
COS226 Precept 4 Fall ’25
Precept Outline• Review of Lectures 7 and 8:
– Quicksort
– Heaps and Priority Queues

Relevant Book Sections• Book chapters: 2.3, 2.4 and 2.5

A. Review: Quicksort + Heaps

Your preceptor will briefly review key points of this week’s lectures. Here are some images representingexamples they will show you, for partition, quicksort and quickselect.

Here are the steps for inserting 3 into the min-heap on the right.

1



Here are the steps for removing the minimum from the min-heap at the end of the previous example.

B. Priority Queues

Part 1: Runtime

Consider the following code which uses a binary-heap based minimum priority queue (MinPQ). Assumethat n ≥ k, and that a[] is an immutable array containing arbitrary integers.
1 void foo(int k, int[] a) {
2 MinPQ <Integer > pq = new MinPQ <Integer >();
3 for (int i = 0; i < a.length; i++) {
4 pq.insert(a[i]);
5 if (pq.size() > k) pq.delMin ();
6 }
7 for (int i = 0; i < k; i++)
8 StdOut.println(pq.delMin ());
9 }

Give a succinct description (that could, e.g., be a comment before the first line) of what themethod foo()

prints in terms of the array a[] and the parameter k.

What is the order of growth of the running time of foo() as a function of both n and k?

2



Suppose we were to remove line 5. Describe the output of foo(). What is the order of growth of itsrunning time?

Part 2: Data Structure Design (Fall’19 Midterm)

Design a data type to implement a double-ended priority queue. The data type must support inserting akey, deleting a smallest key, and deleting a largest key. (If there are ties for the smallest or largest key,you may choose among them arbitrarily.)
To do so, create a MinMaxPQ data type that implements the following API:
public class MinMaxPQ<Key extends Comparable<Key>> {

MinMaxPQ() // create an empty priority queue
void insert(Key x) // add x to the priority queue
Key min() // return a smallest key
Key max() // return a largest key
Key delMin() // return and remove a smallest key
Key delMax() // return and remove a largest key

}

Here are the performance requirements:
• The insert(), delMin(), and delMax()must takeO(log n) time in the worst case, where n is the numberof keys in the priority queue.• The min() and max()methods must take O(1) time in the worst case.
In your answer mention: the instance variables you’ll use, your implementation of min()/max(), your
implementation of insert(x) and your implementation of delMin()/delMax().
Notes: To describe your solution, use either English prose or Java code (or a combination of the two). If your
solution uses an algorithm or data structure from the course, do not reinvent it; simply describe how you are
applying it.

3



C. Algorithm Design: The Hotel Problem

You are the manager of a (tall and narrow) hotel with one room in each of n floors. Early in the morn-ing (before you arrived), n guests showed up at the same time, told the front desk their preference – afloor that is either “high” or “low” – and were assigned rooms arbitrarily (without consideration for theirpreferences).
Your task is to correct this assignment by swapping pairs of guests, relocating each guest at most once.By the end of the process, all guests who prefer low floors should be on floors below those who preferhigh floors. Moreover, no guest may end up in a room they prefer less than their original assignment(“high”-preferring guests may only be moved up, and “low”-preferring may only be moved down). Yoursolution should take time O(n).

4



D. Optional Bonus Problem

Part 1: Sorting Algorithms (Spring’24 Midterm Problem)

Consider an array of 2n elements of the form 1, 2n− 1, 2, 2n− 2, 3, 2n− 3, 4, 2n− 4, . . . , n, n.For example, here is the array when n = 8:
[1, 15, 2, 14, 3, 13, 4, 12, 5, 11, 6, 10, 7, 9, 8, 8]

How many compares does each sorting algorithm (standard algorithm, from the textbook) make as afunction of n in the worst case? Note that the length of the array is 2n, not n.

1. Selection sort # # # # #
∼ 1

4n
2 ∼ 1

2n
2 ∼ n2 ∼ 2n2 ∼ 4n2

2. Insertion sort # # # # #
∼ 1

4n
2 ∼ 1

2n
2 ∼ n2 ∼ 2n2 ∼ 4n2

3. Mergesort # # # # #
∼ 1

2n log2 n ∼ 3
4n log2 n ∼ n log2 n ∼ 3

2n log2 n ∼ 2n log2 n

4. Quicksort (3-way, no shuffle) # # # # #
Θ(log n) Θ(n) Θ(n log n) Θ(n2) Θ(n4)

5


	Review: Quicksort + Heaps
	Priority Queues
	Runtime
	Data Structure Design (Fall'19 Midterm)

	Algorithm Design: The Hotel Problem
	Optional Bonus Problem
	Sorting Algorithms (Spring'24 Midterm Problem)


