
COS320: Compiling Techniques

Zak Kincaid

January 29, 2026

Announcements

• HW2 available on Canvas now. Due February 26th.
• You will implement an LLVMlite-to-X86lite compiler
• You may work individually or in pairs

LLVM

LLVM: Low-Level Virtual Machine

• Open-source compiler infrastructure
• Created by Chris Lattner (advised by Vikram Adve) at UIUC in 2003
• Industrial use:

• Apple XCode 3.1
• Several OpenCL implementations (NVIDIA, Intel, Apple, ...)
• PlayStation™4 compiler

• Used widely in academia
• Many components. The ones we’re interested in:

• LLVM IR
• llc: code generator (for various targets)
• opt: LLVM IR → LLVM IR optimization

Compiler phases (simplified)

Source text

Token stream

Abstract syntax tree

Intermediate representation

Assembly

Lexing

Parsing

Translation

Code generation

Optimization

LLVM

Many front-ends & back-ends

LLVM

C

C++

Rust

Go

Swift

x86

ARM

PowerPC

C++

MIPS

LLVMlite IR

• LLVMlite is a small subset of the LLVM IR
• Broadly similar to the let-based IR from last week

• Each procedure P is represented as a control flow graph: a directed, rooted graph where
• The nodes are basic blocks of P
• There is an edge BBi → BBj iff BBj may execute immediately after BBi
• There is a distinguished entry block where the excution of the procedure begins, which has no

incoming edges
• Local variables must satisfy the static single assignment property

• Some differences:
• Memory allocation
• Functions
• Types

LLVMlite IR

• LLVMlite is a small subset of the LLVM IR
• Broadly similar to the let-based IR from last week

• Each procedure P is represented as a control flow graph: a directed, rooted graph where
• The nodes are basic blocks of P
• There is an edge BBi → BBj iff BBj may execute immediately after BBi
• There is a distinguished entry block where the excution of the procedure begins, which has no

incoming edges
• Local variables must satisfy the static single assignment property

• Some differences:
• Memory allocation
• Functions
• Types

define i64 @factorial(i64 %arg) {
%tmp = alloca i64
%tmp1 = alloca i64
%tmp2 = alloca i64
store i64 %arg, i64* %tmp
store i64 1, i64* %tmp2
store i64 1, i64* %tmp1
br label %bb3

bb3:
%tmp4 = load i64, i64* %tmp1
%tmp5 = load i64, i64* %tmp
%tmp6 = icmp sle i64 %tmp4, %tmp5
br i1 %tmp6, label %bb7, label %bb14

bb7:
%tmp8 = load i64, i64* %tmp1
%tmp9 = load i64, i64* %tmp2
%tmp10 = mul i64 %tmp9, %tmp8
store i64 %tmp10, i64* %tmp2
br label %bb11

bb11:
%tmp12 = load i64, i64* %tmp1
%tmp13 = add i64 %tmp12, 1
store i64 %tmp13, i64* %tmp1
br label %bb3

bb14:
%tmp15 = load i64, i64* %tmp2
ret i64 %tmp15

}

@.str = global [18 x i8] c”Factorial␣is␣%ld\0A\00”

define i64 @main(i32 %arg, i8** %arg1) #0 {
%tmp1 = bitcast [18 x i8]* @.str to i8*
%tmp2 = call i64 @factorial(i64 6)
%tmp3 = call i64 (i8*, ...) @printf(i8* %tmp1, i64 %tmp2)
ret i64 0

}

declare i64 @printf(i8*, ...)

LLVMlite memory

• Local variables / temporaries / “abstract registers” (%uid)
• E.g., %t4 = mul i64 %t1, %t3

• Global declarations (e.g., for functions, string constants): @gid
• E.g., @.str = constant [18 x i8] c”Factorial is %ld\0A\00”
• E.g., %r = call @factorial(i64 6)

• Stack allocated storage
• %count = alloca i64

• Heap-allocated storage, created by external calls (malloc)

(* OCaml representation in ll/ll.ml *)
type prog = { tdecls : (tid * ty) list; gdecls : (gid * gdecl) list;

fdecls : (gid * fdecl) list; edecls : (gid * ty) list }

• Program has four components:
• Type declarations

• E.g., %node = { i64, %node* }

• Global declarations
• E.g., @.str = global [18 x i8] c”Factorial␣is␣%ld\0A\00”

• Function declarations
• E.g., define i64 @factorial(i64 %n) { ... }

• External declarations
• E.g., declare i32 @printf(i8*, ...)

Functions

• Function declaration
• define i64 @factorial(i64 %n) { <cfg> }
• type fdecl = { f_ty : fty; f_param : uid list; f_cfg : cfg }

• fty is a function type, giving types for arguments & return

• Function call
• Direct call: %r = call @factorial(i64 6)
• Indirect call: %r = call %5(i64 1, i64 10)

LLVMlite CFGs

type block = { insns : (uid * insn) list; term : (uid * terminator) }
type cfg = block * (lbl * block) list

define i64 @factorial(i64 %n) {
%count = alloca i64
%result = alloca i64
store i64 %n, i64* %count
store i64 1, i64* %result
br label %loop

loop:
%t1 = load i64, i64* %count
%t2 = icmp sgt i64 %t1, 1
br i1 %t2, label %body, label %exit

body:
%t3 = load i64, i64* %result
%t4 = mul i64 %t1, %t3
store i64 %t4, i64* %result
%t5 = sub i64 %t1, 1
store i64 %t5, i64* %count
br label %loop

exit:
%t6 = load i64, i64* %result
ret i64 %t6

}

%count = alloca i64
%result = alloca i64
store i64 %n, i64* %count
store i64 1, i64* %result

br label %loop

%t1 = load i64, i64* %count
%t2 = icmp sgt i64 %t1, 1

br i1 %t2, label %body, label %exit

%t3 = load i64, i64* %result
%t4 = mul i64 %t1, %t3
store i64 %t4, i64* %result
%t5 = sub i64 %t1, 1
store i64 %t5, i64* %count

br label %loop

%t6 = load i64, i64* %result

ret i64 %t6

T
F

Static Single Assignment (SSA)

