

INTRACTABILITY

- ▶ *introduction*
- ▶ *computational problems*
- ▶ *poly-time algorithms*
- ▶ *P vs. NP*
- ▶ *poly-time reductions*
- ▶ *coping with intractability*

<https://algs4.cs.princeton.edu>

Overview: introduction to advanced topics

Main topics. [final two lectures]

- **Intractability:** barriers to designing efficient algorithms.
- **Algorithm design:** general paradigms for solving computational problems.

Shifting gears.

- From individual problems to problem-solving models.
- From linear/quadratic to poly-time/exponential scale.
- From implementation details to conceptual frameworks.

Goals.

- Introduce you to essential ideas.
- Place algorithms and techniques we've studied in a larger context.

INTRACTABILITY

- *introduction*
- *computational problems*
- *poly-time algorithms*
- *P vs. NP*
- *poly-time reductions*
- *coping with intractability*

Fundamental questions

Q1. What is an **algorithm**?

Q2. What is an **efficient** algorithm?

Q3. Which problems are **intractable**?

Q4. How can we **cope** with intractability?

Q5. How can we **benefit** from intractability?

Integer multiplication

$$37 \cdot 79 = ?$$

Integer factorization

$$\textcolor{brown}{?} \cdot \textcolor{brown}{?} = 2881$$

?

•

?

=

12301866845301177551304949583
84962720772853569595334792197
32245215172640050726365751874
52021997864693899564749427740
63845925192557326303453731548
26850791702612214291346167042
92143116022212404792747377940
80665351419597459856902143413

\$50,000
RSA factoring challenge
2 years, team of mathematicians

Integer multiplication

367460436667995
904282446337996
279526322791581
643430876426760
322838157396665
112792333734171
433968102700927
98736308917

•

334780716989568
987860441698482
126908177047949
837137685689124
313889828837938
780022876147116
525317430877378
14467999489

=

?

Computed in a split second by a standard laptop!

INTRACTABILITY

- ▶ *introduction*
- ▶ **computational problems**
- ▶ *poly-time algorithms*
- ▶ *P vs. NP*
- ▶ *poly-time reductions*
- ▶ *coping with intractability*

Integer multiplication: computationally easy

MULTIPLY. Given positive integers x and y , compute $x \cdot y$.

Ex.

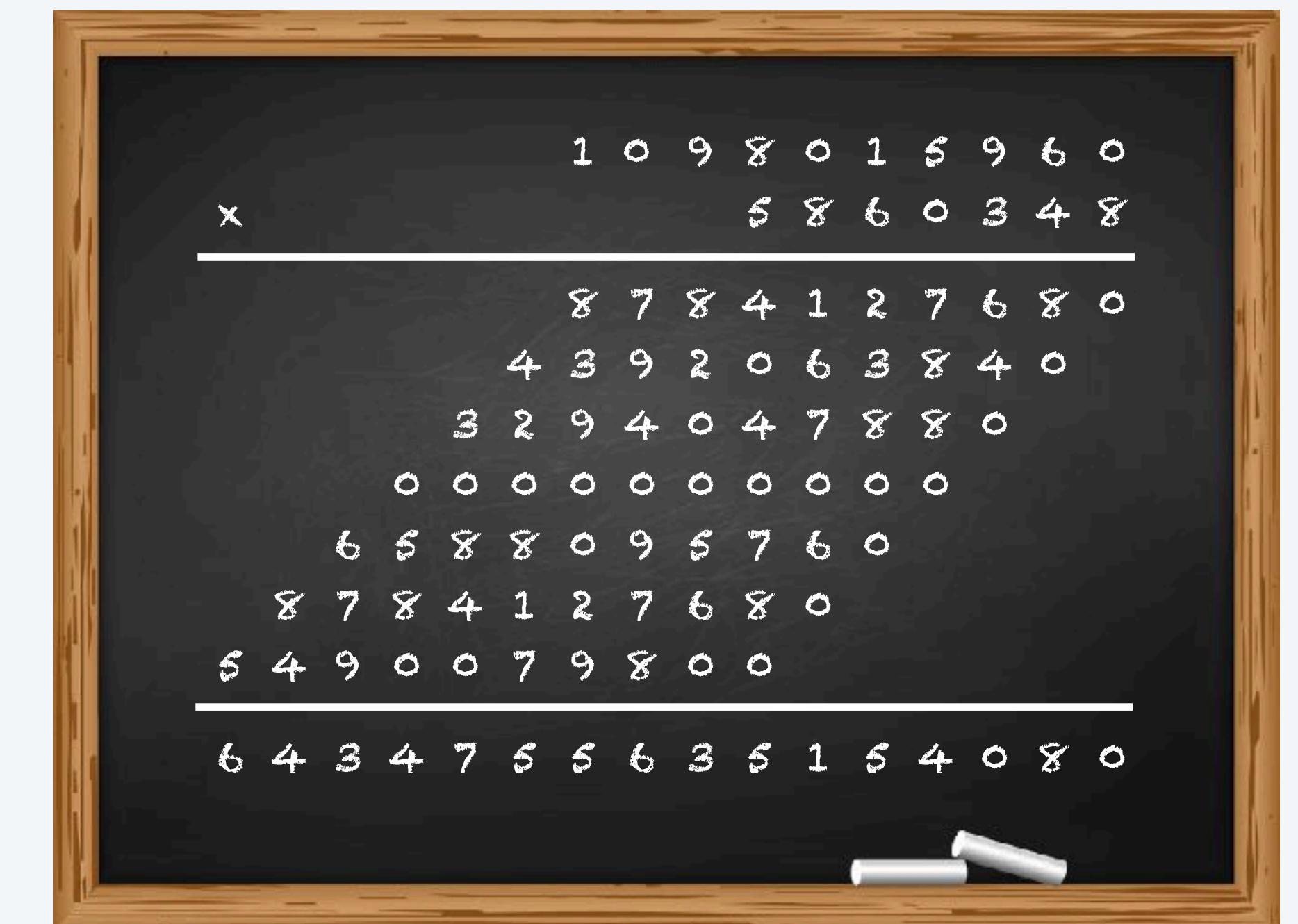
$$x = 1098015960$$

$$y = 5860348$$

$$xy = 6434755635154080$$

a MULTIPLY instance

the product



Algorithm. Grade-school multiplication runs in time $\Theta(n^2)$, where

n is the number of digits in x and y .

Integer factorization: computationally hard?

FACTOR. Given positive integer x , find a nontrivial factor. \leftarrow *or report that no such factor exists*

between 1 and x

Ex. 147573952589676412927

a FACTOR instance

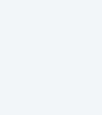
193707721

a factor

2519590847565789349402718324004839857142928212620403
2027777137836043662020707595556264018525880784406918
2906412495150821892985591491761845028084891200728449
9268739280728777673597141834727026189637501497182469
1165077613379859095700097330459748808428401797429100
6424586918171951187461215151726546322822168699875491
8242243363725908514186546204357679842338718477444792
0739934236584823824281198163815010674810451660377306
0562016196762561338441436038339044149526344321901146
5754445417842402092461651572335077870774981712577246
7962926386356373289912154831438167899885040445364023
527381951378636564391212010397122822120720357

Brute-force search. Try all possible divisors between 2 and \sqrt{x} .

Applications. Cryptography. [stay tuned]



*a nontrivial factor $> \sqrt{x}$
implies another $< \sqrt{x}$*

a very challenging FACTOR instance
(factor to earn an A+ in COS 226)

How difficult can it be?

Imagine a galactic computer...

- With as many processors as electrons in the universe.
- Each processor having the power of today's supercomputers.
- Each processor working for the lifetime of the universe.

quantity	estimate
<i>electrons in universe</i>	10^{79}
<i>instructions per second</i>	10^{13}
<i>age of universe in seconds</i>	10^{17}

Q. Could galactic computer factor a 300-digit integer using brute-force search?

A. Not even close: $\sqrt{10^{300}} = 10^{150} \gg 10^{79} \cdot 10^{13} \cdot 10^{17} = 10^{109}$.

Lesson. Exponential growth dwarfs technological change.

Boolean satisfiability: computationally hard?

