COS320: Compiling Techniques

Zak Kincaid

January 29, 2026



Announcements

* HW?2 available on Canvas now. Due February 26th.

® You will implement an LLVMlite-to-X86lite compiler
® You may work individually or in pairs



LLVM



LLVM: Lew-Level-Virtual- Machine

® Open-source compiler infrastructure
® Created by Chris Lattner (advised by Vikram Adve) at UIUC in 2003
® |ndustrial use:

® Apple XCode 3.1
® Several OpenCL implementations (NVIDIA, Intel, Apple, ...)
® PlayStation™4 compiler

® Used widely in academia
® Many components. The ones were interested in:

° LLVMIR
® 1lc: code generator (for various targets)
® opt: LLVM IR — LLVM IR optimization



Compiler phases (simplified)

Lexmg

Parsing
y

Abstract syntax tree

Translatlon

Intermediate representatlon ) Optimization

LLVM Code generation




Many front-ends & back-ends

C x86

DN g

Rust _) PowerPC

Swift MIPS




LLVMIite IR

e LLVMlite is a small subset of the LLVM IR

¢ Broadly similar to the let-based IR from last week
® Each procedure Pis represented as a control flow graph: a directed, rooted graph where

® The nodes are basic blocks of P
® Thereis an edge BB; — BB; iff BB; may execute immediately after BB;
® There is a distinguished entry block where the excution of the procedure begins, which has no
incoming edges
® Local variables must satisfy the static single assignment property



LLVMIite IR

e LLVMlite is a small subset of the LLVM IR

¢ Broadly similar to the let-based IR from last week
® Each procedure Pis represented as a control flow graph: a directed, rooted graph where
® The nodes are basic blocks of P
® Thereis an edge BB; — BB; iff BB; may execute immediately after BB;
® There is a distinguished entry block where the excution of the procedure begins, which has no
incoming edges
® Local variables must satisfy the static single assignment property
¢ Some differences:

® Memory allocation
® Functions
* Types



define 164 @factorial(i64 %arg) {
%tmp = alloca i64
%tmp1 = alloca i64
%tmp2 = alloca i64
store i64 %arg, i64x %tmp
store i64 1, i64x %tmp2
store i64 1, i64x %tmpl
br label %bb3
bb3:
%tmp4 = load i64, i64% %tmpl
%tmp5 = load i64, i64x %tmp
%tmp6 = icmp sle 164 %tmp4, %tmp5
br it %tmp6, label %bb7, label %bb14
bb7:
%tmp8 = load 64, i64* %tmpl
%tmp9 = load 64, i64x %tmp2
%tmp10 = mul 64 %tmp9, %tmp8
store i64 %tmp10, i64* %tmp2
br label %bb11
bb11:
%tmp12 = load 164, i64* %tmpl
%tmp13 = add 64 %tmp12, 1
store 64 %tmpl13, i64* %tmpl
br label %bb3
bb14:
%tmpl5 = load 64, i64* %tmp2
ret i64 %tmpl5
3}

@.str = global [18 z i8] c”Factorialyis %1d\0A\00”

define 164 @main(i32 %arg, i8xx %argl) #0 {
bitcast [18 x i8]x @.str to i8x
call i64 @factorial(i64 6)

%tmp1

%tmp2

%"tmp3

ret i64 0
}

declare i64

call i64 (i8x, ...

@printf(i8*, ..

) @printf(i8* %tmpl, 164 %tmp2)

D




LLVMIite memory

Local variables / temporaries / “abstract registers” (%uid)
* Eg. %t4 = mul 164 %tl, %t3
Global declarations (e.g., for functions, string constants): @gid

® Eg,@.str = constant [18 x i8] c”Factorial is %1d\0A\0@”
® Eg,%r = call @factorial(i64 6)

Stack allocated storage
® %count = alloca 164

Heap-allocated storage, created by external calls (malloc)



(x OCaml representation in 11/11.ml %)
type prog = { tdecls : (tid * ty) list; gdecls : (gid * gdecl) list;
fdecls : (gid * fdecl) list; edecls : (gid * ty) list }

® Program has four components:
® Type declarations
® Eg,%node = { i64, %node* }
® Global declarations
® Eg., @Q.str = global [18 x i8] c¢”’Factorial,is, %1d\0A\0Q”
® Function declarations
® Eg,define i64 @factorial(i64 %n) { ... }
e External declarations
® Eg,declare i32 @printf(i8%, ...)



Functions

* Function declaration
® define i64 @factorial(i64 %n) { <cfg> }
® type fdecl = { f_ty : fty; f_param : uid list; f_cfg : cfg }
® ftyisafunction type, giving types for arguments & return
¢ Function call
® Directcall: %r = call @factorial(i64 6)
® |ndirect call: %r = call %5(i64 1, i64 10)