• Each %uid appears on the left-hand-side of at most one assignment in a CFG
x = x + y;
y = 2 * x;
x = x + 1;
z = x - 1;
y = x & z;
return y;

x1 = x0 + y0;
y1 = 2 * x1;
x2 = x1 + 1;
z1 = x2 - 1;
y2 = x2 & z1;
return y2;

• Simplifies analysis and optimization
• Make connections between variable definitions and uses explicit
• More freedom in memory allocation

• No need for x0 and x2 to be stored in the same register or stack slot
• Simple application: dead code elimination

• If %uid is never used, can elide the assignment to %uid (e.g., y1 above)

Static Single Assignment (SSA)

• Each %uid appears on the left-hand-side of at most one assignment in a CFG
x = x + y;
y = 2 * x;
x = x + 1;
z = x - 1;
y = x & z;
return y;

x1 = x0 + y0;
y1 = 2 * x1;
x2 = x1 + 1;
z1 = x2 - 1;
y2 = x2 & z1;
return y2;

• Simplifies analysis and optimization
• Make connections between variable definitions and uses explicit
• More freedom in memory allocation

• No need for x0 and x2 to be stored in the same register or stack slot
• Simple application: dead code elimination

• If %uid is never used, can elide the assignment to %uid (e.g., y1 above)

Stack storage

• Unlike our let-based IR, LLVM does not have mutable symbolic variables
• alloca instruction allocates stack space and returns a pointer to it

• %count = alloca i64 allocates a 8 bytes of stack space, %count points to the space
• load and store read/write memory

• %t6 = load i64, i64* %result
read 64-bit int from the memory addressed by the 64-bit int pointer %result, store it in %t6

• store i64 %n, i64* %count
store 64-bit int %n in the memory addressed by the 64-bit int pointer %count

• No stack de-allocation. Implementation of return must de-allocate.

Types

• LLVM IR is statically typed
• LLVMlite types:

• Integer types: i1, i64
• Pointers: i8*, i64*
• Function pointers: i64(i64,i64*)
• Tuples: {i64, i64, i64} (integer triples)
• Arrays: [18 x i8] (array of 18 characters)
• Named types

• Allows recursive types (e.g., lists, trees, graphs, ...)
• %node = { i64, %node* }

• LLVM’s type system is inexpressive
• No generics
• No subtyping

• LLVMlite provides a bitcast instruction to circumvent the type system

%pair = type { i64, i64 } ; two-field record
%triple = type { i64, i64, i64 } ; three-field record

@g = global %triple { i64 0, i64 1, i64 2 } ; allocate global triple
define @foo() {

%c = bitcast %triple* @g to %pair* ; cast
}

• bitcast does not change any bits
• Potentially unsafe!

• Can cause segfaults or memory corruption

• More casting instructions in real LLVM IR, LLVMlite has only bitcast

Real LLVM

define i64 @factorial(i64) #0 {
%2 = alloca i64, align 8
%3 = alloca i64, align 8
%4 = alloca i64, align 8
store i64 %0, i64* %2, align 8
store i64 1, i64* %4, align 8
store i64 1, i64* %3, align 8
br label %5

; <label>:5: ; preds = %13, %1
%6 = load i64, i64* %3, align 8
%7 = load i64, i64* %2, align 8
%8 = icmp slt i64 %6, %7
br i1 %8, label %9, label %16

; <label>:9: ; preds = %5
%10 = load i64, i64* %3, align 8
%11 = load i64, i64* %4, align 8
%12 = mul nsw i64 %11, %10
store i64 %12, i64* %4, align 8
br label %13

; <label>:13: ; preds = %9
%14 = load i64, i64* %3, align 8
%15 = add nsw i64 %14, 1
store i64 %15, i64* %3, align 8
br label %5

; <label>:16: ; preds = %5
%17 = load i64, i64* %4, align 8
ret i64 %17

}

long factorial(long n) {
long result = 1;
for (long i = 1; i < n; i++) {

result *= i;
}
return result;

(Some) comparisons to LLVMlite:

• More (optional) type and alignment annotations
• Numeric identifiers
• Keeps track of block predecessors

• ϕ instructions: “merge” uids from different branches

if (x < 0) {
y := y - x;

} else {
y := y + x;

}
return y

if (x0 < 0) {
y1 := y0 - x0;

} else {
y2 := y0 + x0;

}

y3 := ϕ(y1, y2)

return y?
More on ϕ functions when we get to optimization ...

(Some) comparisons to LLVMlite:

• More (optional) type and alignment annotations
• Numeric identifiers
• Keeps track of block predecessors
• ϕ instructions: “merge” uids from different branches

if (x < 0) {
y := y - x;

} else {
y := y + x;

}
return y

if (x0 < 0) {
y1 := y0 - x0;

} else {
y2 := y0 + x0;

}
y3 := ϕ(y1, y2)
return y3

More on ϕ functions when we get to optimization ...

Using LLVM

• clang file.c -emit-llvm -S: produce LLVM IR in file.ll
• opt [options] -S file.ll -o file-opt.ll: optimize

• Options: -O2,-O3,-mem2reg,...
• Recommended: -instnamer (assigns string identifiers to instructions, which are preserved

across later passes)

• llc file-opt.ll: produce x86 assembly in file-opt.s

• clang file-opt.s -o file: produce file executable

