¥ C0S226 Precept 1 Spring ‘26

Precept Outline Relevant Book Sections
* Course Introduction * 1.4 (Analysis) and 1.5 (Union-Find)
* Review of Lectures 1 and 2 * 1.1 and 1.2 (Java review)

* Problem Solving

A. Introduction

We're pretty psyched for you to see what we've got in store, but, before we let you loose, here are just a
few words about the format of precept in this course:

Precepts will be a mix of review, problem solving, and discussion. Each precept will start with a
brief review of the lecture contents, followed by solving a mix of exercises in this handout. Many of the
exercises follow the same format as the ones you will find in the midterm and final exams, so precepts
will be good practice for those.

The exercises are meant to be done in pairs. We want to encourage you to talk about the details of
algorithms and data structures with a peer so you can help fill in the blind spots of each other.

These exercises are not graded. You don't have to hand in any solutions and we won't grade any of your
precept work. Students are strongly encouraged to ask questions about the problems. The solutions to
each exercise will be released after all precepts are done.

You are not expected to complete all of the problems in each handout. These handouts are intended
for practice, and explicitly designed to exceed what can feasibly be completed in precept. Indeed, it's very
unlikely to happen in any precept. Some of the problems are marked as “optional”, which means that
they are outside the scope of the course and are intended to be bonus challenge problems.

Attendance is mandatory. Your preceptor will keep track of your attendance (except for this first week),
which will count towards 2.5% of your grade.

B. Review: Analysis and Union-Find

Your preceptor will briefly review key points of this week’s lectures.



C. Analysis

Part 1: Loops

Runtime analysis can be tricky; even short and simple code can be hard to analyze correctly. The key to
mastering this skill is practice, practice, practice. That's what we'll do in this part.

Determine the number of times the function op() is called asymptotically, as a function of n, using both
tilde notation (~) and big Theta notation (©, i.e. order of growth).

1. 2.
| for (int i = 10; i < n + 5; i += 2) t for (int i = 1; 1 <=n *n*n; i *=2)
2 op(); 2 op();
4,
3.
1 for (int 1 = 0; i * i < n; i++)
1 for (int 1 = 0; i < n; i++) 2 for (int j = 1; j < n; j *= 3)
2 for (int j = 0; j < 100; j++) 3 op();
3 op();
6.
5.
1 for (int i = 0@; i < n; i++)
) ] ) ) 2 for (int j = 0; j < 100; j++)
v for (int 1 =0; 1 < n; i++) 3 for (int k = 0; k < n; k++)
2 for (int j = 1; j <n; J *= 2) 4 for (int 1 = k; 1 < n; 1++)
’ PO 5 opQ;




D. Union-Find

Part 1: Find the Bug!

Consider the following (incorrect) implementation of union() in the quick-find data structure. Recall that
the length-n leader[] array is initialized with leader[i] = i for all 4, and that find(i) returns leader[i].

public void union(int p, int q) {

1

2 for (int i = @; i < leader.length; i++)
3 if (leader[i] == leader[pl)

4 leader[i] = leader[ql;

b

Find a number of elements n, a sequence of union() operations, an integer 0 < i < n, and an integer

0 < j < n, such that elements 7 and j belong to the same set but find(i) and find(j) return different
values.

Part 2: Fall'22 Midterm Question

For the items below, assume we initialize a union-find data structure with n elements. Then, we perform
the following sequence of union() operations: union(@, 1), union(@, 2), union(@, 3), ..., union(@, n -

1.

(a) How many total connected components (i.e., disjoint sets) does the resulting data structure contain?

(b) Assume that the data structure implementation is quick-find. How many array updates are made
by these union() operations, as a function of n, in tilde notation? (Recall that our quick-find imple-

mentation of union(p, q) never changes leader([q].)



(c) Assume that the data structure implementation is quick-union, and that we call find(@) after the
sequence of operations above. How many array accesses would find(@) make as a function of nin
O notation? (Recall that our quick-union implementation of union(p,q) operation never changes

parent[q].)

(d) Assume that the data structure implementation is weighted quick-union, and that we call find(@)
after the sequence of operations above. How many array accesses, as a function of n in © nota-
tion, would find(@) make? (Recall that our weighted quick-union implementation of union(p,q)

operation changes parent[q] if both trees have the same size.)




	Introduction
	Review: Analysis and Union-Find
	Analysis
	Loops

	Union-Find
	Find the Bug!
	Fall'22 Midterm Question


