¥ C0S226 Precept 3 Fall 25

Precept Outline Relevant Book Sections
* Review of Lectures 5 and 6: * Book chapters: 2.1, 2.2 and 2.5

- Comparators and Comparables
- Elementary sorts
- Mergesort

A. Review: O/() Notation + Elementary Sorts + Mergesort + Comparable/Comparator

Your preceptor will briefly review key points of this week’s lectures. They may refer to the warm-up
exercise and the code snippet shown below.

Warm-up: Let f(n) = 3n + 4nlogy n + 8y/nlogy n. Select all that apply.

() f(n)=0(0)

() f(n)=290(n)

() f(n)=0(V/nlogn)
() f(n)=Q(/nlogn)
() f(n)=0(nlogn)
() f(n)=Q(nlogn)
() f(n)=0(n?

() f(n)=9Q(n?

() f(n) =0(logn)

() f(n)=Q(logn)
() fin)=0(@2")

() fn)=29Q(2")

1 public class YourClass implements Comparable<YourClass> {

2 public int compareTo(YourClass that) {

3 // returns int > @ if this > that

4 // returns int < @ if this < that

5 // returns @ otherwise

6 }

7

8 private static class YourComparator implements Comparator<YourClass> {
9 public int compare(YourClass obj1l, YourClass obj2) {
10 // returns int > @ if objl1 > obj2

1 // returns int < @ if objl < obj2

12 // returns @ otherwise

13 }

14 }

15 public static Comparator<YourClass> yourComparison() {

16 return new YourComparator();

17 }

18 .

19 3}

B. Comparable & Comparator

The code snippet below shows the instance variables of a class Movie, and partially filled instance methods
that should support comparing elements of this class in three ways:

* by alphabetical order of title (the default order);
* by release year; and
* by rating (0-5 stars).

Fill in the blanks numbered 1 to 6.

public class Movie implements
private String title;
private int year;
private int rating;

public int compareTo(Movie m) {
return (2) ____________ ;

0w N oA W N =

3

o ©

public static Comparator<Movie> byYear () {
return new YearComparator();

o =

}

w

IN

private static class YearComparator implements ______________ (3) o ______ {
public int compare(Movie m1, Movie m2) {
return 4) o ____ ;

w

o

~

3

©

}

o =
o ©

public static Comparator<Movie> byRating() {
return new RatingComparator();

NS
N =

}

NN
B~ W

private static class RatingComparator implements
public int compare(Movie ml, Movie m2) {
return (6) o ____ ;

N
N o ow

}

N
0o
[

N
0

w
o
(-

C. Sorting Algorithms
Part 1: Spring'24 Midterm Problem
Given two integer arrays, al] and b[1], the symmetric difference between a[] and b[] is the set of ele-

ments that appear in exactly one of the arrays. Design an algorithm that receives two sorted arrays, each
consisting of n distinct elements, and outputs the size of their symmetric difference.

For full credit, it must use ©(1) extra memory and its running time must be ©(n) in the worst case (the
arrays al] and b[] should not be modified).

Part 2: Comparison-Based Lower Bounds

The ~ nlog, n lower bound for compare-based sorting algorithms is obtained by constructing a compari-
son tree, counting its number of leaves, and comparing this count against the number of possible outputs
(permutations of the array).

Adapt this argument to prove that binary search is an optimal algorithm for searching in a sorted array:
Assuming n is a power of 2, prove that any compare-based algorithm must make at least 1 + log, n
compares to solve the following problem.

* Input: a sorted array a of length n and a search key k.
« Output: the index of an element in the array that matches the key, or -1 if there is no match.

(If you can't prove the exact bound, try with ~ log, n.)

Part 3: Finding the Missing Element

Suppose that you are given a sorted array a[] with n — 1 distinct integers between 0 and n — 1. In
other words, you are given the array [@, 1, ..., n - 1] but with one of the elements missing. Design an
algorithm with ©(log n) worst-case running time that outputs the missing element.

For example, if the arrayisal]l=1[9, 1, 2, 3, 5, 6, 7], then n = 8 and the missing element is 4.

Part 4: Stability

A sorting algorithm is called stable if it maintains the relative order of equal elements. For example, if a
deck of cards is pre-sorted by rank, running a stable sort by suit results in a deck in suit-major order (all
clubs in sorted order, then all diamonds, hearts and spades).

Run insertion, selection and mergesort (by rank) on the following sequence of cards: [2&#, 3#, 4<$>, 5&].
Which of these algorithms are not stable?

D. Optional Bonus Problems

Part 1: Three-way Mergesort

(Two-way) Mergesort is quite a simple algorithm to describe: to sort n elements, divide the array in half,
(recursively) sort each then merge the two halves together. In this exercise, we will study a variant of it:
in three-way Mergesort, we divide an array of length n into 3 subarrays of length 7, sort each of them
and then perform a 3-way merge.

Given 3 sorted subarrays of size &, how many comparisons are needed (in the worst case) to merge them
to a sorted array of size n? Provide your answer in tilde notation.

What is the order of growth of the number of compares in 3-way Mergesort as a function of the array
size n? (Here we're counting the total number, including all recursive calls.)

Given a choice, would you choose 3-way or 2-way mergesort? Justify your answer.

Part 2: Counting Inversions
In an array h of n numbers, an inversion is a pair of elements that isn't sorted; that is, two indices i and j
such thati < j and h[i] > h[j].

Describe an algorithm to compute the total number of inversions of an array of length nin time ©(n logn).
Hint: think about how you can modify mergesort to achieve this.

	Review: O/ Notation + Elementary Sorts + Mergesort + Comparable/Comparator
	Comparable & Comparator
	Sorting Algorithms
	Spring'24 Midterm Problem
	Comparison-Based Lower Bounds
	Finding the Missing Element
	Stability

	Optional Bonus Problems
	Three-way Mergesort
	Counting Inversions

