COS320: Compiling Techniques

Zak Kincaid

January 29, 2026

Compiling data types

Structures

struct Point { long z; long y; 3;
struct Rect { struct Point tl, br; };

struct Rect mk_square(struct Point top_left, long len) {
struct Rect square;
square. tl = top_left;
square.br.z = top_left.x + len;
square.br.y = top_left.y - len;
return square;

}

How do we compile these structures?

struct Rect mk_square(struct Point top_left, long len)

® X86-64 calling convention:
® Parameter1in rdi
® Parameter 2 in rsi
® Returnin rax

struct Rect mk_square(struct Point top_left, long len)

® X86-64 calling convention:

® Parameter 1in rdi
® Parameter 2 in rsi
® Returnin rax

® Problem: Parameter 1 doesnt fit into rdi, and return doesn't fit into rax

struct Rect mk_square(struct Point top_left, long len)

® X86-64 calling convention:

® Parameter 1in rdi
® Parameter 2 in rsi
® Returnin rax

® Problem: Parameter 1 doesnt fit into rdi, and return doesn't fit into rax

e Straightforward solution: pass & return pointers to values that don't fit into registers (Java,
OCaml)

struct Rect mk_square(struct Point top_left, long len)

X86-64 calling convention:

® Parameter 1in rdi
® Parameter 2 in rsi
® Returnin rax

Problem: Parameter 1 doesn't fit into rdi, and return doesn' fit into rax

Straightforward solution: pass & return pointers to values that don' fit into registers (Java,
OCaml)
C has copy-in/copy-out semantics (“call by value”)

® |f we call mk_square(p,5) and mk_square writes to top_left. x, the value of p. x does not
change from the perspective of the caller

Copy-in/Copy-out

¢ Solution: use additional parameters for structs

struct Rect mk_square(long top_left_z, long top_left y, long len)

Copy-in/Copy-out

¢ Solution: use additional parameters for structs

struct Rect mk_square(long top_left_z, long top_left y, long len)

e Selution for return:

struct Rectx mk_square(long top_left_x, long top_left y, long len) {
struct Rect square;

return □

}

Copy-in/Copy-out

¢ Solution: use additional parameters for structs

struct Rect mk_square(long top_left_z, long top_left y, long len)

e Selution for return:

struct Rectx mk_square(long top_left_x, long top_left y, long len) {
struct Rect square;

return □

}

® Unsafe!

Copy-in/Copy-out

¢ Solution: use additional parameters for structs

struct Rect mk_square(long top_left_z, long top_left y, long len)

e Solution for return:

struct Rectx mk_square(long top left =z, long top_left y, long len) {
struct Rect *result = malloc(sizeof (struct Rect));

return result;

3

Copy-in/Copy-out

¢ Solution: use additional parameters for structs

struct Rect mk_square(long top_left_z, long top_left y, long len)

e Solution for return:

struct Rectx mk_square(long top left =z, long top_left y, long len) {
struct Rect *result = malloc(sizeof (struct Rect));

return result;

3

® Protocol: caller must de-allocate space
® But heap allocation is slow. Can we do better?

Copy-in/Copy-out

¢ Solution: use additional parameters for structs

struct Rect mk_square(long top_left_z, long top_left y, long len)

e Better (and standard) solution for return:

void mk_square(struct Rect *result,
long top_left z, long top_ left z, long len) {
return;

3

® Callee is responsible for allocating space for return value

Copy-in/Copy-out

¢ Solution: use additional parameters for structs

struct Rect mk_square(long top_left_z, long top_left y, long len)

e Better (and standard) solution for return:

void mk_square(struct Rect *result,
long top_left z, long top_ left z, long len) {
return;

3

® Callee is responsible for allocating space for return value

Structures in memory

e What is a pointer to a structure?

Structures in memory

* What is a pointer to a structure?

® Address of the start of a block of memory large enough to store the struct
struct Point { long z, y; };
struct Pointx p = malloc(sizeof (struct Point));

—

p

Structures in memory

* What is a pointer to a structure?

® Address of the start of a block of memory large enough to store the struct

® Nested structs:
struct Rect { struct Point tl, br; };
struct Rectx r = malloc(sizeof (struct Rect));

/ tlx

tly

r

br.x

bry

Structures in memory

* What is a pointer to a structure?