SAT. Given a system of boolean equations, find a satisfying truth assignment. ← *or report that no such assignment is possible*

Ex.

$$\begin{array}{llllllll} \neg a & \text{or} & \neg b & \text{or} & \neg c & = & \text{true} \\ a & \text{or} & b & \text{or} & d & = & \text{true} \\ \neg a & \text{or} & \neg b & \text{or} & \neg d & = & \text{true} \\ a & \text{or} & b & \text{or} & c & = & \text{true} \\ a & \text{or} & \neg b & & & = & \text{true} \end{array}$$

a SAT instance

$$\begin{array}{llll} a & = & \text{true} \\ b & = & \text{true} \\ c & = & \text{false} \\ d & = & \text{false} \end{array}$$

a satisfying truth assignment

Brute-force search. Try all 2^n truth assignments (where n is number of variables).

Applications. Automatic software verification, mean field diluted spin glass model, EDA...

← *equivalent to P ≠ NP*

Remark. More “evidence” of hardness than **FACTOR**.

INTRACTABILITY

- ▶ *introduction*
- ▶ *computational problems*
- ▶ ***poly-time algorithms***
- ▶ *P vs. NP*
- ▶ *poly-time reductions*
- ▶ *coping with intractability*

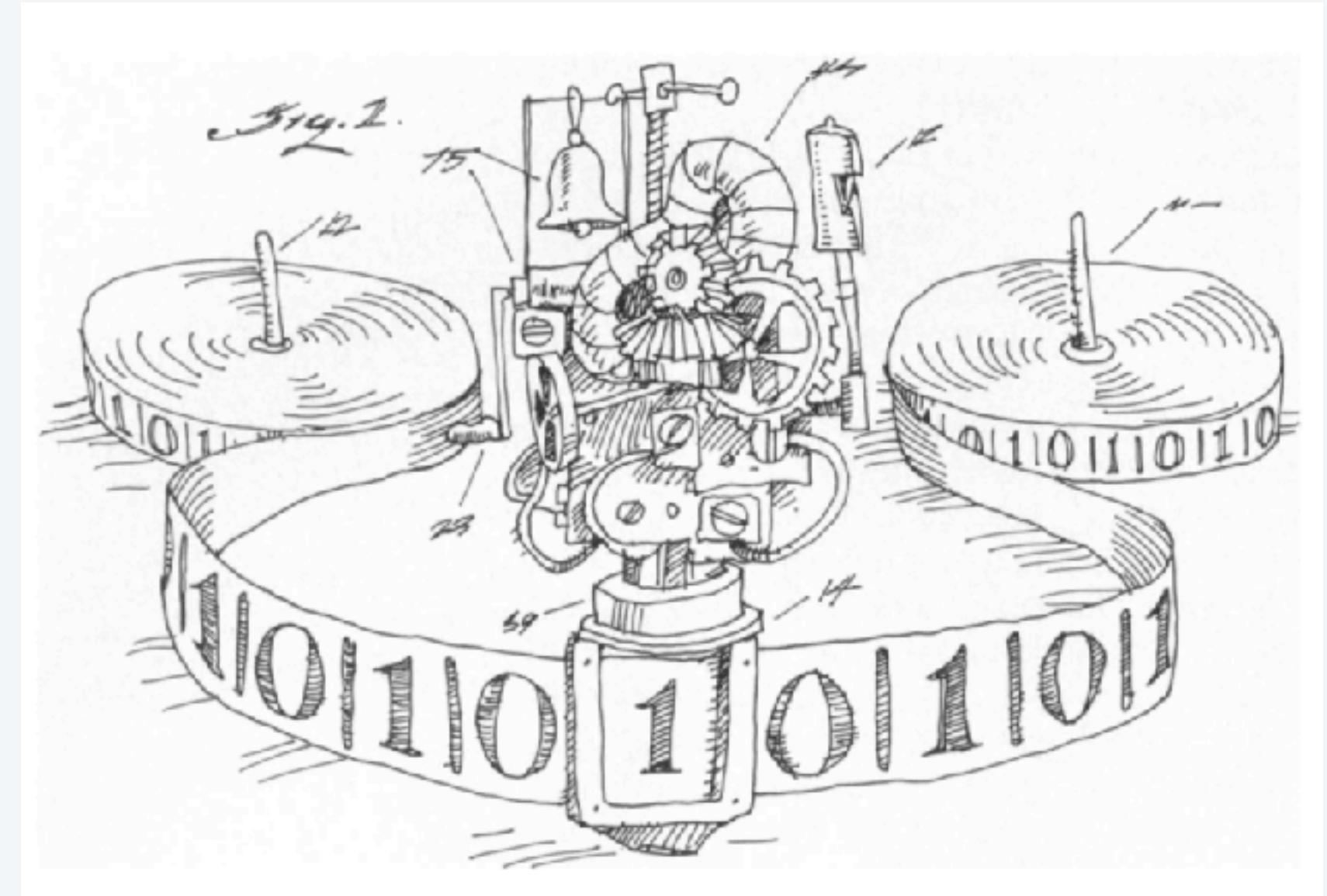
Algorithm

Q1. What is an **algorithm**?

A1. Formally, a **Turing machine**!

Equivalently, a program in Java, Python, C++, ...

Church-Turing thesis. Any computational problem that can be solved by a physical system can also be solved by a Turing machine.



A Turing machine

Efficient algorithm

Q2. What is an **efficient algorithm**?

A2. One with worst-case running time polynomial in the *size of its input*.

Polynomial time. Number of elementary operations is $\leq an^b$ for some constants a, b .

$n = \# \text{ of bits in input}$

Context. We use **poly-time** as a surrogate for **efficient** in practice.

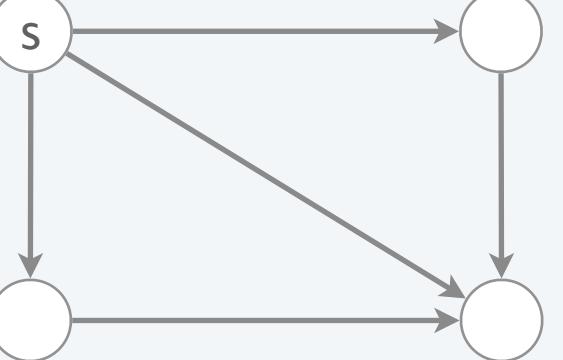
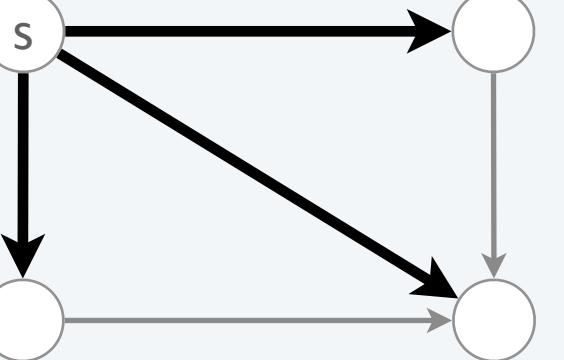
- Robust.
- Closed under composition.
- In practice, constants tend to be small.

order	emoji	name	today
$\Theta(1)$	😍	constant	😊
$\Theta(\log n)$	😎	logarithmic	😊
$\Theta(n)$	😊	linear	😊
$\Theta(n \log n)$	😊	linearithmic	😊
$\Theta(n^2)$	😢	quadratic	😊
$\Theta(n^3)$	😢	cubic	😊
$\Theta(n^{\log n})$	😱	quasipolynomial	😡
$\Theta(1.1^n)$	😭	exponential	😡
$\Theta(2^n)$	😈	exponential	😡
$\Theta(n!)$	😈	factorial	😡

Which of the following are poly-time algorithms?

- A. Brute-force search for boolean satisfiability.
- B. Brute-force search for integer factoring.
- C. Both A and B.
- D. Neither A nor B.

