¥ C0S226 Precept 6 - Advanced Fall 25

Precept Outline
+ Uniform hashing assumption
* Universal hashing and pairwise uniformity

A. Uniform Hashing Assumption

In our discussion of hash functions, there is an elephant in the room that we never really addressed: we
adopt the uniform hashing assumption, haven’t shown you any examples of functions that satisfy it.

Let's start by proving this is impossible: show that there is no function h: K — [m] (where K is the
set of keys, e.g., all 4-byte integers or 8-byte doubles) such that, for all z € K and i € [m], we have
P[h(x) = i] = 1/m. Hint: don't overthink it!

B. Universal Hashing

The (formal) to this conundrum is to pick a random function instead;’ more precisely, given a family of
hash functions #H (with domain K and codomain [m]), we sample a uniformly random h < H before
any operations and use it throughout the lifetime of the hash table. (Concretely, we would add an in-
stance variable hashFunction and assign it hashFamily[StdRandom.uniformInt(hashFamily.length)] in
the constructor.)

A family of hash functions is called universal if, for all keys x,y € K with x # y, we have
Plh(z) = h(y)] < 1/m.
(Note that only & is random, whereas = and y are not.)

For each of the families of functions below, either prove its universality or prove that itis not (by finding a
pair of distinct keys that collide with probability # 1/m). For simplicity, assume that m is a prime number
(so you can use the fact that every y € [m — 1] is invertible modulo m); and that K = [m)].

* Hi ={hy: b€ [m]}, where hy(z) =z + b (mod m).
* Ho ={hg :a € [m— 1]}, where hy(z) = a -z (mod m).
* Hz ={hq : a € [m]}, where hy(z) = a -z (mod m).

* Hy = {he: c € [m]}, where he(z) = (x + ¢)? (mod m).

'A solution widely used in practice is to forgo the uniform hashing assumption entirely and make an assumption on the
“unpredictability” of the output; see, e.g., the AES cipher.


https://en.wikipedia.org/wiki/Advanced_Encryption_Standard

* Hs = {hq : a € [m]}, where hy(z) = a - 22 (mod m).

* He = {hap : a € [m],b € [m]}, where hy () =a-x+b (mod m).

(Notice that sampling from #g is equivalent to sampling uniform a and b independently.)




C. Pairwise Independence

A stronger property that hash functions is pairwise independence, also known as strong universality: for
any pair z,y € K of keys and z, w € [m] of hash values,

1
Plh(z) = z and h(y) = w] = et
(Equivalently, the hash values of two distinct keys are uniform and independent.)

For each family of functions above, either prove that is satisfies pairwise independence or give a coun-
terexample (a pair of keys and values such that the probability is # 1/m?).




D. Boolean Hash Functions

As a warm-up, consider the function h: {0,1} — {0,1} generated as follows: sample two uniformly
random and independent bits a, b <— {0, 1} and set h(x) = (a-z)®b(where @ is the XOR operation, given
by0@zr=zandl1 @z =1—xforze {0,1}).

What is the probability that (h(0), (1)) = (x,y) for each =,y € {0,1}??

Now let m < n and consider the hash function h: {0,1}" — {0, 1}™, where for each 4, the i" bit of h(x)
is generated by sampling a;,b; « {0,1} and setting h;(z) = (a; - ;) ® b;. (All a; and b; are uniform and
independent.)

Show this family of functions does not satisfy pairwise independence, namely, that there are four bit
strings « # a2’ € {0,1}" and y,y' € {0,1}"™ such that the probability that h(z) = y and h(z") = ¢ is not
1/2m+1,

Consider the following alternative definition of h: {0,1}" — {0,1}™: for each i, the it" bit of h(z) is
generated by sampling a;1, a;o, . . ., ain, b; < {0,1} and setting h;(x) = (a;1 - 1) @ -+ ® @i - T, D b;. (All
a;; and b; are uniform and independent).

Show that this does satisfy pairwise independence.



Finally, show that h does not satisify 4-wise independence: find four strings z,y, z,w € {0, 1}" such that,
for every h, the value of h(w) is completely determined by h(x), h(y) and h(z).




	Uniform Hashing Assumption
	Universal Hashing
	Pairwise Independence
	Boolean Hash Functions

