COS320: Compiling Techniques

Zak Kincaid

January 29, 2026

® Reminder: HW1 due Monday Feb 12
® Bonus OCaml office hours 4pm Friday Feb 9, in CS 003

Compiler phases (simplified)

Lexing
A\ 4

Parsing

i
Y

Abstract syntax tree

. (Translation

Intermediate representation) Optimization

. (Code generation

Last time: let-based IR

Each instruction has at most three operands (“three-address code”)

<instr>:=let <uid> = <operand> <op> <operand>; Instructions
| load <uid> = <var>;
| store <var> = <operand>;
| return <operand>;
<operand> :=<uid> | <integer> Operands
<op>:=+ | * Operations

Control Flow

Concrete syntax

<instr>:=let <uid> = <operand> <op> <operand>;
| load <uid> = <var>;
| store <var> = <operand>;
<operand> :=<uid> | <integer>

<op> =+ | *

<terminator> ::=br <label>

| cbr <cc> <operand> <label> <label>

| return <operand>
<cc> =EqZ | LeZ | LtZ
<block> ::=<instr><block> | <terminator>

<program> ::=<program><label>: <block> | <block>

Instructions

Operands
Operations

Branch
Conditional branch
Return

Control Flow Graphs (CFG)

load tmpl = n

body
load tmp4 = sum‘

int sum__upto(int n) {
int sum = 0;
while (n > 0) {
sum += m;
n--;
}
return sum;

}

load tmp5 = n

I«

llet tmp2 = 0 - n‘

llet tmp6 = tmp4 + tmp6‘

’cbr 1tz tmp2 body exit

’store sum = tmp6‘

load tmp7 = n

I«

llet tmp8 = tmp7 - 1‘

2

store n = tmp8

exit
lload tmp9 = sum‘

return tmp9

Control Flow Graphs (CFG)

store sum = @

int sum__upto(int n) {
int sum = 0;
while (n > 0) {
sum += m;
n--;
}

return sum;

load tmpl = n
let tmp2 = @ - n

cbr 1tz tmp2 body exit

F

exit

load tmp9 = sum

br loop body
load tmp4 = sum
loop ‘/////”———_—_5\\\ load tmp5 = n

let tmp6 = tmp4 + tmp6
store sum = tmp6

load tmp7 = n

let tmp8 = tmp7 - 1
store n = tmp8

br loop

~_

return tmp9

¢ Control flow graphs are a graphical representation of the control flow through a procedure
® A basic block is a sequence of instructions that

@ Starts with an entry, which is named by a label
@ Ends with a control-flow instruction (br, cbr, or return)

® the terminator of the basic block
© Contains no interior labels or control flow instructions
e A control flow graph (CFG) for a procedure Pis a directed, rooted graph where

¢ The nodes are basic blocks of P

® Thereis an edge BB; — BB iff BB; may execute immediately after BB;

® There is a distinguished entry block where the execution of the procedure begins, which has
no incoming edges

® CFG models all program executions
® Every execution corresponds to a path in the CFG, starting at entry

® Path = sequence of basic blocks Bi, ..., B, such that for each ¢, there is an edge from B; to B;1
® Simple path = path without repeated basic blocks

® (But not vice-versa!)

® CFG models all program executions
® Every execution corresponds to a path in the CFG, starting at entry

® Path = sequence of basic blocks Bi, ..., B, such that for each ¢, there is an edge from B; to B;1
® Simple path = path without repeated basic blocks

® (But not vice-versa!)
¢ Graph structure used extensively in optimization (data flow analysis, loop recognition, ...)
¢ Simple application: dead code elimination

@ Depth-first traversal of the CFG
@ Any unvisited node is removed

Why basic blocks?

¢ Control flow graphs may be defined at the instruction-level rather than basic-block level
* However, there are good reasons for using basic blocks

® More compact
® Some optimization passes (“local” optimizations) operate @ basic block level

® E.g, the implementation of redundant load elimination in 1et3.ml

Constructing a CFG

* “Forwards" algorithm:
® Traverse statements in IR from top to bottom

® Find leaders: first statement & first statement following a label
® Basic block = leader up to (but not including) next leader

e Alternately, traverse IR from bottom to top, starting a new basic blocks for each
terminator and finishing at label (build_cfgin let3.ml)

® (Assumes every label has a corresponding terminator. Does not assume every terminator has
a corresponding label-implicitly eliminated dead code)

¢ Can also construct CFG directly from AST

Generating code from a CFG

e Simple strategy: terminator always compiles to return / jump / conditional jump
® “Fall-through” semantics of assembly blocks is never used

Generating code from a CFG

e Simple strategy: terminator always compiles to return / jump / conditional jump
® “Fall-through” semantics of assembly blocks is never used
* More efficient strategy: elide jumps by ordering blocks appropriately
® A covering set of traces is a set of traces such that
® Each trace is a simple path (loop free)
® Each basic block belongs to a trace
® Any covering set of traces corresponds to a (partial) ordering of blocks, which may elide some
jumps.

Generating a covering set of traces

Basic algorithm: depth-first traversal of the CFG /

e If at least one successor is unvisited, elide jump and place
the successor next in sequence o 0

e [f all successors are visited, terminate branch / / \
(see codegen_cfg_tracein let3.ml) e ° e

\G/

Generating a covering set of traces

Basic algorithm: depth-first traversal of the CFG /

e If at least one successor is unvisited, elide jump and place
the successor next in sequence o 0

e [f all successors are visited, terminate branch / / \
(see codegen_cfg_tracein let3.ml) e c e

\G/

Generating a covering set of traces

Basic algorithm: depth-first traversal of the CFG /

e If at least one successor is unvisited, elide jump and place
the successor next in sequence o 0

e [f all successors are visited, terminate branch / / \
(see codegen_cfg_tracein let3.ml) e c e

\G/

Generating a covering set of traces

Basic algorithm: depth-first traversal of the CFG /

e If at least one successor is unvisited, elide jump and place
the successor next in sequence o 0

e [f all successors are visited, terminate branch / / \
(see codegen_cfg_tracein let3.ml) e G e

\G/

Generating a covering set of traces

Basic algorithm: depth-first traversal of the CFG o / \

e If at least one successor is unvisited, elide jump and place
the successor next in sequence h o

e |f all successors are visited, terminate branch

(see codegen_cfg_tracein let3.ml) e/

Generating a covering set of traces

Basic algorithm: depth-first traversal of the CFG 7 /

e If at least one successor is unvisited, elide jump and place
the successor next in sequence h o

e |f all successors are visited, terminate branch

(see codegen_cfg_tracein let3.ml) e/ \ E

Generating a covering set of traces

Basic algorithm: depth-first traversal of the CFG 7 /

e If at least one successor is unvisited, elide jump and place
the successor next in sequence h o

e |f all successors are visited, terminate branch

(see codegen_cfg_tracein let3.ml) e/ \ E

Generating a covering set of traces

Basic algorithm: depth-first traversal of the CFG 7 /

e If at least one successor is unvisited, elide jump and place
the successor next in sequence h o

e |f all successors are visited, terminate branch

(see codegen_cfg_tracein let3.ml) e/ \ E

Generating a covering set of traces

Basic algorithm: depth-first traversal of the CFG o \
* |f at least one successor is unvisited, elide jump and place - / B
the successor next in sequence N o o
e [f all successors are visited, terminate branch ," / K%

(see codegen_cfg_tracein let3.ml) e G *e