Some computational problems

problem	description	example instance	a solution	poly-time algorithm
SHORTEST-PATHS <i>(single-source shortest paths)</i>	given an unweighted graph, find the shortest paths from source			BFS
PRIME <i>(primality)</i>	is the given integer prime?	53	yes	Agrawal-Kayal-Saxena
JAVA <i>(Java compilation)</i>	given a text file, compile into Java byte code	Percolation.java	Percolation.class	javac
FACTOR <i>(integer factorization)</i>	given a positive integer, find a nontrivial factor	147573952589676412927	193707721	?
BITCOIN <i>(bitcoin mining)</i>	given 76 bytes, find 4 bytes such that concatenation hashes to \leq target	0020b128b5fe690...7995389f1	995389f1	?
:	:	:	:	:

Types of computational problems

Search problem. Find a solution.

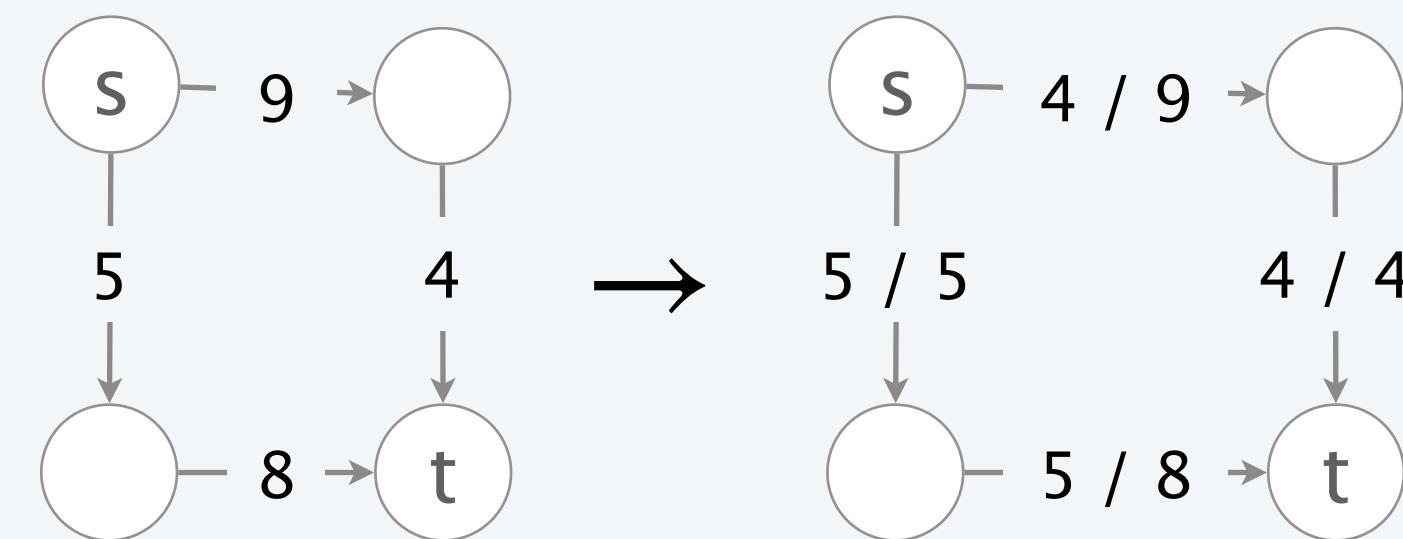
Decision problem. Does there exist a solution?

Optimization problem. Find the best solution.

Function problem. Compute the output of a mathematical function.

$2881 \rightarrow$ 43 or
67

53 \rightarrow yes



Factoring: a search problem

Primality: a decision problem

Maxflow: an optimization problem

$43 \cdot 67 \rightarrow 2881$

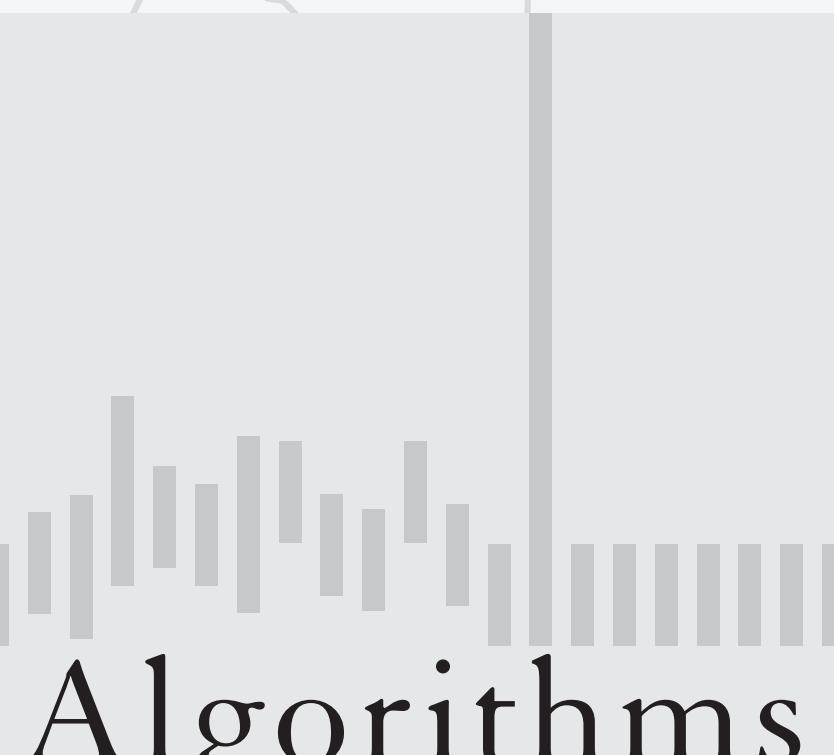
Multiplication: a function problem

Remarks.

- Problems often naturally formulated in one regime.
- Types are not technically equivalent, but conclusions generalize.
- Definitions of **P** and **NP** are in terms of **decision problems**.

INTRACTABILITY

- ▶ *introduction*
- ▶ *computational problems*
- ▶ *poly-time algorithms*
- ▶ **P vs. NP**
- ▶ *poly-time reductions*
- ▶ *coping with intractability*

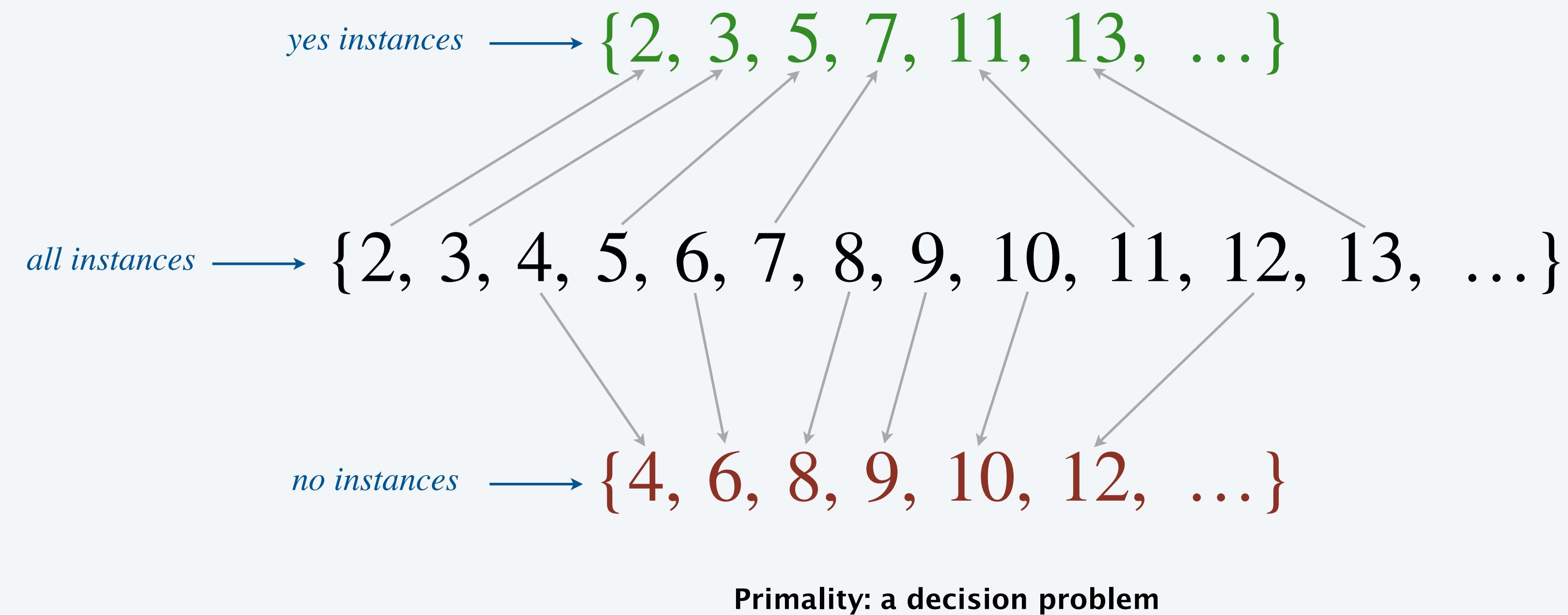


ROBERT SEDGEWICK | KEVIN WAYNE

<https://algs4.cs.princeton.edu>

Decision problems

A **decision problem** is a partition of input strings into **yes**-instances and **no**-instances.



