Intro: What is a System?

A

COS 316: Principles of Computer System Design
Lecture 1

Wyatt Lloyd

* Today: Systems!

* Next time: Course Overview, Syllabus, ...

Example Systems

» Operating system (OS) kernel
* The Internet

« Database

* Distributed file system

* Web framework

 Game engine

What is a System?

* Provides an interface to underlying resources
* Mediates access to shared resources

* |solates applications

» Abstracts complexity

« Abstracts differences in implementation

Example System: OS Kernel

* Interface: system calls
« Underlying resources: hardware (CPU, memory, network, disk)

e |[solation: Firefox, terminal, zoom, ... don’t worry about each other

» Abstraction: Collection of system calls
* Instead of specific protocols for using specific devices

* Don’t need to rewrite Firefox to display on new monitors, or save to new
disks, or ...

Systems Stack (terminal)

Application

Hardware

Systems Stack (Firefox)
[Leyout engine] [us viv]

Application

Hardware

Systems Stack (Firefox to Wikipedia)

Application

Application

Hardware
Hardware Hardware

So Many Systems...
Each user request touches hundreds of systens

(oo
|
=

— (e

-

[Slide from Kaushik Veeraraghavan Talk’s on Kraken at OSDI “16]

Systems Are Everywhere!

* People use applications

« Applications are built on systems
* On systems on systems on systems...

* If you're building applications
» Useful to understanding underlying systems

« What could be causing X?
« Why can’t they do Y?
* What can | trust Z to do or not?

« If you’re building systems ©
« That's what this is all about!
« Useful to understanding your underlying systems

Why do we build systems?

« Sharing: Mediates access to shared resources

 Portability: Abstract differences in underlying implementations

« Safety: Isolate resources and other applications from faulty apps
» Abstraction: Make complex resources easier to use

Why Are Systems Challenging? Part-1a

« Correctness
* Incorrect system => incorrect applications
« Correctly implement interface’s guarantees

 Performance

» Slow system => slow applications
« Make system fast enough

« Security

* Insecure system => insecure applications
 Build security into the system

Why Are Systems Challenging? Part-1b

« Distributed storage system that keeps data forever (e.g., videos)

» Correctness
« Accurately retain data forever. Really delete data on deletes.

« Performance
« Fast and highly concurrent.

« Security
* Only allow authorized users to retrieve data

Why Are Systems Challenging? Part-2a

 How general should an interface be?

* More general => supports more application-level functionality

* Less general => easier to implement, easier correctness,
better performance, easier security

 How portable should an interface be?
* More portable => supports more underlying resources
* Less portable => ...

 Design tradeoffs!

Why Are Systems Challenging? Part-2b

* Distributed cache that provides fast access to popular data

 How general should an interface be?
« Read(key)
* Write(key, value)
« Read transaction(<keys>)
« Write_transaction(<keys>,<values>)
« Read and_write transaction(<read_keys>, <write _keys>,<values>)

 Design tradeoffs!

Why Are Systems Challenging? Part-2c

* Distributed cache that provides fast access to popular data

 How portable should an interface be?
 Cache in DRAM
« Cache on SSD
« Cache on NVM
« Cache on HDD

 Design tradeoffs!

General vs Portable Interfaces

« Cache A:
 Read, Write on DRAM, SSD, NVM, HDD

e Cache B:

 Read, Write, Read Transaction, Write Transaction
on SSD

* Which cache is more general? More portable?

Systems We Will Cover In This Class

Application * Distributed Systems

* Networking

« Operating Systems

Why Do | Love Systems?!

* Work on the “hard” problems, so applications don’t have to
» Correctness as a puzzle: reason through all corner cases

« Performance is a different type of puzzle:
* Where are bottlenecks, how to speed them up?

 Art of reasoning about tradeoffs: e.q., Interface vs. Performance

« Multiplicative impact: improving systems improves all apps built on
them

Summary

« Systems abstract underlying resources

« Systems are everywhere

« Systems are challenging and interesting and
cool

* This class is about systems: details next
lecture

	Slide 1: Intro: What is a System?
	Slide 2
	Slide 3: Example Systems
	Slide 4: What is a System?
	Slide 5: Example System: OS Kernel
	Slide 6: Systems Stack (terminal)
	Slide 7: Systems Stack (Firefox)
	Slide 8: Systems Stack (Firefox to Wikipedia)
	Slide 9: So Many Systems…
	Slide 10: Systems Are Everywhere!
	Slide 11: Why do we build systems?
	Slide 12: Why Are Systems Challenging? Part-1a
	Slide 13: Why Are Systems Challenging? Part-1b
	Slide 14: Why Are Systems Challenging? Part-2a
	Slide 15: Why Are Systems Challenging? Part-2b
	Slide 16: Why Are Systems Challenging? Part-2c
	Slide 17: General vs Portable Interfaces
	Slide 18: Systems We Will Cover In This Class
	Slide 24: Why Do I Love Systems?!
	Slide 25: Summary
	Slide 26

