¥ C0S226

Precept 4 Fall 25

Precept Outline
» Review of Lectures 7 and 8:

- Quicksort
- Heaps and Priority Queues

Relevant Book Sections
+ Book chapters: 2.3, 2.4 and 2.5

A. Review: Quicksort + Heaps

Your preceptor will briefly review key points of this week's lectures. Here are some images representing
examples they will show you, for partition, quicksort and quickselect.

w08 6 2 7 1534 womon 4.6 2715 3

!
132 i 156 D
4321756
1 soreh 2’3 2 "6 5 7 < pivot l > pivot

86271534
4627153 8
132 47576

i

L 32

H

Here are the steps for inserting 3 into the min-heap on the right.

£
P

l12 20 80

15

‘ 2 ‘ 4 ‘70‘12‘20|80‘72|15‘

! )
. ) by

20 80 72 4 20 80

12 15 12

‘2‘}4 70’1)2‘20‘80‘72‘15‘}{‘ ‘2 ‘ 3 ‘70‘ 4 ‘20’80‘72‘15‘12‘
3




Here are the steps for removing the minimum from the min-heap at the end of the previous example.

f41 20 8 72
12

15 125

70

’}1‘ 3 ‘70‘ 4 ‘20‘80‘72‘15‘1%2‘
2 2

[ %]
N pd

4
1

20‘80‘72‘15EXQ
2

£

lﬂZ 20 80 72

15

‘ 3 ‘ 4 ‘70‘12‘20’80‘72‘15‘

B. Priority Queues

Part 1: Runtime

Consider the following code which uses a binary-heap based minimum priority queue (MinPQ). Assume
that n > k, and that a[] is an immutable array containing arbitrary integers.

1 void foo(int k, int[] a) {
2 MinPQ<Integer> pq = new MinPQ<Integer>();

3 for (int i = @0; i < a.length; i++) {
4 pg.insert(alil);

5 if (pg.size() > k) pg.delMin();
O

7 for (int i = 0; i < k; i++)

8 StdOut.println(pg.delMin());

9}

Give a succinct description (that could, e.g., be a comment before the first line) of what the method foo()
prints in terms of the array a[] and the parameter k.

What is the order of growth of the running time of foo() as a function of both n and k?




Suppose we were to remove line 5. Describe the output of foo(). What is the order of growth of its
running time?

Part 2: Data Structure Design (Fall'19 Midterm)

Design a data type to implement a double-ended priority queue. The data type must support inserting a
key, deleting a smallest key, and deleting a largest key. (If there are ties for the smallest or largest key,
you may choose among them arbitrarily.)

To do so, create a MinMaxPQ data type that implements the following API:

public class MinMaxPQ<Key extends Comparable<Key>> {

MinMaxPQ() // create an empty priority queue
void insert(Key x) // add x to the priority queue

Key min() // return a smallest key

Key max() // return a largest key

Key delMin() // return and remove a smallest key
Key delMax() // return and remove a largest key

Here are the performance requirements:

* The insert(), delMin(), and delMax() must take O(log n) time in the worst case, where n is the number
of keys in the priority queue.
* Themin() and max() methods must take O(1) time in the worst case.

In your answer mention: the instance variables you'll use, your implementation of min()/max(), your
implementation of insert(x) and your implementation of delMin()/delMax().

Notes: To describe your solution, use either English prose or Java code (or a combination of the two). If your
solution uses an algorithm or data structure from the course, do not reinvent it; simply describe how you are

applying it.



C. Algorithm Design: The Hotel Problem

You are the manager of a (tall and narrow) hotel with one room in each of n floors. Early in the morn-
ing (before you arrived), n guests showed up at the same time, told the front desk their preference - a
floor that is either “high” or “low” - and were assigned rooms arbitrarily (without consideration for their
preferences).

Your task is to correct this assignment by swapping pairs of guests, relocating each guest at most once.
By the end of the process, all guests who prefer low floors should be on floors below those who prefer
high floors. Moreover, no guest may end up in a room they prefer less than their original assignment
(“high”-preferring guests may only be moved up, and “low"-preferring may only be moved down). Your
solution should take time O(n).




D. Optional Bonus Problem

Part 1: Sorting Algorithms (Spring’24 Midterm Problem)

Consider an array of 2n elements of the form 1,2n — 1,2,2n — 2,3,2n — 3,4,2n — 4,...,n,n.

For example, here is the array when n = 8:

[1,15, 2,14, 3,13,4,12,5,11,6,10,7, 9, 8, 8]

How many compares does each sorting algorithm (standard algorithm, from the textbook) make as a
function of n in the worst case? Note that the length of the array is 2n, not n.

_ O
1. Selection sort ~ 12
4
, O
2. Insertion sort ~ 1p2
1
O

3. Mergesort Inlogyn

4. Quicksort(3-way, no shuffle)

O
~ %n2

O
~ %nQ

O

3
~ gnlogyn

O
O(logn)

O

~ 2n?

~ 2n?

3
~ 5nlogan

O(nlogn)




	Review: Quicksort + Heaps
	Priority Queues
	Runtime
	Data Structure Design (Fall'19 Midterm)

	Algorithm Design: The Hotel Problem
	Optional Bonus Problem
	Sorting Algorithms (Spring'24 Midterm Problem)


