¥ C0S226 Precept 5 - Advanced Fall 25

Precept Outline
* Binary Search Trees

- Rank and Selection
- Deletion

« Midterm Review

A. Rank, Selection and Deletion

In this section, let n be the number of nodes in a (not necessarily balanced) binary search tree. Feel free
to modify the Node class if it helps implement the required methods.

Part 1: Rank and Selection

First, as a warm-up: describe how to implement Key min() and Key max (), which return the minimum and
maximum keys in the tree, respectively.

Now, describe how to implement int rank(Key key), which returns the rank (the number of nodes with
smaller keys) of key key.




Finally, describe how to implement Key select(int rank), which returns the key of rank rank.

Part 2: Deletion

Describe how to implement the method deleteMin(), which deletes the node with minimum key in the
BST.

Describe how to implement the method delete(Key key), which deletes the node with key key, if any, in
the BST. Hint: consider the node of rank rank (key) + 1.




B. Midterm Review

Part 1: Data Structure Design

Suppose that there are two teams of players that can play each other in head-to-head matches. Each
player has a certain rating, which is an integer value, and two players can play each other if they have the
same rating (otherwise it isn't a balanced match). Design a data structure that computes the maximum
number of distinct matches that the two teams can play at any point. The data structure should support
2 operations. The first, addPlayer(rating, team) adds a new player of rating equal to rating and adds
it to team team, which can be 1 or 2. The second operation, numberOfMatches(), returns the maximum
number of distinct matches that can be played by elements of team 1 versus elements of team 2 (see the
example below for more information).

public class MatchMaker

MatchMaker () creates two empty teams
void addPlayer(int rating, int team) adds player of rating to team

int numberOfMatches() returns the maximum number of matches that can be played

Full credit: The addPlayer() method should run in O(logn) time in the worst case and the numberOf
Matches() method should run in ©(1) time.
Partial credit: The addPlayer() method should run in O(n) time in the worst case and the numberOf
Matches() method should run in ©(1) time.

Example

MatchMaker mm = new MatchMaker();

mm.addPlayer(10@, 1); // Team 1: {100: 1}
mm.addPlayer (200, 1); // Team 1: {100: 1, 200: 1}
mm.addPlayer (100, 2); // Team 2: {100: 1}, Matches = 1

mm.addPlayer (200, 2); // Team 2: {100: 1, 200: 13}, Matches = 2
mm.addPlayer (100, 1); // Team 1: {100: 2, 200: 1}, Matches = 2
StdOut.println(mm.numberOfMatches()); // Output: 2

mm.addPlayer (100, 2); // Team 2: {100: 2, 200: 1}, Matches = 3

StdOut.println(mm.numberOfMatches()); // Output: 3

The first call of numberOfMatches() outputs 2 since we can match the two 200 rating players together as
well as the one 100 rating player from team 2 with one of the 100 rating players from team 1. The second
call can match each player to a different player, resulting in 3 total matches.

In the space provided, give a concise English description of your solution to the constructor, the addPlayer()
and the numberOfMatches() methods. You may use any of the algorithms and data structures that we have
considered in this course (e.g., lectures, precepts, textbook, assignments) as subroutines. If you modify any of
them, be sure to describe the modification. Feel free to use code or pseudocode to improve clarity.



Part 2: Algorithm Design

Alength-n integer array a[] is single-peaked if there exists 0 < k < n—1 such that the subarray from index
up to (and including) & is strictly increasing, and the subarray from index k until n—1 is strictly decreasing.
The entry al[k] is called the peak. For example, the array al[1={3, 6, 7, 10, 4, 1} is a single-peaked with
peak 10, but the array a[1={3, 6, 7, 10, 4, 5} is not.

Design an algorithm that receives as input a single-peaked array with n distinct elements, and outputs the
peak of the array. Specify the running time of your solution.

Full credit: The running time of the algorithm must be O(logn).
Partial credit: The running time of the algorithm must be O(n).




	Rank, Selection and Deletion
	Rank and Selection
	Deletion

	Midterm Review
	Data Structure Design
	Algorithm Design