The P complexity class

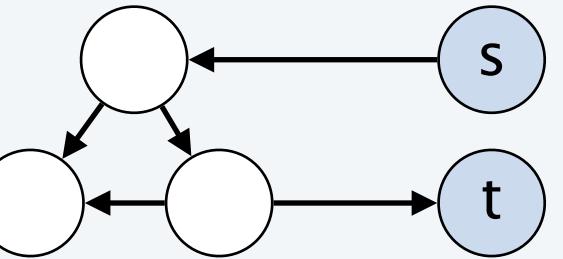
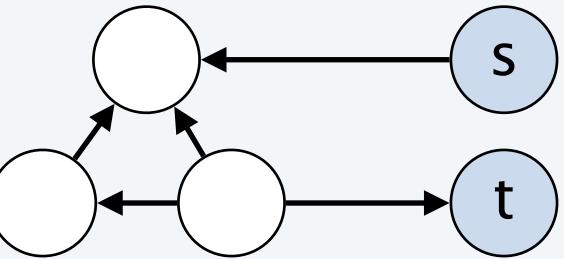
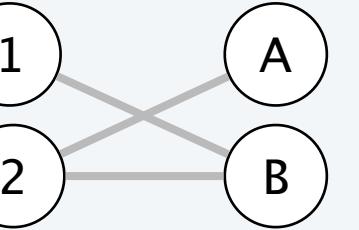
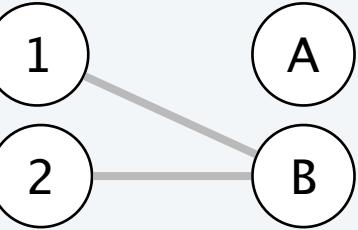
Solving a decision problem. Designing an algorithm that, on every instance x , outputs the correct **yes** or **no** classification.

Definition. **P** is the set of all decision problems that are **solvable in polynomial time**.

Some computational decision problems

problem	description	example yes instance	example no instance	poly-time algorithm	In P?
PRIME	is the integer x prime?	$x = 53$	$x = 10$	<i>Agrawal-Kayal-Saxena</i>	✓
COMPOSITE	is the integer x composite (not prime)?	$x = 10$	$x = 53$	<i>Agrawal-Kayal-Saxena</i>	✓
COPRIME	are the nontrivial factors of integers x and y disjoint?	$x = 10$ $y = 14$	$x = 10$ $y = 21$	<i>Euclid's GCD algorithm</i>	✓
3-SUM	is there a triple in array a that sums to 0?	$a = [-1, 1, 0]$	$a = [-1, 1, 2]$	<i>check all triples with nested for loop</i>	✓
JAVA	is the text file a legal Java program?	any assignment file (that compiles)	Percolation { }	<code>javac</code>	✓

Some computational decision problems

problem	description	example yes instance	example no instance	poly-time algorithm	In P?
ST-CONN	is there a path from s to t ?			BFS	✓
BIPARTITE-MATCHING	is there a perfect matching in G ?			Ford-Fulkerson	✓
SAT	is system Φ of boolean equations satisfiable?	$a \text{ and } (\neg a \text{ or } \neg b)$	$a \text{ and } \neg a$?	?
FACTOR	does x have nontrivial factor $\leq k$?	$x = 49$ $k = 7$	$x = 49$ $k = 5$?	?
:	:	:	:	:	:

The NP complexity class

Definition. NP is the set of all decision problems that are **verifiable** ← *as opposed to “solvable” (P)* in polynomial time.

Definition’. NP is the set of all decision problems for which a **yes** instance can be verified, provided a **witness**, in polynomial time.

The NP complexity class

Definition. NP is the set of all decision problems for which a **yes** instance can be verified, provided a **witness**, in polynomial time.

*often, solution of the
search problem.
a.k.a. certificate*

Examples.

- **SAT**: Is the given system Φ of boolean equations satisfiable?
 - **Witness**. A boolean assignment that satisfies every equation.
 - **Verification algorithm**. Output **yes** if the assignment satisfies Φ (and **no** otherwise).

$\neg a \quad \text{or} \quad \neg b = \text{true}$
 $a = \text{true}$

SAT instance

$a = \text{true}$
 $b = \text{false}$

witness

The NP complexity class

Definition. NP is the set of all decision problems for which a **yes** instance can be verified, provided a **witness**, in polynomial time.

$x = 2881$

$k = 50$

Examples.

- **FACTOR:** Given integers x and $k < x$, does x have a nontrivial factor $\leq k$?
 - **Witness.** A nontrivial factor $y \leq k$ of x .
 - **Verification algorithm.** Output **yes** if $1 < y \leq k$ and y divides x (and **no** otherwise).

FACTOR instance

$y = 43$

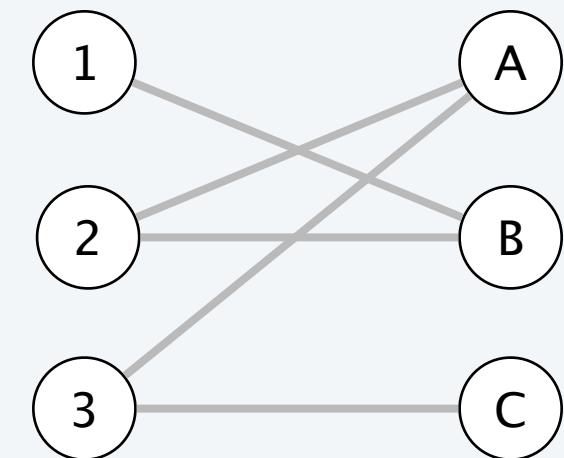
witness

The NP complexity class

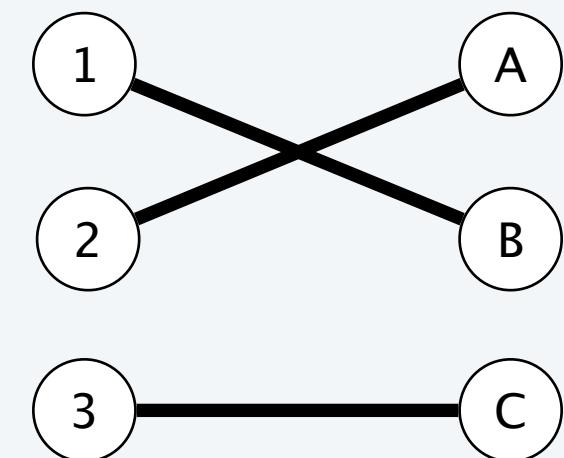
Definition. NP is the set of all decision problems for which a **yes** instance can be verified, provided a **witness**, in polynomial time.

Examples.

- **BIPARTITE-MATCHING:** Does the given a bipartite graph G have a perfect matching?
 - **Witness.** A subset of edges M that is a perfect matching in G .
 - **Verification algorithm.** Output **yes** if every vertex of G is incident to exactly one edge in M (and **no** otherwise).



BIPARTITE-MATCHING instance



witness

Remark 1. An NP verifier does *not* find a witness, and must output **no** if given a **no** instance (with any purported witness) as input.

Remark 2. NP problems can be solved in exponential time by verifying all witnesses.

