a valid program?
• Operational semantics: how can we execute a program?

• In essence: an interpreter
• Axiomatic semantics: what can we prove about a program?
• Denotational semantics: what mathematical function does the program compute?

The job of a compiler is to translate from the syntax of one language to another, but preserve
the semantics.

(Programming) language = syntax + semantics

• Syntax: what sequences of characters are valid programs?
• Typically specified by context-free grammar

<expr> ::=<integer>

|<variable>
|<expr>+ <expr>

|<expr> ∗ <expr>
|(<expr>)

• Semantics: what is the behavior of a valid program?
• Operational semantics: how can we execute a program?

• In essence: an interpreter
• Axiomatic semantics: what can we prove about a program?
• Denotational semantics: what mathematical function does the program compute?

The job of a compiler is to translate from the syntax of one language to another, but preserve
the semantics.

1 #include <stdio.h>

3 int factorial(int n) {
4 int acc = 1;
5 while (n > 0) {
6 acc = acc * n;
7 n = n - 1;
8 }
9 return acc;

10 }

12 int main(int argc, char *argv[]) {
13 printf(”factorial(6)␣=␣%d\n”, factorial(6));
14 }

1 factorial:
2 movl $1, %rax
3 cmpq $2, %rdi
4 jl .LBB0_2
5 .LBB0_1:
6 imulq %rdi, %rax
7 decq %rdi
8 cmpq $1, %rdi
9 jg .LBB0_1

10 .LBB0_2:
11 retq

13 main:
14 movl $.str, %rdi
15 movl $720, %rsi
16 callq printf
17 retq

19 .globl .str
20 .str:
21 .asciz ”Factorial␣is␣%ld\n”
22

Compiler phases (simplified)

Source text

Token stream

Abstract syntax tree

Intermediate representation

Assembly

Lexing

Parsing

Translation

Code generation

Optimization

Backend

Frontend

1 int acc = 1;
2 while (n > 0) {
3 acc *= n;
4 n --;
5 }
6 return acc;
7

1 INT, IDENT ”acc”, EQUAL, INT 1, SEMI,
2 WHILE, LPAREN, IDENT ”n”, GT, INT 0, RPAREN, LBRACE,

3 IDENT ”acc”, TIMESEQUAL, IDENT ”n”, SEMI,
4 IDENT ”n”, DECREMENT, SEMI,
5 RBRACE
6 RETURN, IDENT ”acc”, SEMI

block

decl while return

>

n 0

block

*= --

nacc n

accint acc 1

Lexing

Parsing

block

decl while return

>

n 0

block

*= --

nacc n

accint acc 1

%count = alloca i64
%acc = alloca i64
store i64 %n, i64* %count
store i64 1, i64* %acc

br label %loop

%t1 = load i64, i64* %count
%t2 = icmp sgt i64 %t1, 0

br i1 %t2, label %body, label %exit

%t3 = load i64, i64* %acc
%t4 = mul i64 %t1, %t3
store i64 %t4, i64* %acc
%t5 = sub i64 %t1, 1
store i64 %t5, i64* %count

br label %loop

%t6 = load i64, i64* %acc

ret i64 %t6

T
F

Translation

%count = alloca i64
%acc = alloca i64
store i64 %n, i64* %count
store i64 1, i64* %acc

br label %loop

%t1 = load i64, i64* %count
%t2 = icmp sgt i64 %t1, 0

br i1 %t2, label %body, label %exit

%t3 = load i64, i64* %acc
%t4 = mul i64 %t1, %t3
store i64 %t4, i64* %acc
%t5 = sub i64 %t1, 1
store i64 %t5, i64* %count

br label %loop

%t6 = load i64, i64* %acc

ret i64 %t6

T
F

%count = i64 %n
%acc = i64 1

br label %loop

%count2 = phi i64 %count, %count1
%acc2 = phi i64 %acc, %acc1
%t2 = icmp sgt i64 %count2, 1

