
COS320: Compiling Techniques

Zak Kincaid

January 29, 2026

Compiling data types

Structures

struct Point { long x; long y; };

struct Rect { struct Point tl, br; };

struct Rect mk_square(struct Point top_left, long len) {
struct Rect square;
square.tl = top_left;
square.br.x = top_left.x + len;
square.br.y = top_left.y - len;
return square;

}

How do we compile these structures?

struct Rect mk_square(struct Point top_left, long len)

• X86-64 calling convention:
• Parameter 1 in rdi
• Parameter 2 in rsi
• Return in rax

• Problem: Parameter 1 doesn’t fit into rdi, and return doesn’t fit into rax

• Straightforward solution: pass & return pointers to values that don’t fit into registers (Java,
OCaml)

• C has copy-in/copy-out semantics (“call by value”)
• If we call mk_square(p,5) and mk_square writes to top_left.x, the value of p.x does not

change from the perspective of the caller

struct Rect mk_square(struct Point top_left, long len)

• X86-64 calling convention:
• Parameter 1 in rdi
• Parameter 2 in rsi
• Return in rax

• Problem: Parameter 1 doesn’t fit into rdi, and return doesn’t fit into rax

• Straightforward solution: pass & return pointers to values that don’t fit into registers (Java,
OCaml)

• C has copy-in/copy-out semantics (“call by value”)
• If we call mk_square(p,5) and mk_square writes to top_left.x, the value of p.x does not

change from the perspective of the caller

struct Rect mk_square(struct Point top_left, long len)

• X86-64 calling convention:
• Parameter 1 in rdi
• Parameter 2 in rsi
• Return in rax

• Problem: Parameter 1 doesn’t fit into rdi, and return doesn’t fit into rax

• Straightforward solution: pass & return pointers to values that don’t fit into registers (Java,
OCaml)

• C has copy-in/copy-out semantics (“call by value”)
• If we call mk_square(p,5) and mk_square writes to top_left.x, the value of p.x does not

change from the perspective of the caller

struct Rect mk_square(struct Point top_left, long len)

• X86-64 calling convention:
• Parameter 1 in rdi
• Parameter 2 in rsi
• Return in rax

• Problem: Parameter 1 doesn’t fit into rdi, and return doesn’t fit into rax

• Straightforward solution: pass & return pointers to values that don’t fit into registers (Java,
OCaml)

• C has copy-in/copy-out semantics (“call by value”)
• If we call mk_square(p,5) and mk_square writes to top_left.x, the value of p.x does not

change from the perspective of the caller

Copy-in/Copy-out

• Solution: use additional parameters for structs
struct Rect mk_square(long top_left_x, long top_left_y, long len)

Copy-in/Copy-out

• Solution: use additional parameters for structs
struct Rect mk_square(long top_left_x, long top_left_y, long len)

• Solution for return:

struct Rect* mk_square(long top_left_x, long top_left_y, long len) {
struct Rect square;
...
return □

}

• Unsafe!

Copy-in/Copy-out

• Solution: use additional parameters for structs
struct Rect mk_square(long top_left_x, long top_left_y, long len)

• Solution for return:

struct Rect* mk_square(long top_left_x, long top_left_y, long len) {
struct Rect square;
...
return □

}

• Unsafe!

Copy-in/Copy-out

• Solution: use additional parameters for structs
struct Rect mk_square(long top_left_x, long top_left_y, long len)

• Solution for return:

struct Rect* mk_square(long top_left_x, long top_left_y, long len) {
struct Rect *result = malloc(sizeof(struct Rect));
...
return result;

}

• Protocol: caller must de-allocate space
• But heap allocation is slow. Can we do better?

Copy-in/Copy-out

• Solution: use additional parameters for structs
struct Rect mk_square(long top_left_x, long top_left_y, long len)

• Solution for return:

struct Rect* mk_square(long top_left_x, long top_left_y, long len) {
struct Rect *result = malloc(sizeof(struct Rect));
...
return result;

}

• Protocol: caller must de-allocate space
• But heap allocation is slow. Can we do better?