Some NP problems

problem	instance	description	witness	verification algorithm
Any problem Q in \mathbf{P}	x	is x a yes instance of Q ?	$w = \text{empty string}$	algorithm that solves Q
SAT	system Φ of boolean equations	is Φ satisfiable?	$w = \text{true/false assignment for all variables}$	plug w into equations of Φ , check that all evaluate to true
LONGEST-ST-PATH	weighted digraph G , source s , target t and integer k	is the length of the longest simple st -path $\geq k$?	$w = st\text{-path with } \geq k \text{ edges}$	check that w does not repeat vertices and is $\geq k$ edges of G
BITCOIN	positive integers x and t	is there y such that $h(x \circ y) \leq t$?	$w = y$	check that $h(x \circ y) \leq t$
:	:	:	:	:

Which of these problems are (known to be) in NP?

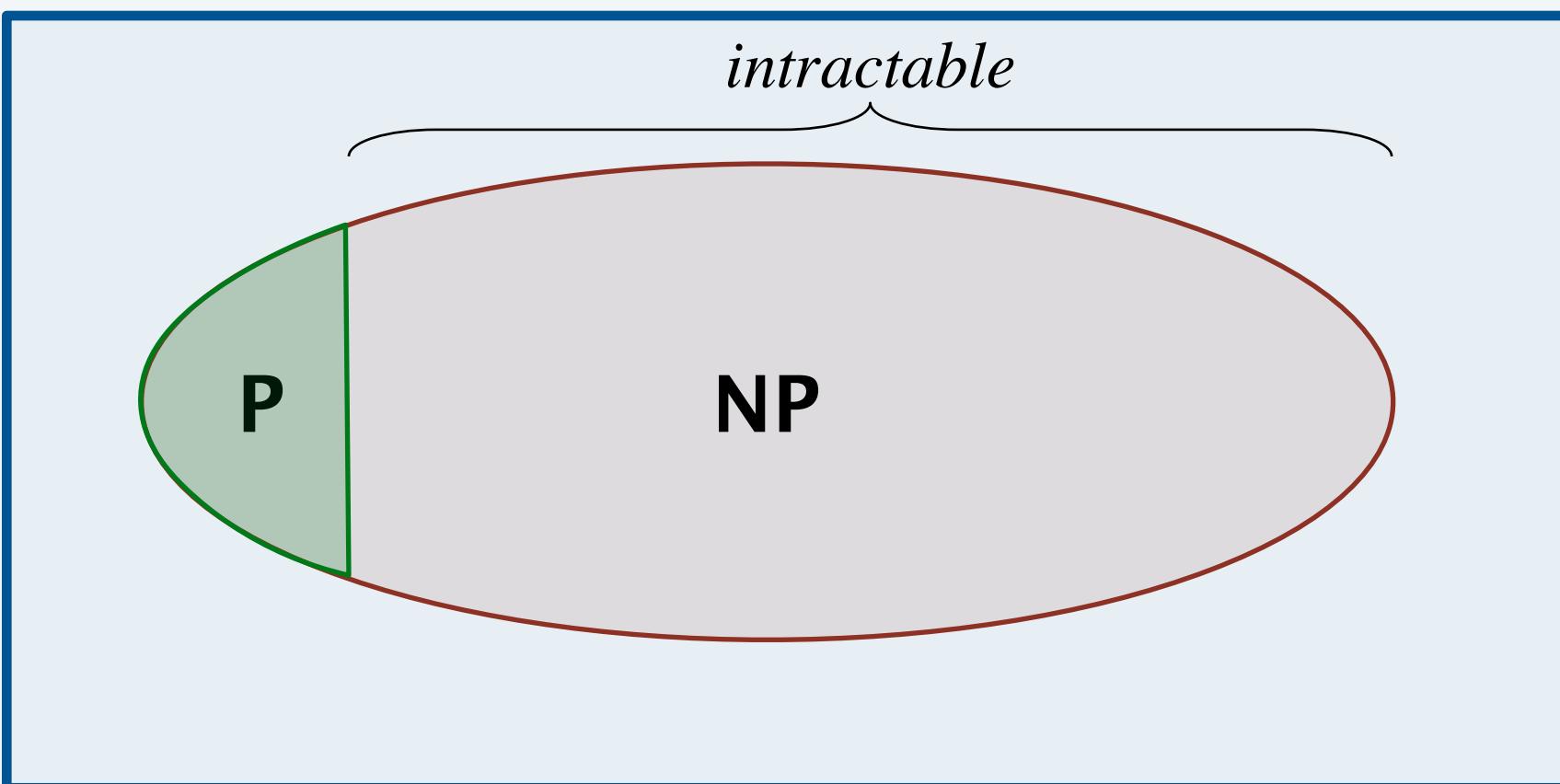
- A. Given a graph G , find a simple path with the most edges.
- B. Given a graph G and an integer k , is there a simple path with $\geq k$ edges?
- C. Both A and B.
- D. Neither A nor B.

P vs. NP

The central question. Does $P = NP$?

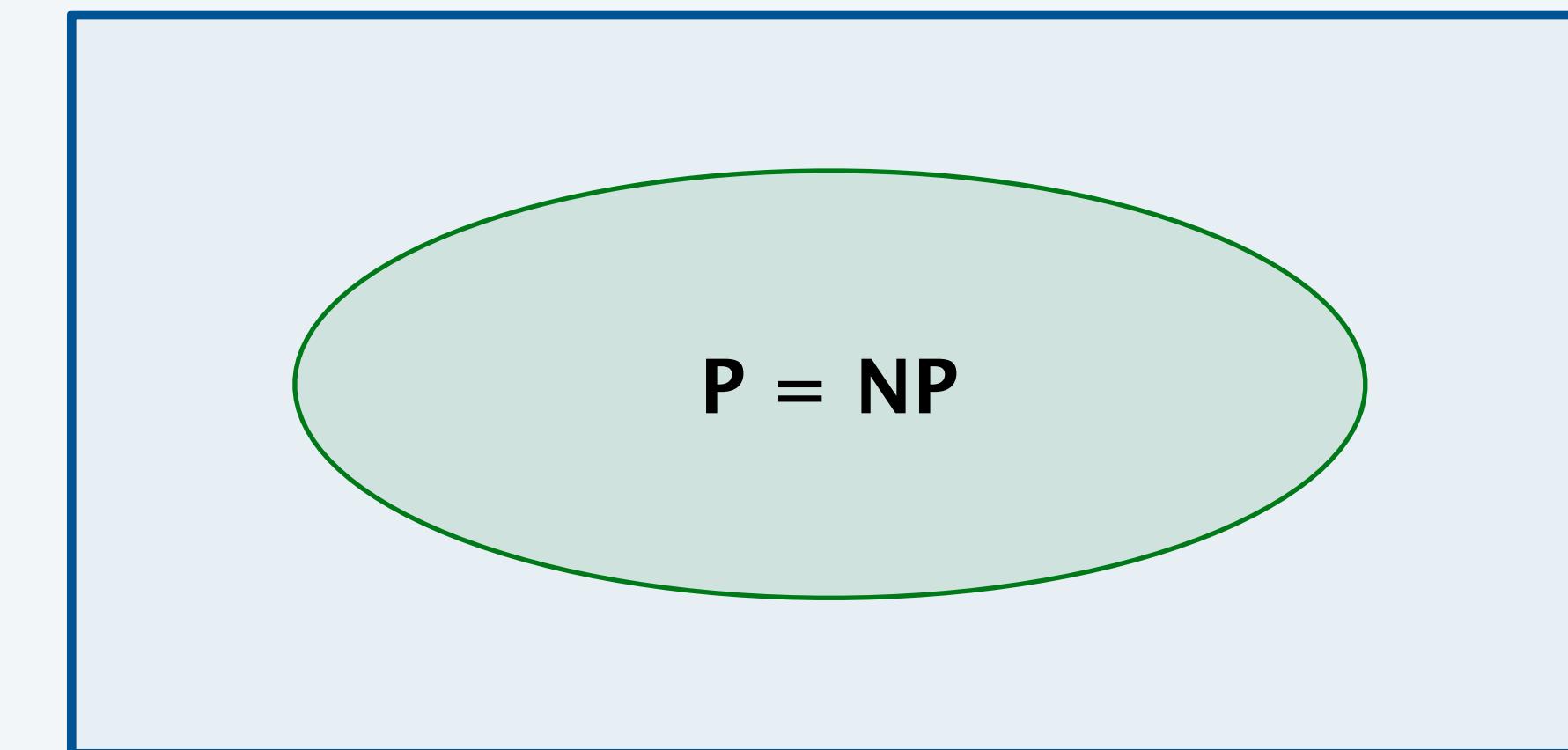
- P = set of decision problems **solvable** in poly-time.
- NP = set of decision problems **verifiable** in poly-time (given witness).