® Address of the start of a block of memory large enough to store the struct

® Nested structs:
struct Rect { struct Point tl, br; };
struct Rectx r = malloc(sizeof (struct Rect));

/ tlx

tly

r

br.x

bry

e Compiler needs to know:

¢ Size of the struct so that it can allocate storage
e Shape of the struct so that it can index into the structure

Padding & Alignment

® Memory accesses need to be aligned

® Eg,inx86lite, memory addresses are divisible by 8
* Need to insert padding: unused space so that pointers align with
addressable boundaries

® How do we lay out storage? a
X X
struct Example {
int z;
char q; a a b
char b; b b
int y;
b y
Note: 32-bit architecture y y
llvm packed llvm unpacked easy

Structures in LLVM

%Point = type { i64, 64 }
%Rect = type { %Point, %Point }

define void @mk__square(%Rectx noalias sret %result, 164 %top_left x, 164 %top_left vy, 164 %len) {
%square = alloca %Rect
; %square.tl = top_left
%square__tl_xz = getelementptr %Rect, %Rectx %square, i32 @, i32 0, i32 @
%square__tl_y = getelementptr %Rect, %Rect* %square, i32 0, i32 0, i32 1
store i64 %top_left x, i64x %square_tl_x
store i64 %top__left vy, i64x %square_tl_y

; %square.br.x = top_left + len

%square__br_x = getelementptr %Rect, %Rect* %square, i32 0, i32 1, i32 @
%t1 = add 64 %top_ left_x, %len

store i64 %t1, i64* %square__br_x

; %square.br.y = top_left - len

%square__br__y = getelementptr %Rect, %Rectx %square, i32 0, i32 1, i32 1
%t2 = sub 164 %top_ left vy, %len

store i64 %t2, i64* %square_br_y

; return square

%result__tl_x = getelementptr %Rect, %Rectx %result, i32 @, i32 0, i32 @
%result _tl_y = getelementptr %Rect, %Rectx %result, i32 0, i32 o, i32 1
%t3 = load 64, i64* %square_tl_z

%t4 = load 64, i64* %square tl_y ...

store i64 %t3, i64% %result tl_x

store i64 %t/, i64* %result_tl_y ...

ret void

getelementpointer

* The getelementpointer instruction handles indexing into tuple, array, and pointer types
® Given a type, a pointer p of that type, and a path ¢ consisting of a sequence of indices,
getelementpointer computes the address of p->¢
® Does not access memory (like x86 lea)
%Point = type { 164, i64 }
%Rect = type { %Point, %Point }

getelementpointer

* The getelementpointer instruction handles indexing into tuple, array, and pointer types
® Given a type, a pointer p of that type, and a path ¢ consisting of a sequence of indices,
getelementpointer computes the address of p->¢
® Does not access memory (like x86 lea)
%Point = type { 164, i64 }
%Rect = type { %Point, %Point }

%square_tl_x = getelementptr %Rect, %Rect* %square, i32 @, i32 @, i32 @

&(%square[0])

&(%square[0].tl)

&(%square[0].tl.x)

computes %square + @*sizeof(struct Rect) + @ + @

getelementpointer

* The getelementpointer instruction handles indexing into tuple, array, and pointer types
® Given a type, a pointer p of that type, and a path ¢ consisting of a sequence of indices,
getelementpointer computes the address of p->¢
® Does not access memory (like x86 lea)
%Point = type { 164, i64 }
%Rect = type { %Point, %Point }

%square_tl_y = getelementptr %Rect, %Rect* %square, i32 @, i32 @, i32 1

&(%square[0])

&(%square[0].tl)

&(%square[0].tl.y)

computes %square + @*sizeof(struct Rect) + @ + sizeof(i64)

getelementpointer

* The getelementpointer instruction handles indexing into tuple, array, and pointer types
® Given a type, a pointer p of that type, and a path ¢ consisting of a sequence of indices,
getelementpointer computes the address of p->¢
® Does not access memory (like x86 lea)
%Point = type { 164, i64 }
%Rect = type { %Point, %Point }

%square_br_y = getelementptr %Rect, %Rect* %square, i32 0, i32 1, i32 1

&(%square[0])

&(%square[@].br)

&(%square[@].br.y)

computes %square + @*sizeof(struct Rect) + sizeof(struct Point) + sizeof(i64)

getelementpointer

* The getelementpointer instruction handles indexing into tuple, array, and pointer types
® Given a type, a pointer p of that type, and a path ¢ consisting of a sequence of indices,
getelementpointer computes the address of p->¢
® Does not access memory (like x86 lea)
%Point = type { 164, i64 }
%Rect = type { %Point, %Point }