br i1 %t2, label %body, label %exit

%acc1 = mul i64 %acc2, %count2
%count1 = sub i64 %count2, 1

br label %loop

%t6 = load i64, i64* %acc

ret i64 %t6

TF

Optimization

%count = i64 %n
%acc = i64 1

br label %loop

%count2 = phi i64 %count, %count1
%acc2 = phi i64 %acc, %acc1
%t2 = icmp sgt i64 %count2, 1

br i1 %t2, label %body, label %exit

%acc1 = mul i64 %acc2, %count2
%count1 = sub i64 %count2, 1

br label %loop

%t6 = load i64, i64* %acc

ret i64 %t6

TF

1 factorial:
2 movl $1, %rax
3 cmpq $2, %rdi
4 jl .LBB0_2
5 .LBB0_1:
6 imulq %rdi, %rax
7 decq %rdi
8 cmpq $1, %rdi
9 jg .LBB0_1

10 .LBB0_2:
11 retq
12

Code generation

COS320 assignments

By the end of the course, you will build (in OCaml) a complete compiler from a high-level
type-safe language (“Oat”) to a subset of x86 assembly.
• HW1: X86lite interpreter
• HW2: LLVMlite-to-X86lite code generation
• HW3: Lexing, Parsing, Oat-to-LLVMlite translation
• HW4: Higher-level features
• HW5: Analysis and Optimizations

We will use the assignments from Penn’s CIS 341, provided by Steve Zdancevic.

Historical note

• First “modern” compiler for FORTRAN developed at IBM in 1957
• Grace Hopper’s 1951 A-0 loader/linker

• 18 person-years to complete
• Led by John Backus, who won 1977 Turing award

• You will implement one in a semester

Historical note

• First “modern” compiler for FORTRAN developed at IBM in 1957
• Grace Hopper’s 1951 A-0 loader/linker

• 18 person-years to complete
• Led by John Backus, who won 1977 Turing award
• You will implement one in a semester

OCaml

• Why OCaml?
• Algebraic data types + pattern matching are very convenient features for writing compilers

• OCaml is a functional programming language
• Imperative languages operate by mutating data
• Functional languages operate by producing new data

• OCaml is a typed language
• Contracts on the values produced and consumed by each expression
• Types are (for the most part) automatically inferred.

• Good style to write types for top-level definitions

• We recommend using VSCode + Docker for OCaml development
• Each assignment comes with a dev container to make this simple
• See “Toolchain” instructions on the HW page to get started

• If you have difficulty with installation, ask on ed

Intro to Formal Language Theory

Formal Languages

• An alphabet Σ is a finite set of symbols (e.g., {0, 1}, ASCII, unicode, tokens).
• A word (or string) over Σ is a finite sequence w = w1w2w3...wn, with each wi ∈ Σ.

• The empty word ϵ is a word over any alphabet
• The set of all words over Σ is typically denoted Σ∗

• E.g., 01001 ∈ {0, 1}∗, embiggen ∈ {a, ..., z}∗

• A language over Σ is a set of words over Σ
• Integer literals form a language over {0, ..., 9,−}
• The keywords of OCaml form a (finite) language over ASCII
• Syntactically-valid Java programs forms an (infinite) language over Unicode

Regular expressions (regex)
• Regular expressions are a formal language for describing formal languages.

• E.g., 0|(1(0|1)∗) recognizes the language of all binary sequences without leading zeros

• Syntax of regular expressions:
• ϵ is a regular expression
• ∅ is a regular expression
• For any letter a ∈ Σ, a is a regular expression
• For any regular expressions R1 and R2, R1R2 and R1 | R2 are regular expressions
• For any regular expression R, R∗ and (R) are regular expressions

• Meaning of regular expressions:
L(ϵ) = {ϵ}
L(∅) = ∅
L(a) = {a}

L(R1R2) = {uv : u ∈ L(R1) ∧ v ∈ L(R2)}
L(R1|R2) = L(R1) ∪ L(R2)

L(R∗) = {ϵ} ∪ L(R) ∪ L(RR) ∪ L(RRR) ∪ ...