Two possible worlds. Since NP contains P , \leftarrow *empty string serves as witness*



$P \neq NP$

*brute-force search may be
the best we can do*



$P = NP$

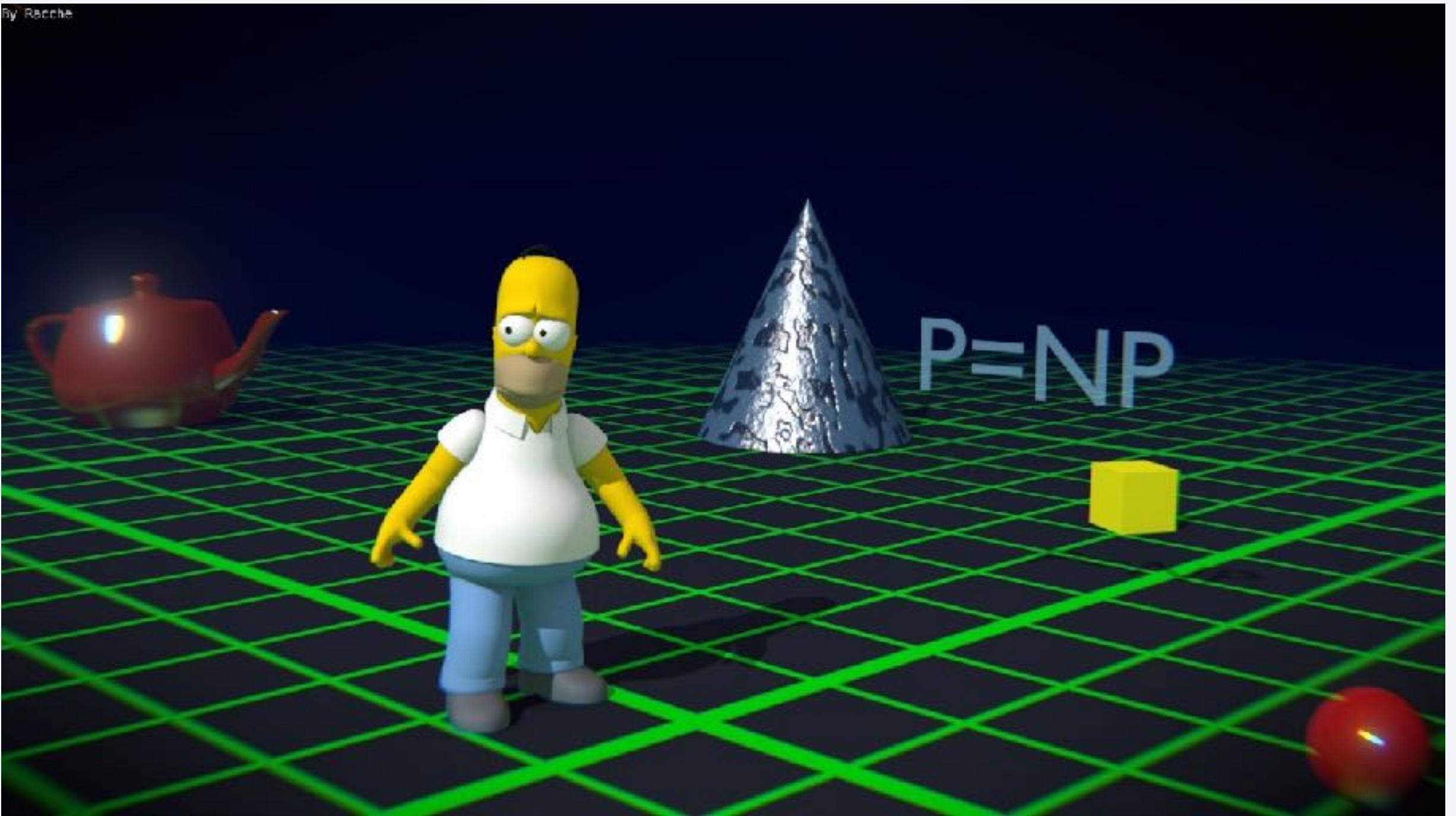
*poly-time algorithms for
FACTOR, SAT, LONGEST-ST-PATH, ...*

Consensus opinion. $P \neq NP$. \leftarrow *but nobody has been able to
prove or disprove (!!?)*

P vs. NP

The central question. Does $P = NP$?

- P = set of decision problems **solvable** in poly-time.
- NP = set of decision problems **verifiable** in poly-time (given witness).



Why P vs. NP is so central?

Analogy. Creative genius vs. ordinary appreciation of creativity.

domain	problem	witness/certificate
<i>mathematics</i>	find a proof of a conjecture	mathematical proof
<i>engineering</i>	given constraints (size, weight, energy), find a design (bridge, medicine, computer)	blueprint
<i>science</i>	given data on a phenomenon, find a theory explaining it	scientific theory
<i>the arts</i>	write a beautiful poem/novel/pop song; draw a beautiful painting	poem, novel, pop song, painting
<i>programming</i>	write a program to solve a problem	program

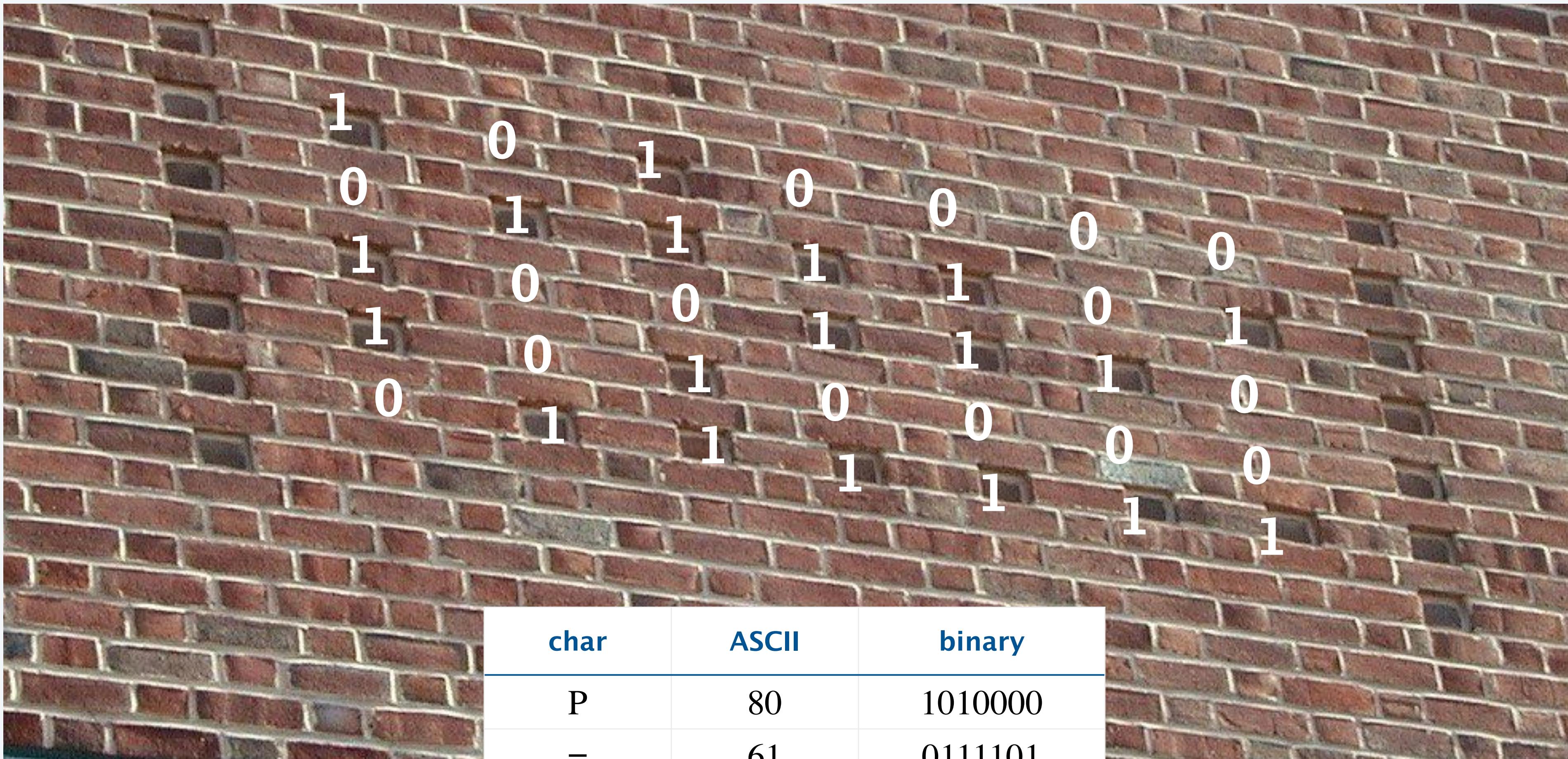
creative genius (NP)