Copy-in/Copy-out

• Solution: use additional parameters for structs
struct Rect mk_square(long top_left_x, long top_left_y, long len)

• Better (and standard) solution for return:

void mk_square(struct Rect *result,
long top_left_x, long top_left_x, long len) {

...
return;

}

• Callee is responsible for allocating space for return value

Copy-in/Copy-out

• Solution: use additional parameters for structs
struct Rect mk_square(long top_left_x, long top_left_y, long len)

• Better (and standard) solution for return:

void mk_square(struct Rect *result,
long top_left_x, long top_left_x, long len) {

...
return;

}

• Callee is responsible for allocating space for return value

Structures in memory

• What is a pointer to a structure?

• Address of the start of a block of memory large enough to store the struct

• Nested structs:
struct Rect { struct Point tl, br; };
struct Rect* r = malloc(sizeof(struct Rect));

tl.x

tl.y

br.x

br.y

r

• Compiler needs to know:
• Size of the struct so that it can allocate storage
• Shape of the struct so that it can index into the structure

Structures in memory

• What is a pointer to a structure?

• Address of the start of a block of memory large enough to store the struct
struct Point { long x, y; };
struct Point* p = malloc(sizeof(struct Point));

x

y
p

• Nested structs:
struct Rect { struct Point tl, br; };
struct Rect* r = malloc(sizeof(struct Rect));

tl.x

tl.y

br.x

br.y

r
• Compiler needs to know:

• Size of the struct so that it can allocate storage
• Shape of the struct so that it can index into the structure

Structures in memory

• What is a pointer to a structure?

• Address of the start of a block of memory large enough to store the struct

• Nested structs:
struct Rect { struct Point tl, br; };
struct Rect* r = malloc(sizeof(struct Rect));

tl.x

tl.y

br.x

br.y

r

• Compiler needs to know:
• Size of the struct so that it can allocate storage
• Shape of the struct so that it can index into the structure

Structures in memory

• What is a pointer to a structure?

• Address of the start of a block of memory large enough to store the struct

• Nested structs:
struct Rect { struct Point tl, br; };
struct Rect* r = malloc(sizeof(struct Rect));

tl.x

tl.y

br.x

br.y

r

• Compiler needs to know:
• Size of the struct so that it can allocate storage
• Shape of the struct so that it can index into the structure

Padding & Alignment

• Memory accesses need to be aligned

• E.g., in x86lite, memory addresses are divisible by 8
• Need to insert padding: unused space so that pointers align with

addressable boundaries
• How do we lay out storage?

struct Example {
int x;
char a;
char b;
int y;

};

Note: 32-bit architecture

x

a
b

y

llvm packed

x

y

a
b

llvm unpacked

x

y

a

b

easy

Structures in LLVM
%Point = type { i64, i64 }
%Rect = type { %Point, %Point }

define void @mk_square(%Rect* noalias sret %result, i64 %top_left_x, i64 %top_left_y, i64 %len) {
%square = alloca %Rect
; %square.tl = top_left
%square_tl_x = getelementptr %Rect, %Rect* %square, i32 0, i32 0, i32 0
%square_tl_y = getelementptr %Rect, %Rect* %square, i32 0, i32 0, i32 1
store i64 %top_left_x, i64* %square_tl_x
store i64 %top_left_y, i64* %square_tl_y

; %square.br.x = top_left + len
%square_br_x = getelementptr %Rect, %Rect* %square, i32 0, i32 1, i32 0
%t1 = add i64 %top_left_x, %len
store i64 %t1, i64* %square_br_x

; %square.br.y = top_left - len
%square_br_y = getelementptr %Rect, %Rect* %square, i32 0, i32 1, i32 1
%t2 = sub i64 %top_left_y, %len
store i64 %t2, i64* %square_br_y

; return square
%result_tl_x = getelementptr %Rect, %Rect* %result, i32 0, i32 0, i32 0
%result_tl_y = getelementptr %Rect, %Rect* %result, i32 0, i32 0, i32 1 ...
%t3 = load i64, i64* %square_tl_x
%t4 = load i64, i64* %square_tl_y ...
store i64 %t3, i64* %result_tl_x
store i64 %t4, i64* %result_tl_y ...
ret void

