COS320: Compiling Techniques

Zak Kincaid

January 29, 2026



Compiler phases (simplified)

Lexing
A\ 4

Parsing

i
Y

Abstract syntax tree

. (Translation

Intermediate representation ) Optimization

. (Code generation




Syntax-directed translation

¢ Compilation strategy in which syntax of the program drives code generation

® Assembly code generated from abstract syntax tree, or even directly by the parser
® No substantial code analysis or transformation

® Demo: sdt.ml



Syntax-directed translation

¢ Compilation strategy in which syntax of the program drives code generation
® Assembly code generated from abstract syntax tree, or even directly by the parser
* No substantial code analysis or transformation

® Demo: sdt.ml

¢ Easy to implement, but:

® produces inefficient code
® can be difficult to implement some language features (e.g,, first-class functions)
e difficult to re-target compiler to new architectures



Intermediate Representations



¢ Anintermediate representation (IR) breaks code generation up into two phases

@ Translation from source language into IR
@ Generating target code from IR

JPEE Abstract syntax tree
'O

_-' lTranslation
.
.

Intermediate representation

A3
. lCode generation

IREEFY Assembly



¢ Anintermediate representation (IR) breaks code generation up into two phases

@ Translation from source language into IR
@ Generating target code from IR

* Good level of abstraction at which to perform optimization

JPEE Abstract syntax tree

lTranslation

.
"‘ Intermediate representation ) Optimization

.

. lCode generation
A

IREEFY Assembly

4



A simple let-based IR (1et.ml)

let tmpl = z + y
let tmp2 = 2 * tmpl

z=2x(x+y) - (2% 2) : let tmp3 = z *x 2
let tmp4 = tmp2 - tmp3
T = tmp4

@ Makes evaluation order explicit (no nested expressions)
@ Names all intermediate values (~ unboundedly many “virtual” registers)
© Distinguish between variables & intermediate values



Why use an IR?

¢ Appropriate abstraction level for machine-independent optimization

® Simpler, lower-level than source language
¢ Retain (some) information from source language that's helpful for analysis & optimization

® Eg., types, distinguish between writes to memory & computation of intermediate values



Why use an IR?

¢ Appropriate abstraction level for machine-independent optimization

® Simpler, lower-level than source language
¢ Retain (some) information from source language that's helpful for analysis & optimization

® Eg., types, distinguish between writes to memory & computation of intermediate values

e Safety: IR can enforce maintenance of invariants (e.g. types)



Why use an IR?

¢ Appropriate abstraction level for machine-independent optimization

® Simpler, lower-level than source language
¢ Retain (some) information from source language that's helpful for analysis & optimization

® Eg., types, distinguish between writes to memory & computation of intermediate values
e Safety: IR can enforce maintenance of invariants (e.g. types)
* Reusability

® |R can mediate between many source & target languages
® Saves the work of reimplementing optimization & code generation passes



Reusability

C x86

DN g

Rust _) PowerPC

Swift MIPS




What makes a good IR?

© Convenient to translate source language to IR

@ Convenient to generate assembly from IR
© Convenient to manipulate IR during optimization
® Narrow interface = fewer cases to consider



What makes a good IR?

@ Convenient to translate source language to IR

@ Convenient to generate assembly from IR
© Convenient to manipulate IR during optimization

® Narrow interface = fewer cases to consider
® E.g, static single assignment (SSA) form enforces that is exactly one assignment to any
temporary (as in the let IR)

® Safe to reorder instructions as long as no read/write dependency
® Dead code analysis is more powerful



Varieties of IR

In practice, compilers often use several IRs
® GCC: Source —+ GENERIC — GIMPLE — RTL — Target
High-level
® Preserves high-level structures, but may simplify (e.g., convert for to do/while) or elaborate
® Some high-level optimizations (e.g., function inlining)
Mid-level
® “Abstract assembly language”
® Still retains some high-level features (e.g., explicit functions, variables, structured data)
® Machine-independent optimizations
Low-level
® Machine-dependent optimizations