ordinary appreciation (P)

Intuition. Verifying a solution should be way easier than finding one.

Princeton computer science building

Princeton computer science building (closeup)



INTRACTABILITY

- ▶ *introduction*
- ▶ *computational problems*
- ▶ *poly-time algorithms*
- ▶ *P vs. NP*
- ▶ ***poly-time reductions***
- ▶ *coping with intractability*

Bird's-eye view

Design strategy. Suppose we can solve problem X efficiently.

Which other problems can we solve efficiently?

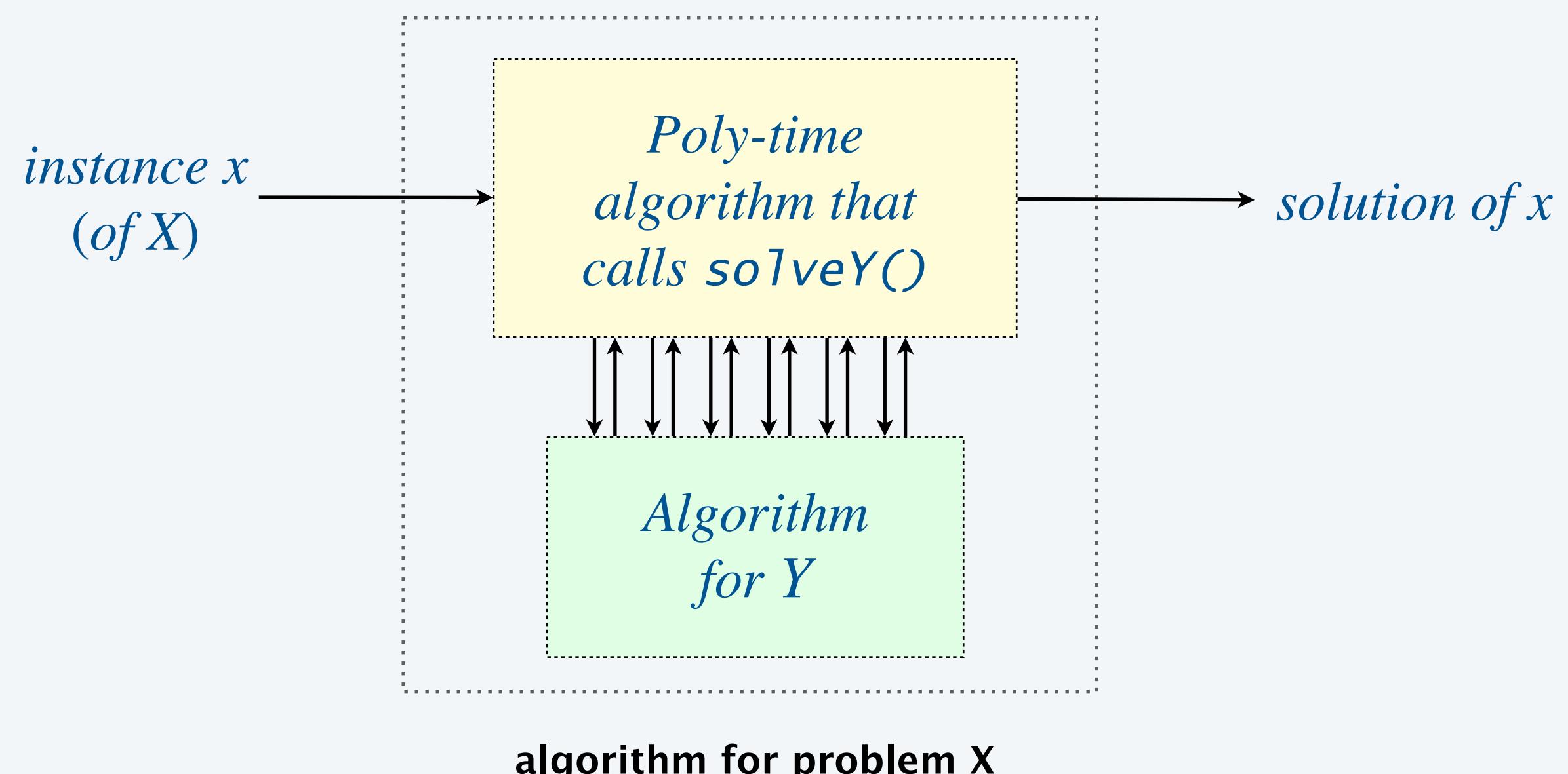
“Give me a lever long enough and a fulcrum on which to place it, and I shall move the world.” — Archimedes

Poly-time reduction

Definition. Problem X poly-time reduces to problem Y ($X \leq Y$) if $\xleftarrow{\quad}$ *Cook reduction*

X can be solved with:

- Polynomial number of elementary operations.
- Polynomial number of calls to algorithm for Y .



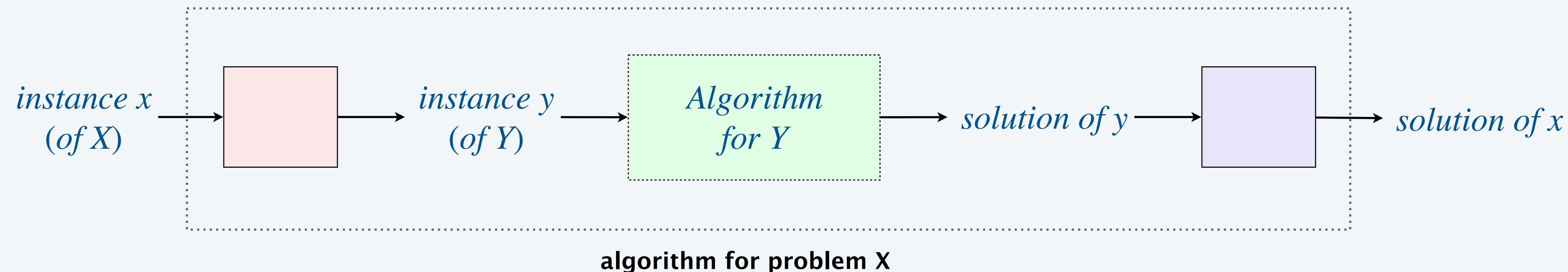
Remark. We can reduce to/from search, decision or optimization problems.

