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Functional languages

* First class functions: functions are values just like any other

® can be passed as parameters (e.g., map)
® canbereturned (e.g. (+) 1)

* Functions that take functions as parameters or return functions are called higher-order
¢ A higher-order functional language is one with nested functions with lexical scope



Scoping

® (funz -> e) is an expression that evaluates to a function

® zis the functions parameter
® eis the functions body

¢ Occurrences of z within e are said to be bound in (fun z -> ¢)
® Variables are resolved to most closely containing fun.

e QOccurrences of variables that are not bound are called free

(funz > (funy_-> (x2) (fun T2 Y))
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Closures

e Consider ((funz -> (funy -> z)) 0) 1
© Apply the function (fun z -> fun y -> z) to the argument O ~ (funy -> x)
@ Apply the function (fun y -> z) to the argument 1 ~7?7?
* gisfreein (funy -> 1z)!
¢ In higher-order functional languages, a function value is a closure, which consists of a
function pointer and an environment
® Environment is used to interpret variables from enclosing scope



let compose =
fun (f : int -> int) —>
(fun (g : int -> int) ->
(fun (z : int) >
(g 2))

let add10 = fun (z : int) -> z + 10
let mul2 = fun (z : int) > 2 * x
let result = compose add10 mul2 100

CompoSe =p|

(fun f ->
(fun g >
(fun x ->

f (g x)))
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let compose =

fun (f : int -> int) —>

(fun (g : int > int) —>
(fun (z : int) >
f (g D)

let add10 = fun (z : int) -> z + 10
let mul2 = fun (z : int) > 2 * x
let result = compose add10 mul2 100

CompoSe =p|

(fun f ->
(fun g >
(fun x ->

f (g x)))

add10Q ==

(fun x -> x + 10)

mul2 ==

(fun x => 2 % x)

(fun g ->
(fun x ->

f(gx)) A
f

(fun x ->
(g x))
f —
g —




Compiling closures

e Strategy: translate a language with closures to one with (just) function pointers
e Closure conversion transforms a program so that no function accesses free variables

* Hoisting transforms a closure-converted program so that all function expressions appear
at the top-level
® Function expressions can be implemented as functions
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® Each variable is replaced by a number: # of enclosing scopes between occurrence & the
scope it is resolved to
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Nameless representation

* |dea (de Bruijn): use a representation of expressions without named bound variables

® Each variable is replaced by a number: # of enclosing scopes between occurrence & the
scope it is resolved to
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Nameless representation

* |dea (de Bruijn): use a representation of expressions without named bound variables

® Each variable is replaced by a number: # of enclosing scopes between occurrence & the
scope it is resolved to
(funz -> z) ~ (fn 0)
(funz -> (funy -> 7)) ~ (fn(fn 1))
(funz -> (funy -> y)) ~(fn(fn 0))
(funz -> (funy -> z) 2) ~(fn(fn 1) 0)
¢ Environments can be implemented as lists
® Each environment has a pointer to parent environment
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Closure conversion

e Invariant: translated expressions involve a single variable. sav
® prepresents an environment (as a li Save evaluation environmenD
* Variable z (with index i) ~~ look-up ith elemen

(funz -> €) ~ (funp > ¢, p where e ~ ¢

(fa) ~ (fst f) (d’:(snd f)) where f~ f.a ~ d

< Evaluation environment: index 0 — a, other indices shifted
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Practical closure conversion

¢ Following a chain of pointers for each variable access is expensive

e Partially flattened representation: environment is represented as a list of arrays
e List stores bindings for entire activation frames rather than single variables

* Flattened representation: environment is represented as an array

® Fast accesses
® Greater space requirement (no sharing with parent environment)
® Can reduce space by storing only variables that are actually free
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* After closure-conversion, every function expression is closed (no free variables)

® No free variables = no need for closures
® Function expressions simply evaluate to (C-style) function pointers



Hoisting

* After closure-conversion, every function expression is closed (no free variables)
® No free variables = no need for closures
® Function expressions simply evaluate to (C-style) function pointers
® Hoisting:
® Gives globally unique identifiers each function expression
® Replaces function expressions with their identifiers
® Places definitions for the identifiers as top-level scope



Functional optimizations

e Tail call elimination: functional languages favor recursion over loops, but loops are more
efficient (need to allocate stack frame, push return address, save registers, ...)

® Tail call elimination searches for the pattern
%x = call foo ...; ret %x
and compiles the call as a jump instead of a callq
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Functional optimizations

e Tail call elimination: functional languages favor recursion over loops, but loops are more
efficient (need to allocate stack frame, push return address, save registers, ...)
® Tail call elimination searches for the pattern
%x = call foo ...; ret %x
and compiles the call as a jump instead of a callq
e Function inlining: functional programs tend to have lots of small functions, which incurs
the cost of more function calls than there may be in an imperative language
* Inlining replaces function calls with their definitions to alleviate some of this burden
e Uncurrying: in some functional languages (e.g.,, OCaml), functions always take a single
argument at a time
°* Eg,inlet f x y = ..., f takes one argument x, and returns a closure which takes a second
argument y and produces the result
® A single OCaml-level function call may result in several function calls and closure allocations
® Uncurrying is an optimization that determines when a function is always called with more that
one parameter (f 3 4), and compiles it as a multi-parameter function.



