¥ C0S226 Precept 5 Fall 25

Precept Outline Relevant Book Sections
* Review of Lectures 9 and 10: * Book chapters: 3.1, 3.2 and 3.3

- Binary Search Trees
- Balanced Binary Search Trees

« Midterm Review

A. Review: Binary Search Trees and Red-Black Trees

Your preceptor will briefly review key points of this week’s lectures. Here are some images reminding
you of some of the key definitions from lecture.

parent of A and R k
ey
left link \
of E —
e @ v~ value
@ 0 associated

with R
\

keys smaller than € keys larger than E

right rotation

greater

than S
left rotation

less between K—/ between greater
Eand S than S

than E E and S

B. Red-Black Trees (Spring'23 Midterm)

The following binary search tree satisfies perfect black balance, but violates color invariants:

red link

Give a sequence of 4 elementary operations (color flip, rotate left or rotate right) that restore the color
invariants.

Consider the following left-leaning red-black BST with some of the edge colors suppressed:

red link

Which keys in the above tree are red? (Recall that a key is red if the link to its parent is red.)

C. Data Structure Design - Midterm Review

Suppose that there are two teams of players that can play each other in head-to-head matches. Each
player has a certain rating, which is an integer value, and two players can play each other if they have the
same rating (otherwise it isn't a balanced match). Design a data structure that computes the maximum
number of distinct matches that the two teams can play at any point. The data structure should support
2 operations. The first, addPlayer(rating, team) adds a new player of rating equal to rating and adds
it to team team, which can be 1 or 2. The second operation, numberOfMatches(), returns the maximum
number of distinct matches that can be played by elements of team 1 versus elements of team 2 (see the
example below for more information).

public class MatchMaker

MatchMaker () creates two empty teams
void addPlayer(int rating, int team) adds player of rating to team

int numberOfMatches() returns the maximum number of matches that can be played

Full credit: The addPlayer() method should run in O(logn) time in the worst case and the numberOf
Matches() method should runin ©(1) time.
Partial credit: The addPlayer() method should run in O(n) time in the worst case and the numberOf
Matches() method should runin ©(1) time.

Example

MatchMaker mm = new MatchMaker();

mm.addPlayer (100, 1); // Team 1: {100: 1}

mm.addPlayer (200, 1); // Team 1: {100: 1, 200: 1}

mm.addPlayer (100, 2); // Team 2: {100: 1}, Matches = 1
mm.addPlayer (200, 2); // Team 2: {100: 1, 200: 13}, Matches = 2

mm.addPlayer (100, 1); // Team 1: {100: 2, 200: 1}, Matches = 2
StdOut.println(mm.numberOfMatches()); // Output: 2
mm.addPlayer (100, 2); // Team 2: {100: 2, 200: 1}, Matches = 3

StdOut.println(mm.numberOfMatches()); // Output: 3

The first call of numberOfMatches() outputs 2 since we can match the two 200 rating players together as
well as the one 100 rating player from team 2 with one of the 100 rating players from team 1. The second
call can match each player to a different player, resulting in 3 total matches.

In the space provided, give a concise English description of your solution to the constructor, the addPlayer()
and the numberOfMatches() methods. You may use any of the algorithms and data structures that we have
considered in this course (e.g., lectures, precepts, textbook, assignments) as subroutines. If you modify any of
them, be sure to describe the modification. Feel free to use code or pseudocode to improve clarity.

D. Algorithm Design - Midterm Review

Alength-n integer array a[] is single-peaked if there exists 0 < k < n—1 such that the subarray from index
up to (and including) & is strictly increasing, and the subarray from index k until n — 1 is strictly decreasing.
The entry a[k] is called the peak. For example, the array al[1={3, 6, 7, 10, 4, 1} is a single-peaked with
peak 10, but the array a[1={3, 6, 7, 10, 4, 5} is not.

Design an algorithm that receives as input a single-peaked array with n distinct elements, and outputs the
peak of the array. Specify the running time of your solution.

Full credit: The running time of the algorithm must be O(logn).
Partial credit: The running time of the algorithm must be O(n).

In the space provided, give a concise English description of your algorithm for solving the problem. You may
use any of the algorithms that we have considered in this course (e.g., lectures, precepts, textbook, assignments)
as subroutines. If you modify such an algorithm, be sure to describe the modification. Feel free to use code or
pseudocode to improve clarity.

E. Extra Practice

Part 1: Sorting Compares (Fall'17 Midterm)

Consider an array that contains two successive copies of the integers 1 through n, in ascending order.
For example, here is the array when n = 8&:

123456781 23456738

Note that the length of the array is 2n, not n.

How many compares does selection sort make to sort the array as a function of n? Use tilde notation to
simplify your answer.

How many compares does insertion sort make to sort the array as a function of n? Use tilde notation to
simplify your answer.

How many compares does mergesort make to sort the array as a function of n? You may assume n is a
power of 2. Use tilde notation to simplify your answer.

Part 2: Heaps

Consider the following binary heap representation of a maximume-oriented priority queue (with pq[@]
unused).

pall - 50 40 20 10 30 5

Suppose that you insert the key 45 into the binary heap. Which keys would be involved in a compare? And
which keys would be involved in an exchange?

Suppose that you perform a delMax () operation in the original binary heap. Which keys would be involved
in a compare? And which keys would be involved in an exchange?

Part 3: Linear or Not?

Which of the following are O(n)?

() The number of compares needed to apply a delMin() operation in a minimume-oriented binary heap
with n elements.

() The number of compares used by the best non-stable compare-based sorting algorithm that sorts n
integers.

() The number of times a resizing array resizes in order to perform n operations in a row.

() The number of times hello is printed by the following code:

1 for (int i = 1; 1 <= n; i *= 2)
2 for (int j = 1; j <= 1i; j++)
3 StdOut.println("hello"”);

	Review: Binary Search Trees and Red-Black Trees
	Red-Black Trees (Spring'23 Midterm)
	Data Structure Design - Midterm Review
	Algorithm Design - Midterm Review
	Extra Practice
	Sorting Compares (Fall'17 Midterm)
	Heaps
	Linear or Not?

