
Intro: What is a System?

COS 316: Principles of Computer System Design

Lecture 1

Wyatt Lloyd

• Today: Systems!

• Next time: Course Overview, Syllabus, …

Example Systems

• Operating system (OS) kernel

• The Internet

• Database

• Distributed file system

• Web framework

• Game engine

What is a System?

• Provides an interface to underlying resources

• Mediates access to shared resources

• Isolates applications

• Abstracts complexity

• Abstracts differences in implementation

Example System: OS Kernel

• Interface: system calls

• Underlying resources: hardware (CPU, memory, network, disk)

• Isolation: Firefox, terminal, zoom, … don’t worry about each other

• Abstraction: Collection of system calls

• Instead of specific protocols for using specific devices

• Don’t need to rewrite Firefox to display on new monitors, or save to new
disks, or …

Systems Stack (terminal)

Hardware

O

S

Application

Filesystem

Systems Stack (Firefox)

Hardware

O
S

Application

FilesystemGraphics

Window

manager
Network

Scheduler

Layout engine JS VM

Database

Systems Stack (Firefox to Wikipedia)

Internet

Application

Network

OS

Hardware

Application

Distributed Systems

O

S

Network

OS

Network

FS FS

Hardware Hardware

So Many Systems…

[Slide from Kaushik Veeraraghavan Talk’s on Kraken at OSDI ‘16]

Systems Are Everywhere!

• People use applications
• Applications are built on systems

• On systems on systems on systems…

• If you’re building applications
• Useful to understanding underlying systems

• What could be causing X?
• Why can’t they do Y?

• What can I trust Z to do or not?

• If you’re building systems
• That’s what this is all about!
• Useful to understanding your underlying systems

Web

Server

Network

OS

Why do we build systems?

• Sharing: Mediates access to shared resources

• Portability: Abstract differences in underlying implementations

• Safety: Isolate resources and other applications from faulty apps

• Abstraction: Make complex resources easier to use

Why Are Systems Challenging? Part-1a

• Correctness
• Incorrect system => incorrect applications

• Correctly implement interface’s guarantees

• Performance
• Slow system => slow applications
• Make system fast enough

• Security
• Insecure system => insecure applications
• Build security into the system

Why Are Systems Challenging? Part-1b

• Distributed storage system that keeps data forever (e.g., videos)

• Correctness
• Accurately retain data forever. Really delete data on deletes.

• Performance
• Fast and highly concurrent.

• Security
• Only allow authorized users to retrieve data

Why Are Systems Challenging? Part-2a

• How general should an interface be?

• More general => supports more application-level functionality

• Less general => easier to implement, easier correctness,

 better performance, easier security

• How portable should an interface be?
• More portable => supports more underlying resources

• Less portable => …

• Design tradeoffs!

Why Are Systems Challenging? Part-2b

• Distributed cache that provides fast access to popular data

• How general should an interface be?
• Read(key)
• Write(key, value)

• Read_transaction(<keys>)

• Write_transaction(<keys>,<values>)

• Read_and_write_transaction(<read_keys>, <write_keys>,<values>)
• …

• Design tradeoffs!

Why Are Systems Challenging? Part-2c

• Distributed cache that provides fast access to popular data

• How portable should an interface be?
• Cache in DRAM
• Cache on SSD

• Cache on NVM

• Cache on HDD

• …

• Design tradeoffs!

General vs Portable Interfaces

• Cache A:

• Read, Write on DRAM, SSD, NVM, HDD

• Cache B:
• Read, Write, Read Transaction, Write Transaction

on SSD

• Which cache is more general? More portable?

Systems We Will Cover In This Class

• Distributed Systems

• Networking

• Operating Systems

• Security

Application

Distributed Systems

Hardware

Network

Hardware

Network

S
e

c
u

ri
ty

S
e

c
u

ri
ty

OSOS

Why Do I Love Systems?!

• Work on the “hard” problems, so applications don’t have to

• Correctness as a puzzle: reason through all corner cases

• Performance is a different type of puzzle:
• Where are bottlenecks, how to speed them up?

• Art of reasoning about tradeoffs: e.g., Interface vs. Performance

• Multiplicative impact: improving systems improves all apps built on

them

Summary

• Systems abstract underlying resources

• Systems are everywhere

• Systems are challenging and interesting and

cool

• This class is about systems: details next

lecture

Application

Distributed Systems

Hardware

Network

Hardware

Network

Se
cu

ri
ty

Se
cu

ri
ty

OSOS

	Slide 1: Intro: What is a System?
	Slide 2
	Slide 3: Example Systems
	Slide 4: What is a System?
	Slide 5: Example System: OS Kernel
	Slide 6: Systems Stack (terminal)
	Slide 7: Systems Stack (Firefox)
	Slide 8: Systems Stack (Firefox to Wikipedia)
	Slide 9: So Many Systems…
	Slide 10: Systems Are Everywhere!
	Slide 11: Why do we build systems?
	Slide 12: Why Are Systems Challenging? Part-1a
	Slide 13: Why Are Systems Challenging? Part-1b
	Slide 14: Why Are Systems Challenging? Part-2a
	Slide 15: Why Are Systems Challenging? Part-2b
	Slide 16: Why Are Systems Challenging? Part-2c
	Slide 17: General vs Portable Interfaces
	Slide 18: Systems We Will Cover In This Class
	Slide 24: Why Do I Love Systems?!
	Slide 25: Summary
	Slide 26