}

getelementpointer

• The getelementpointer instruction handles indexing into tuple, array, and pointer types
• Given a type, a pointer p of that type, and a path q consisting of a sequence of indices,

getelementpointer computes the address of p->q
• Does not access memory (like x86 lea)

%Point = type { i64, i64 }
%Rect = type { %Point, %Point }

getelementpointer

• The getelementpointer instruction handles indexing into tuple, array, and pointer types
• Given a type, a pointer p of that type, and a path q consisting of a sequence of indices,

getelementpointer computes the address of p->q
• Does not access memory (like x86 lea)

%Point = type { i64, i64 }
%Rect = type { %Point, %Point }

%square_tl_x = getelementptr %Rect, %Rect* %square, i32 0︸ ︷︷ ︸
&(%square[0])

, i32 0

︸ ︷︷ ︸
&(%square[0].tl)

, i32 0

︸ ︷︷ ︸
&(%square[0].tl.x)

computes %square + 0*sizeof(struct Rect) + 0 + 0

getelementpointer

• The getelementpointer instruction handles indexing into tuple, array, and pointer types
• Given a type, a pointer p of that type, and a path q consisting of a sequence of indices,

getelementpointer computes the address of p->q
• Does not access memory (like x86 lea)

%Point = type { i64, i64 }
%Rect = type { %Point, %Point }

%square_tl_y = getelementptr %Rect, %Rect* %square, i32 0︸ ︷︷ ︸
&(%square[0])

, i32 0

︸ ︷︷ ︸
&(%square[0].tl)

, i32 1

︸ ︷︷ ︸
&(%square[0].tl.y)

computes %square + 0*sizeof(struct Rect) + 0 + sizeof(i64)

getelementpointer

• The getelementpointer instruction handles indexing into tuple, array, and pointer types
• Given a type, a pointer p of that type, and a path q consisting of a sequence of indices,

getelementpointer computes the address of p->q
• Does not access memory (like x86 lea)

%Point = type { i64, i64 }
%Rect = type { %Point, %Point }

%square_br_y = getelementptr %Rect, %Rect* %square, i32 0︸ ︷︷ ︸
&(%square[0])

, i32 1

︸ ︷︷ ︸
&(%square[0].br)

, i32 1

︸ ︷︷ ︸
&(%square[0].br.y)

computes %square + 0*sizeof(struct Rect) + sizeof(struct Point) + sizeof(i64)

getelementpointer

• The getelementpointer instruction handles indexing into tuple, array, and pointer types
• Given a type, a pointer p of that type, and a path q consisting of a sequence of indices,

getelementpointer computes the address of p->q
• Does not access memory (like x86 lea)

%Point = type { i64, i64 }
%Rect = type { %Point, %Point }

%squar6_br_y = getelementptr %Rect, %Rect* %square, i32 6︸ ︷︷ ︸
&(%square[6])

, i32 1

︸ ︷︷ ︸
&(%square[6].tl)

, i32 1

︸ ︷︷ ︸
&(%square[6].tl.y)

computes %square + 6*sizeof(struct Rect) + sizeof(struct Point) + sizeof(i64)

Arrays

Single-dimensional arrays

• In C: essentially the same as tuples
• Array is stored as a contiguous chunk of memory
• Index into position of i of an array a of ts with a + sizeof(t)*i

• Memory-safe languages (e.g, OCaml & Java) must check that an array access is within
bounds before accessing

• Compiler must generate array access checking code
• Store array length before array contents, or in a pair

type bytes = char array → %bytes = type { i64, [0 x i8] }*
or %bytes = type { i64, i8* }*

• Example: suppose we want to load a[i] into %rax; suppose %rbx holds a pointer to a and
%rcx holds an index.

movq (%rbx), %rdx // load size into rdx
cmpq %rdx, %rcx // compare index to bound
j l __ok // jump if i < a.size
callq __err_oob // test failed, call the error handler
__ok:
movq 8(%rbx, %rcx, 8) %rax // load a[i]

Single-dimensional arrays

• In C: essentially the same as tuples
• Array is stored as a contiguous chunk of memory
• Index into position of i of an array a of ts with a + sizeof(t)*i

• Memory-safe languages (e.g, OCaml & Java) must check that an array access is within
bounds before accessing