LLVMIite CFGs

type block = { insns : (uid * insn) list; term :

type cfg = block * (lbl * block) list

(uid * terminator) }

define 164 Q@factorial(i64 %n) {
%count = alloca 164
%result = alloca i64
store i64 %n, i64x %count
store i64 1, i64% %result
br label %loop

loop:
%t1 = load 64, i64* %count
%t2 = icmp sgt 164 %t1, 1
br il %t2, label %body, label %ezit

body:
%t3 = load i64, i64x %result
%t4 = mul 64 %t1, %t3
store i64 %t4, i64* %result
%t5 = sub i64 %t1, 1
store i64 %t5, i64% %count
br label %loop

exit:
%t6 = load 64, i64* %result
ret i64 %t6

%count = alloca 164
%result = alloca i64
store i64 %n, i64x %count
store i64 1, i64* %result

br label %loop

_—

%tl = load 164, i64* %count
%t2 = icmp sgt i64 %tl, 1

br il %t2, label %body, label %exit

%t3 =
%t =
store
%t5 =
store

load i64, i64% %result

mul
i64
sub
i64

i64 %tl, %t3

%t4, i64x %result
i64 %t1, 1

%t5, i64* %count

T

%t6 = load 164, i64x %result

ret i64 %t6

\)bel %Loop
F




Static Single Assignment (SSA)

® Each %uid appears on the left-hand-side of at most one assignment in a CFG

X=X +y; X1 = Xo * Yo;
y =2 %X Yyi = 2 * Xq;
X =X +1; Xo = x1 + 1;
z=x-1; Z1 = X9 - 1;
y = x & z; y2 = X2 & z1;

return y; return yo;



Static Single Assignment (SSA)

e Each %uid appears on the left-hand-side of at most one assignment in a CFG

X =X +y;
y =2 *x;
X =X +1;
z =X - 1;
y =X & z;
return y;

¢ Simplifies analysis and optimization

X1 = Xo * Yo;
Y1 = 2 * Xp;
Xg = X1 * 1;
z1 = X9 - 1;
y2 = X2 & z3;
return yo;

® Make connections between variable definitions and uses explicit

® More freedom in memory allocation

® No need for zp and z; to be stored in the same register or stack slot

® Simple application: dead code elimination

® If %uid is never used, can elide the assignment to %uid (e.g., y, above)



Stack storage

Unlike our let-based IR, LLVM does not have mutable symbolic variables
alloca instruction allocates stack space and returns a pointer to it

® %count = alloca i64 allocates a 8 bytes of stack space, %count points to the space
load and store read/write memory

® %t6 = load i64, i64* %result

read 64-bit int from the memory addressed by the 64-bit int pointer %result, store it in %t6
® store i64 %n, i64x* %count

store 64-bit int %n in the memory addressed by the 64-bit int pointer %count

No stack de-allocation. Implementation of return must de-allocate.



Types

® LLVM IR is statically typed
e LLVMlite types:

® Integer types: i1, 164
Pointers: 18, 164*
Function pointers: 164 (i64,164%)
Tuples: {i64, i64, i64} (integer triples)
Arrays: [18 x 18] (array of 18 characters)
Named types

® Allows recursive types (e.g,, lists, trees, graphs, ...)
® %node = { 164, %nodex }



¢ LLVM’ type system is inexpressive

® No generics
* No subtyping

e LLVMlite provides a bitcast instruction to circumvent the type system

%pair = type { 164, i64 } ; two-field record
%triple = type { 164, 164, 64 } ; three-field record

@g = global %triple { 164 0, i64 1, i64 2 } ; allocate global triple
define @foo() {

%c = bitcast %triplex @g to %pairx ; cast
}

® bitcast does not change any bits
® Potentially unsafe!

® Can cause segfaults or memory corruption

® More casting instructions in real LLVM IR, LLVMlite has only bitcast



Real LLVM

define i64 @factorial(i64) #0 {
%2 = alloca i64, align 8
%3 = alloca 64, align 8
%4 = alloca i64, align 8
store i64 %0, i64* %2, align 8
store i64 1, i64x %4, align 8
store i64 1, i64x %3, align 8
br label %5

; <label>:5:
%6 = load i64, i64x %3, align 8
%7 = load i64, i64x %2, align 8
%8 = icmp slt 164 %6, %7
br i1 %8, label %9, label %16

preds = %13, %1

; <label>:9: ; preds = %5
%10 = load i64, i64* %3, align 8
%11 = load i64, i64* %4, align 8
%12 = mul nsw i64 %11, %10
store i64 %12, i64* %4, align 8
br label %13
; <label>:13: ; preds = %9
%14 = load i64, i64* %3, align 8
%15 = add nsw i64 %14, 1
store i64 %15, i64* %3, align 8
br label %5
; <label>:16: ; preds = %5
%17 = load i64, i64* %4, align 8
ret i64 %17




(Some) comparisons to LLVMilite:

* More (optional) type and alignment annotations
¢ Numeric identifiers
* Keeps track of block predecessors



(Some) comparisons to LLVMilite:

More (optional) type and alignment annotations
Numeric identifiers

Keeps track of block predecessors

¢ instructions: “merge” uids from different branches

i <
if (x <0) { i (o <) {
y 1=y - X; Y1 = Yo — Xo,
} else { 3 els‘e_{ o
y iy o+ ox; }Y2~—YO 05
} - —_
return y y3 = o(y1, y2)
return ys

More on ¢ functions when we get to optimization ...



Using LLVM

clang file.c -emit-1lvm -S:produce LLVMIRin file.1l
opt [options] -S file.ll -o file-opt.1l: optimize

® Options: -02,-03, -mem2reg, . . .
® Recommended: -instnamer (assigns string identifiers to instructions, which are preserved

across later passes)
1lc file-opt.11: produce x86 assembly in file-opt.s
clang file-opt.s -o file: produce file executable



