¥ C0S226 Precept 10 Fall 25

Precept Outline
+ Review of Lectures 21 and 22:

- Randomness
- Multiplicative Weights
- Decision Stumps and Boosting

A. Review: Randomness and Multiplicative Weights

Your preceptor will briefly review key points of this week’s lectures.

B. Weak Learners and Boosting

In this problem, we will work through a small example of the weak learner you will be required to imple-
ment in the final programming assignment.

A decision stump is a very simple kind of binary classifier for points in k-dimensional space. Its decision
depends on three values:

+ the dimension predictor d,, an integer between 0 and k — 1;
+ the value predictor v, an integer; and
+ the sign predictor s, € {0, 1}.

With these three values, the decision stump outputs a prediction for the label (i.e., either 0 or 1) of a
sample point x = (xg, x1,...,2,—1) as follows:

* if s, = 0, output 0 if z4, < vy, (@nd output 1if x4, > vp);
* if s, =1, output 1if 24, < v, (@nd output 0 if 24, > vp).

(In the following examples the dimension is k = 2, so we can plot the points.)

For example, if d, = 1, v, = 0 and s, = 1, the predicted labels of x = (0,0), y = (100, —-2) and z =
(—100,1) are 1, 1 and 0, respectively.

In the dataset examples below, count the number of correctly classified points (i.e., points whose pre-
dicted label matches the actual label) for the two decision stumps with the following values:

1. dp=1v,=2ands, =0;
2.d,=0,v,=1ands, = 1.

yA =0 o=1 yA E=0 o=1

3 = ® 31 e n

N 7 B
123 x 123 x

(Blue squares denote points labeled 0 and red circles denote points labeled 1. Dimension 0 corresponds
to coordinates in the x axis, while dimension 1 corresponds to the y axis.)

Additionally, determine which one is the best weak learner, i.e. the one that classifies the most points
correctly.

Unfortunately, no decision stump can classify all points correctly in (the first dataset of) the previous
problem. So we will try to get around this by combining multiple decision stumps.

Boosting is a technique that enables us to increase the accuracy of a weak learner (like a decision stump).
To apply it, we first assign a weight to each one of the 4 points, which initially is 1/4 (in general, 1/n weight
for n points). Now we work in iterations, each of which creates a new decision stump based on the current
weights and updates them at the end. After T iterations, we have T decision stumps. To classify a new
point, we take the majority decision of each one of the T" decision stumps (i.e., if more than half of decision
stumps predict 0, then so does the boosted classifier; and likewise for 1).

Each boosting iteration does the following:

* creates a new decision stump for the dataset with the current weights;
+ doubles the weights of misclassified points; and
* renormalizes the weights (i.e., divide each by the sum of all so that they sum to 1 again).

Each decision stump we create chooses d,, v, and s, to maximize the weijght (rather than number) of
correctly classified points.

Run the boosting algorithm in the first dataset above for 3 iterations. Verify that the resulting decision
stumps now correctly label all points (when taking the majority decision).

C. Global Mincut

Recall the global mincut problem: you are given a connected, unweighted, undirected graph G. A cut is
a set of edges which, if removed, disconnects G. The goal is to find the cut that uses the fewest edges.

In lecture you learned one way of solving this problem: Karger's algorithm. It can be summarized in three
steps:

+ Assign a random weight (uniform between 0 and 1) to each edge.
* Run Kruskal's MST algorithm until 2 connected components are left (i.e., add all but the last MST edge).
*+ Output the cut defined by the 2 connected components.

Consider the following graph and set of random edge weights. Run Karger's algorithm with these edge
weights and find the global cut it produces. Is it a mincut? If not, how many crossing edges does the
mincut have?

random
edge weight
A-B 0.2
® ® ac o
B—D 0.7
B—E 0.6
B—F 0.5
C—D 0.8
D—F 0.4
© O ® Er o

D. Optional bonus problems

Part 1: Random spanning trees

In this problem, we'll see how to generate a uniformly random spanning tree in a graph. We'll consider
a few natural ideas and see how they behave on a small graph. (Maze generation is one cool application
of random spanning trees, but they even show up in quantum field theory!)

First, let's consider a small example where we'll test our candidate algorithms:

Draw all spanning trees of the graph above. What are the probabilities of these trees under the uniform
distribution?

Consider the following algorithm for sampling spanning trees from a graph: start with a tree containing
a single (arbitrary) vertex. At each iteration,

1. choose an edge uniformly at random from the edges with exactly one endpoint in the tree;
2. add the edge to the tree; and
3. output the tree once there are no more edges to add.

Show that this algorithm does not generate uniformly random spanning trees. Hint: show that there is a
spanning tree that can only be obtained if its edges are sampled in one particular order.

https://en.wikipedia.org/wiki/Maze_generation_algorithm#Aldous-Broder_algorithm

Consider the following alternative:

1. apply a uniformly random permutation to the edges;
2. run Kruskal's algorithm (without sorting - add edges in the order given by the permutation); and
3. output the resulting spanning tree.

Show that this algorithm does not generate uniformly random spanning trees. Hint: pick one spanning
tree and count how many permutations make the algorithm not select the missing edges.

Note. Aldous-Broder and Wilson’s algorithms are two examples of algorithms that sample uniform span-
ning trees; but they use random walks, where the algorithm may get stuck revisiting nodes in a partial
tree over and over again. (The probability they do do for ¢ steps decreases exponentially with ¢: they're
Las Vegas algorithms, guaranteed to output a uniformly random spanning tree but whose runtime is
random.) This makes the analysis more difficult, but the algorithms have been proven to work.

Bottom line: sampling spanning trees is (also) hard!

	Review: Randomness and Multiplicative Weights
	Weak Learners and Boosting
	Global Mincut
	Optional bonus problems
	Random spanning trees

