
COS320: Compiling Techniques

Zak Kincaid

January 29, 2026



Compiler phases (simplified)

Source text

Token stream

Abstract syntax tree

Intermediate representation

Assembly

Lexing

Parsing

Translation

Code generation

Optimization



Syntax-directed translation

• Compilation strategy in which syntax of the program drives code generation
• Assembly code generated from abstract syntax tree, or even directly by the parser
• No substantial code analysis or transformation

• Demo: sdt.ml

• Easy to implement, but:
• produces inefficient code
• can be difficult to implement some language features (e.g., first-class functions)
• difficult to re-target compiler to new architectures



Syntax-directed translation

• Compilation strategy in which syntax of the program drives code generation
• Assembly code generated from abstract syntax tree, or even directly by the parser
• No substantial code analysis or transformation

• Demo: sdt.ml
• Easy to implement, but:

• produces inefficient code
• can be difficult to implement some language features (e.g., first-class functions)
• difficult to re-target compiler to new architectures



Intermediate Representations



• An intermediate representation (IR) breaks code generation up into two phases
1 Translation from source language into IR
2 Generating target code from IR

• Good level of abstraction at which to perform optimization

Abstract syntax tree

Intermediate representation

Assembly

Translation

Code generation

Optimization



• An intermediate representation (IR) breaks code generation up into two phases
1 Translation from source language into IR
2 Generating target code from IR

• Good level of abstraction at which to perform optimization

Abstract syntax tree

Intermediate representation

Assembly

Translation

Code generation

Optimization



A simple let-based IR (let.ml)

x = 2*(x + y) - (z * z) →
let tmp1 = x + y
let tmp2 = 2 * tmp1
let tmp3 = z * z
let tmp4 = tmp2 - tmp3
x = tmp4

1 Makes evaluation order explicit (no nested expressions)
2 Names all intermediate values (∼ unboundedly many “virtual” registers)
3 Distinguish between variables & intermediate values



Why use an IR?

• Appropriate abstraction level for machine-independent optimization
• Simpler, lower-level than source language
• Retain (some) information from source language that’s helpful for analysis & optimization

• E.g., types, distinguish between writes to memory & computation of intermediate values

• Safety: IR can enforce maintenance of invariants (e.g. types)
• Reusability

• IR can mediate between many source & target languages
• Saves the work of reimplementing optimization & code generation passes



Why use an IR?

• Appropriate abstraction level for machine-independent optimization
• Simpler, lower-level than source language
• Retain (some) information from source language that’s helpful for analysis & optimization

• E.g., types, distinguish between writes to memory & computation of intermediate values

• Safety: IR can enforce maintenance of invariants (e.g. types)

• Reusability
• IR can mediate between many source & target languages
• Saves the work of reimplementing optimization & code generation passes



Why use an IR?

• Appropriate abstraction level for machine-independent optimization
• Simpler, lower-level than source language
• Retain (some) information from source language that’s helpful for analysis & optimization

• E.g., types, distinguish between writes to memory & computation of intermediate values

• Safety: IR can enforce maintenance of invariants (e.g. types)
• Reusability

• IR can mediate between many source & target languages
• Saves the work of reimplementing optimization & code generation passes



Reusability

LLVM

C

C++

Rust

Go

Swift

x86

ARM

PowerPC

C++

MIPS



What makes a good IR?

1 Convenient to translate source language to IR
2 Convenient to generate assembly from IR
3 Convenient to manipulate IR during optimization

• Narrow interface ⇒ fewer cases to consider

• E.g., static single assignment (SSA) form enforces that is exactly one assignment to any
temporary (as in the let IR)

• Safe to reorder instructions as long as no read/write dependency
• Dead code analysis is more powerful



What makes a good IR?

1 Convenient to translate source language to IR
2 Convenient to generate assembly from IR
3 Convenient to manipulate IR during optimization

• Narrow interface ⇒ fewer cases to consider
• E.g., static single assignment (SSA) form enforces that is exactly one assignment to any

temporary (as in the let IR)
• Safe to reorder instructions as long as no read/write dependency
• Dead code analysis is more powerful



Varieties of IR

• In practice, compilers often use several IRs
• GCC: Source → GENERIC → GIMPLE → RTL → Target

• High-level
• Preserves high-level structures, but may simplify (e.g., convert for to do/while) or elaborate
• Some high-level optimizations (e.g., function inlining)

• Mid-level
• “Abstract assembly language”

• Still retains some high-level features (e.g., explicit functions, variables, structured data)
• Machine-independent optimizations

• Low-level
• Machine-dependent optimizations


