
COS226 Precept 3 Fall ’25
Precept Outline• Review of Lectures 5 and 6:
– Comparators and Comparables
– Elementary sorts
– Mergesort

Relevant Book Sections• Book chapters: 2.1, 2.2 and 2.5

A. Review: O/Ω Notation + Elementary Sorts + Mergesort + Comparable/Comparator

Your preceptor will briefly review key points of this week’s lectures. They may refer to the warm-upexercise and the code snippet shown below.
Warm-up: Let f(n) = 3n+ 4n log2 n+ 8

√
n log2 n. Select all that apply.

() f(n) = O(n)() f(n) = Ω(n)() f(n) = O(
√
n log n)() f(n) = Ω(

√
n log n)() f(n) = O(n log n)() f(n) = Ω(n log n)() f(n) = O(n2)() f(n) = Ω(n2)() f(n) = O(log n)() f(n) = Ω(logn)() f(n) = O(2n)() f(n) = Ω(2n)

1 public class YourClass implements Comparable <YourClass > {
2 public int compareTo(YourClass that) {
3 // returns int > 0 if this > that
4 // returns int < 0 if this < that
5 // returns 0 otherwise
6 }
7
8 private static class YourComparator implements Comparator <YourClass > {
9 public int compare(YourClass obj1 , YourClass obj2) {
10 // returns int > 0 if obj1 > obj2
11 // returns int < 0 if obj1 < obj2
12 // returns 0 otherwise
13 }
14 }
15 public static Comparator <YourClass > yourComparison () {
16 return new YourComparator ();
17 }
18 ...
19 }

1

B. Comparable & Comparator

The code snippet below shows the instance variables of a class Movie, andpartially filled instancemethodsthat should support comparing elements of this class in three ways:
• by alphabetical order of title (the default order);
• by release year; and
• by rating (0-5 stars).
Fill in the blanks numbered 1 to 6.
1 public class Movie implements ______________ (1) ______________ {
2 private String title;
3 private int year;
4 private int rating;
5
6 public int compareTo(Movie m) {
7 return ______________ (2) ______________;
8 }
9
10 public static Comparator <Movie > byYear () {
11 return new YearComparator ();
12 }
13
14 private static class YearComparator implements ______________ (3) ______________ {
15 public int compare(Movie m1, Movie m2) {
16 return ______________ (4) ______________;
17 }
18 }
19
20 public static Comparator <Movie > byRating () {
21 return new RatingComparator ();
22 }
23
24 private static class RatingComparator implements ______________ (5) ______________ {
25 public int compare(Movie m1, Movie m2) {
26 return ______________ (6) ______________;
27 }
28 }
29 ...
30 }

2

C. Sorting Algorithms

Part 1: Spring’24 Midterm Problem

Given two integer arrays, a[] and b[], the symmetric difference between a[] and b[] is the set of ele-ments that appear in exactly one of the arrays. Design an algorithm that receives two sorted arrays, eachconsisting of n distinct elements, and outputs the size of their symmetric difference.
For full credit, it must use Θ(1) extra memory and its running time must be Θ(n) in the worst case (thearrays a[] and b[] should not be modified).

Part 2: Comparison-Based Lower Bounds

The∼ n log2 n lower bound for compare-based sorting algorithms is obtained by constructing a compari-
son tree, counting its number of leaves, and comparing this count against the number of possible outputs(permutations of the array).
Adapt this argument to prove that binary search is an optimal algorithm for searching in a sorted array:Assuming n is a power of 2, prove that any compare-based algorithm must make at least 1 + log2 ncompares to solve the following problem.
• Input: a sorted array a of length n and a search key k.• Output: the index of an element in the array that matches the key, or -1 if there is no match.
(If you can’t prove the exact bound, try with ∼ log2 n.)

3

Part 3: Finding the Missing Element

Suppose that you are given a sorted array a[] with n − 1 distinct integers between 0 and n − 1. In
other words, you are given the array [0, 1, ..., n - 1] but with one of the elements missing. Design analgorithm with Θ(log n) worst-case running time that outputs the missing element.
For example, if the array is a[] = [0, 1, 2, 3, 5, 6, 7], then n = 8 and the missing element is 4.

Part 4: Stability

A sorting algorithm is called stable if it maintains the relative order of equal elements. For example, if adeck of cards is pre-sorted by rank, running a stable sort by suit results in a deck in suit-major order (allclubs in sorted order, then all diamonds, hearts and spades).
Run insertion, selection and mergesort (by rank) on the following sequence of cards: [2♠, 3♠, 4♢, 5♣].Which of these algorithms are not stable?

4

D. Optional Bonus Problems

Part 1: Three-way Mergesort

(Two-way) Mergesort is quite a simple algorithm to describe: to sort n elements, divide the array in half,(recursively) sort each then merge the two halves together. In this exercise, we will study a variant of it:in three-way Mergesort, we divide an array of length n into 3 subarrays of length n
3 , sort each of themand then perform a 3-way merge.

Given 3 sorted subarrays of size n
3 , howmany comparisons are needed (in the worst case) tomerge themto a sorted array of size n? Provide your answer in tilde notation.

What is the order of growth of the number of compares in 3-way Mergesort as a function of the arraysize n? (Here we’re counting the total number, including all recursive calls.)

Given a choice, would you choose 3-way or 2-way mergesort? Justify your answer.

5

Part 2: Counting Inversions

In an array h of n numbers, an inversion is a pair of elements that isn’t sorted; that is, two indices i and jsuch that i < j and h[i] > h[j].
Describe an algorithm to compute the total number of inversions of an array of lengthn in timeΘ(n log n).
Hint: think about how you can modify mergesort to achieve this.

6

	Review: O/ Notation + Elementary Sorts + Mergesort + Comparable/Comparator
	Comparable & Comparator
	Sorting Algorithms
	Spring'24 Midterm Problem
	Comparison-Based Lower Bounds
	Finding the Missing Element
	Stability

	Optional Bonus Problems
	Three-way Mergesort
	Counting Inversions