• Compiler must generate array access checking code
• Store array length before array contents, or in a pair

type bytes = char array → %bytes = type { i64, [0 x i8] }*
or %bytes = type { i64, i8* }*

• Example: suppose we want to load a[i] into %rax; suppose %rbx holds a pointer to a and
%rcx holds an index.

movq (%rbx), %rdx // load size into rdx
cmpq %rdx, %rcx // compare index to bound
j l __ok // jump if i < a.size
callq __err_oob // test failed, call the error handler
__ok:
movq 8(%rbx, %rcx, 8) %rax // load a[i]

Single-dimensional arrays

• In C: essentially the same as tuples
• Array is stored as a contiguous chunk of memory
• Index into position of i of an array a of ts with a + sizeof(t)*i

• Memory-safe languages (e.g, OCaml & Java) must check that an array access is within
bounds before accessing

• Compiler must generate array access checking code
• Store array length before array contents, or in a pair

type bytes = char array → %bytes = type { i64, [0 x i8] }*
or %bytes = type { i64, i8* }*

• Example: suppose we want to load a[i] into %rax; suppose %rbx holds a pointer to a and
%rcx holds an index.

movq (%rbx), %rdx // load size into rdx
cmpq %rdx, %rcx // compare index to bound
j l __ok // jump if i < a.size
callq __err_oob // test failed, call the error handler
__ok:
movq 8(%rbx, %rcx, 8) %rax // load a[i]

Multi-dimensional arrays

• In C: row-major order
• 3x2 array: m[0][0], m[0][1], m[1][0], m[1][1], m[2][0], m[2][1]

• In Fortran: column-major order
• 3x2 array: m[0][0], m[1][0], m[2][0], m[0][1], m[1][1], m[2][1]

• In OCaml & Java: no multi-dimensional arrays
• 2-dimensional array is an array of arrays

type mat = int array array → %mat = type { i64, { i64, i64* }*] }

Strings

• Null-terminated arrays of characters
• String constants are usually kept in read only segment (immutable!)

• LLVM: @str = constant [18 x i8] c”Factorial is %ld\0A\00”
• X86: str: .string ”Factorial is %d\n”

Variant types

Enumerations
• type color = Red | Green | Blue→ i8

• Red → 0
• Green → 1
• Blue → 2

• Compiling switch:
1 Nested if statements
2 Jump tables (for dense switches):

switch(color) {
case Red:

...
case Green:

...
case Blue:

...
}

→

#color in %rax
jmp (table, %rax, 8)

LabelRed:
...

LabelGreen:
...

LabelBlue:
...

table:
.quad LabelRed, LabelGreen, LabelBlue

Enumerations
• type color = Red | Green | Blue→ i8

• Red → 0
• Green → 1
• Blue → 2

• Compiling switch:
1 Nested if statements
2 Jump tables (for dense switches):

switch(color) {
case Red:

...
case Green:

...
case Blue:

...
}

→

#color in %rax
jmp (table, %rax, 8)

LabelRed:
...

LabelGreen:
...

LabelBlue:
...

table:
.quad LabelRed, LabelGreen, LabelBlue

Algebraic data types

• Algebraic data types hold data, and can pattern match on constructor
• type expr = Add of expr * expr | Var of string

• Easy way: quadword tag + payload. Must store a pointer if more space is needed.
• type %expr = { i64, i64* }
• (use bitcast to convert i64* pointer to { %expr*, %expr* }* or { i64, [0 x i8] }* after

pattern matching)
• More complicated way: tack a quadword tag in front of payload

• Nested pattern matching → unnested pattern matching at AST level

Algebraic data types

• Algebraic data types hold data, and can pattern match on constructor
• type expr = Add of expr * expr | Var of string

• Easy way: quadword tag + payload. Must store a pointer if more space is needed.
• type %expr = { i64, i64* }
• (use bitcast to convert i64* pointer to { %expr*, %expr* }* or { i64, [0 x i8] }* after

pattern matching)
• More complicated way: tack a quadword tag in front of payload

• Nested pattern matching → unnested pattern matching at AST level

Compiler phases (simplified)

Source text

Token stream

Abstract syntax tree

Intermediate representation

Assembly

Lexing

Parsing

Translation

Code generation

Optimization