%squar6_br_y = getelementptr %Rect, %Rect* %square, i32 6, i32 1, i32 1

&(%square[6])

&(%square[6].t1)

&(%square[6].tl.y)

computes %square + 6*sizeof(struct Rect) + sizeof(struct Point) + sizeof(i64)

Arrays

Single-dimensional arrays

¢ In C: essentially the same as tuples

® Array is stored as a contiguous chunk of memory
® Index into position of i of an array a of ts witha + sizeof(t)*i

Single-dimensional arrays

¢ In C: essentially the same as tuples
® Array is stored as a contiguous chunk of memory
® Index into position of i of an array a of ts witha + sizeof(t)*i
® Memory-safe languages (e.g, OCaml & Java) must check that an array access is within
bounds before accessing
® Compiler must generate array access checking code
® Store array length before array contents, or in a pair
type bytes = char array — %bytes = type { i64, [0 x i8] }*
or %bytes = type { i64, i8* }*

Single-dimensional arrays

¢ In C: essentially the same as tuples

® Array is stored as a contiguous chunk of memory
® Index into position of i of an array a of ts witha + sizeof(t)*i

® Memory-safe languages (e.g, OCaml & Java) must check that an array access is within
bounds before accessing

® Compiler must generate array access checking code

® Store array length before array contents, or in a pair
type bytes = char array — %bytes = type { i64, [0 x i8] }*
or %bytes = type { i64, i8* }*

® Example: suppose we want to load a[i] into %rax; suppose %rbx holds a pointer to a and
%rcx holds an index.

movq (%rbx), %rdx // load size into rdx

cmpq %rdz, %rcx // compare index to bound
gl ok // jump if i < a.size
callq err__oob // test failed, call the error handler

ok:

movq 8(%rbx, %rcx, 8) %rax // load alf]

Multi-dimensional arrays

¢ In C: row-major order
® 3x2array: mL@][@], m[@][1], m[1][e], m[1][1], m[2][@], m[2][1]
* In Fortran: column-major order
® 3x2array: m[@]1[@], m[1][@], m[2][@], m[@I[1], m[11[1], m[2][1]
¢ In OCaml & Java: no multi-dimensional arrays
® 2-dimensional array is an array of arrays
type mat = int array array — %mat = type { i64, { i64, i64x }*] }

Strings

* Null-terminated arrays of characters
e String constants are usually kept in read only segment (immutable!)

® LLVM:@str = constant [18 x i8] c”Factorial is %1d\0A\00Q”
® X86: str: .string ”Factorial is %d\n”

Variant types

Enumerations

® type color = Red | Green | Blue —1i8
® Red— 0O
® Green — 1
® Blue — 2

Enumerations

® type color = Red | Green | Blue —1i8
® Red— 0
® Green — 1
® Blue — 2
* Compiling switch:
@ Nested if statements
@ Jump tables (for dense switches):

#color in %rax

switch(color) { jmp (table, %razx, 8)
case Red: LabelRed:
case Green: LabelGreen:
case Blue: LabelBlue:

3 table:

.quad LabelRed, LabelGreen, LabelBlue

Algebraic data types

¢ Algebraic data types hold data, and can pattern match on constructor
® type expr = Add of expr x expr | Var of string
® Easy way: quadword tag + payload. Must store a pointer if more space is needed.
® type %expr = { i64, i64* }
® (use bitcast to converti64* pointer to { %expr*, %expr= }xor{ i64, [0 z i8] }x after
pattern matching)
® More complicated way: tack a quadword tag in front of payload

Algebraic data types

¢ Algebraic data types hold data, and can pattern match on constructor
® type expr = Add of expr x expr | Var of string
® Easy way: quadword tag + payload. Must store a pointer if more space is needed.
® type %expr = { i64, i64* }
® (use bitcast to converti64* pointer to { %expr*, %expr= }xor{ i64, [0 z i8] }x after
pattern matching)

® More complicated way: tack a quadword tag in front of payload

* Nested pattern matching — unnested pattern matching at AST level

Compiler phases (simplified)

Lexing
A\ 4

Parsing

i
Y

Abstract syntax tree

. (Translation

Intermediate representation) Optimization

. (Code generation