Regular expressions (regex)
• Regular expressions are a formal language for describing formal languages.

• E.g., 0|(1(0|1)∗) recognizes the language of all binary sequences without leading zeros
• Syntax of regular expressions:

• ϵ is a regular expression
• ∅ is a regular expression
• For any letter a ∈ Σ, a is a regular expression
• For any regular expressions R1 and R2, R1R2 and R1 | R2 are regular expressions
• For any regular expression R, R∗ and (R) are regular expressions

• Meaning of regular expressions:
L(ϵ) = {ϵ}
L(∅) = ∅
L(a) = {a}

L(R1R2) = {uv : u ∈ L(R1) ∧ v ∈ L(R2)}
L(R1|R2) = L(R1) ∪ L(R2)

L(R∗) = {ϵ} ∪ L(R) ∪ L(RR) ∪ L(RRR) ∪ ...

Regular expressions (regex)
• Regular expressions are a formal language for describing formal languages.

• E.g., 0|(1(0|1)∗) recognizes the language of all binary sequences without leading zeros
• Syntax of regular expressions:

• ϵ is a regular expression
• ∅ is a regular expression
• For any letter a ∈ Σ, a is a regular expression
• For any regular expressions R1 and R2, R1R2 and R1 | R2 are regular expressions
• For any regular expression R, R∗ and (R) are regular expressions

• Meaning of regular expressions:
L(ϵ) = {ϵ}
L(∅) = ∅
L(a) = {a}

L(R1R2) = {uv : u ∈ L(R1) ∧ v ∈ L(R2)}
L(R1|R2) = L(R1) ∪ L(R2)

L(R∗) = {ϵ} ∪ L(R) ∪ L(RR) ∪ L(RRR) ∪ ...

• Regular languages are useful in compilers – typically used in the lexing phase. Examples of
regular languages:

• Keywords
• Integer / floating point constants
• Identifiers
• ...

• But not always enough!. Examples of non-regular languages:
• The language of regular expressions
• Syntactically valid C expressions
• Syntacically valid OCaml programs
• ...

• Regular languages are useful in compilers – typically used in the lexing phase. Examples of
regular languages:

• Keywords
• Integer / floating point constants
• Identifiers
• ...

• But not always enough!. Examples of non-regular languages:
• The language of regular expressions
• Syntactically valid C expressions
• Syntacically valid OCaml programs
• ...

The language of regular expressions

• Recall syntax of regular expressions:
• ϵ is a regular expression
• ∅ is a regular expression
• For any letter a ∈ Σ, a is a regular expression
• For any regular expressions R1 and R2, R1R2 and R1 | R2 are regular expressions
• For any regular expression R, R∗ and (R) are regular expressions

• Context-free grammar for regular expressions:

<regexp> ::=ϵ

| ∅
| a for each a ∈ Σ

| <regexp><regexp> | <regexp>|<regexp>
| <regexp>∗ | (<regexp>)

Anatomy of context-free grammars

• <regexp> is a non-terminal symbol.
• ϵ, ∅, a, |, ∗, (,) are terminal symbols.
• Grammar consists of a set of rules, written as

<nonterminal> ::= sequence of terminal and nonterminal symbols

• | abbreviates multiple productions w/ same left-hand side
• <regexp> ::= (<regexp>) | <regexp>∗ means

<regexp> ::= (<regexp>)
<regexp> ::= <regexp>∗

• Grammar recognizes the set of words over the terminal symbols that can be obtained from
a designated non-terminal by (repeatedly) replacing the left-hand side of some rule with
its right-hand side

• <regexp>→ <regexp><regexp>→ a<regexp>→ a<regexp>*→ ab*

• Thursday’s lecture: x86lite
• Simple subset of x86 (∼20 instructions)
• Suitable as a compilation target for Oat

• HW1 on canvas. Due Feb 9.
• You will implement:

• A simulator for X86lite machine code
• An assembler
• A loader

• You may work individually or in pairs

