¥ C0S226 Precept 7 - Advanced Fall 25

Precept Outline

* Non-Recursive DFS

* Tarjan's SCC Algorithm

+ Algorithm/Data Structure Design

A. Strongly Connected Components and Tarjan's Algorithm

DFS is a surprisingly versatile algorithm which, with small modifications, can solve problems far beyond
exploring a graph. We've already seen one such application in lecture (finding a topological order), and
will learn another here: finding the strongly connected components of a directed graph.

Let's start with a simpler problem (which will also be useful in the WordNet assignment, and is a building
block towards an SCC algorithm): find a variant of DFS that detects if a graph contains a directed cycle.
Hint: consider the vertices in the function call stack.




A strongly connected component of a graph is a set of vertices with paths between any pair in the set;
equivalently, two vertices are in the same SCCif and only if there is a directed cycle (possibly with repeated
nodes) containing both. Every graph can be partitioned into SCCs."

Design a variant of DFS that finds all connected components of a graph; more precisely, populate an id[]

array so that id[v] == id[w] if and only if vand w are in the same SCC. (This is known as Tarjan’s algorithm.)
Hint: as a first step, consider how to augment the cycle detector to a cycle finder.

'For those interested in why and the math behind it: the condition "contained in the same directed cycle" is an equivalence
relation on vertices, so SCCs are equivalence classes.



B. Non-Recursive DFS

We've seen a recursive implementation of DFS and a non-recursive one of BFS in this course. A natural
question to ask is whether we can make DFS non-recursive (both as an intellectual curiosity, and to make
it more efficient).

Let's start with a warm-up: show that replacing Queue<Integer> with Stack<Integer> in BreadthFirstDi
rectedPaths (as well as enqueues/dequeues by pushes/pops) yields a graph search algorithm that is not
DFS. In particular, find a graph such that neither the sequence or pushed nor the sequence of popped
vertices under this algorithm matches the DFS preorder.

Design a non-recursive linear-time DFS using a Stack<Integer> auxiliary object. Your stack may store
O(F) space.




Design a non-recursive DFS linear-time using one or more auxiliary stacks and arrays with O(V') worst-
case space requirements. Hint: mimic the recursive DFS implementation.




C. Algorithm Design
This problem was adapted from the Fall’24 Final Exam.

Design an algorithm that, given a graph G, a start vertex s, and a target vertex ¢, determines whether
there exists a directed path of even length from s to ¢.

The algorithm should run in O(E + V') time in the worst case, where V' is the number of vertices and E
is the number of edges in G.




	Strongly Connected Components and Tarjan's Algorithm
	Non-Recursive DFS
	Algorithm Design