Poly-time reduction

Important special case. Problem X poly-time reduces to problem Y if \leftarrow Levin reduction (Cook with one call to solveY)

X can be solved by:

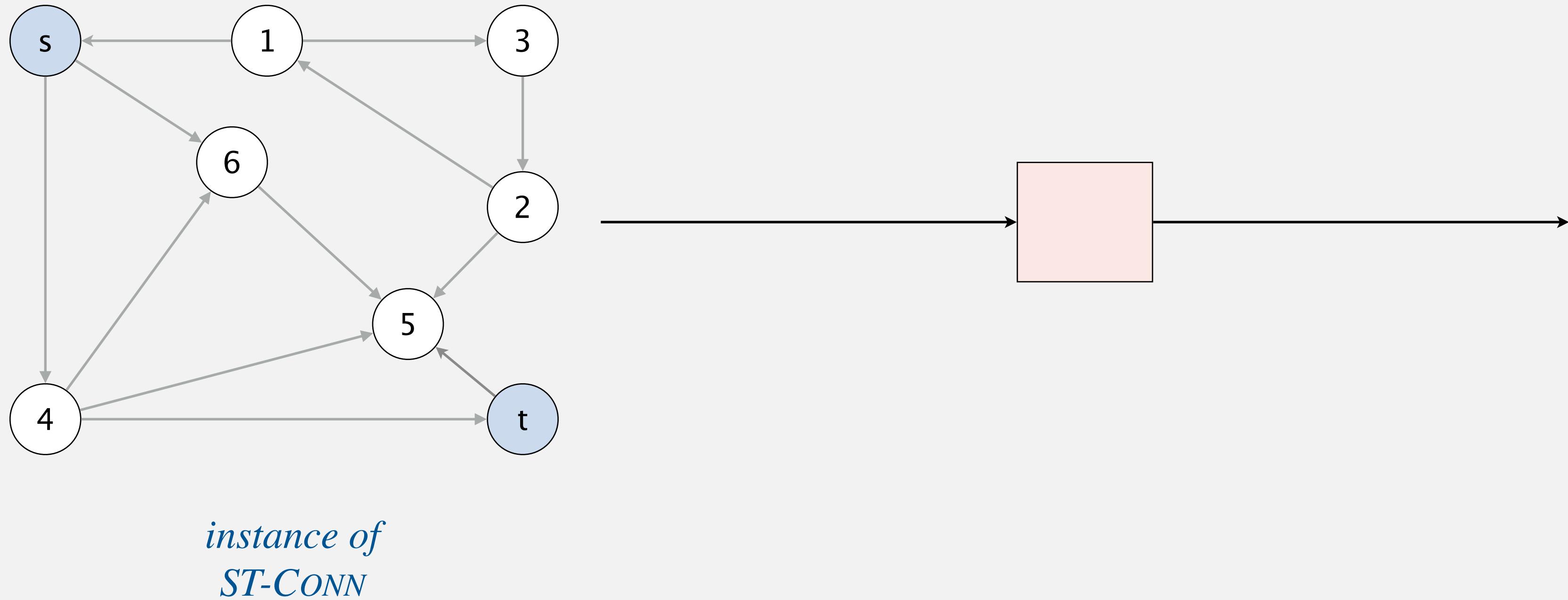
1. Mapping instance of X into instance of Y (in poly-time).
2. Running algorithm for Y on new instance;
3. Mapping solution of Y to solution of X (in poly-time).



Algorithm design. Efficient algorithm for Y yields efficient algorithm for X .

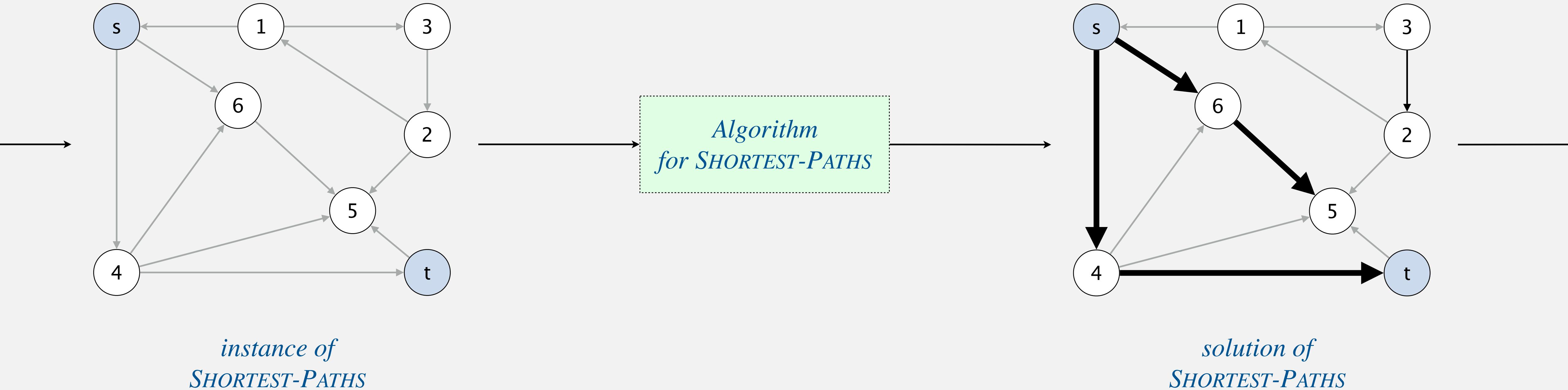
Poly-time reduction: ST-CONN to SHORTEST-PATHS

Example 1. ST-CONN poly-time reduces to SHORTEST-PATHS. \leftarrow *decision reduces to search*



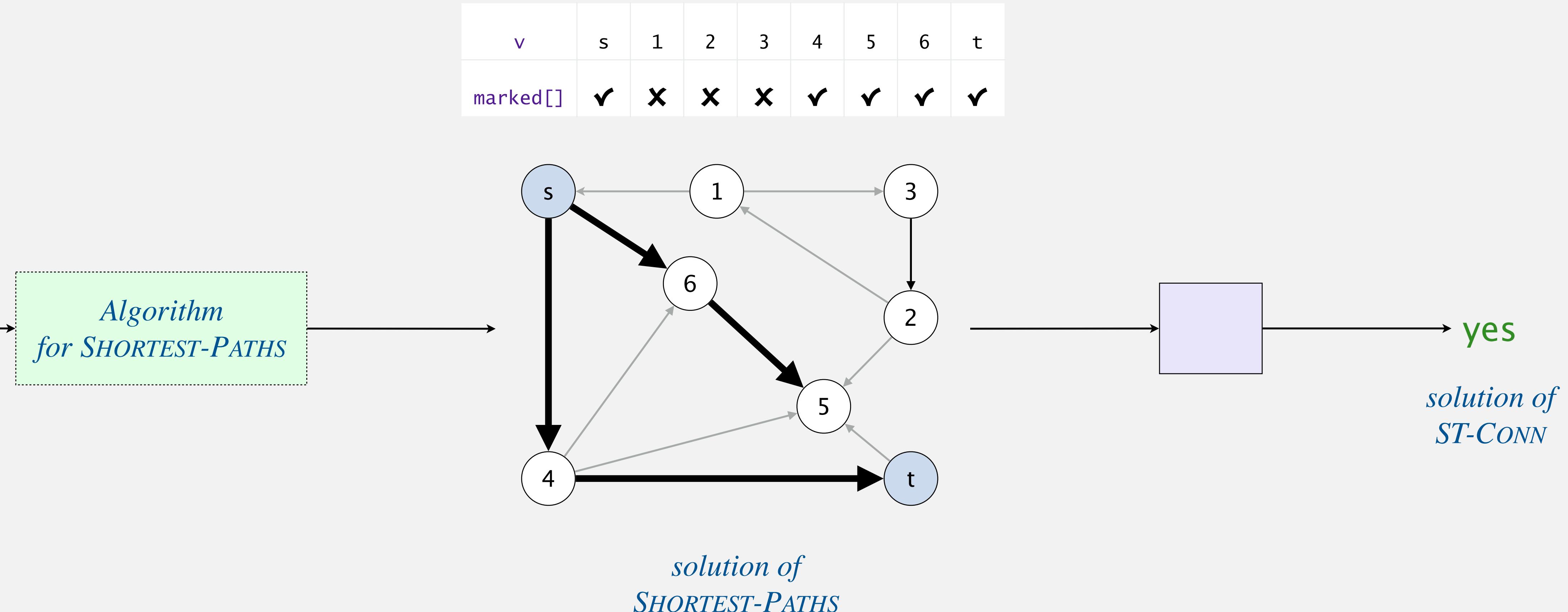
Poly-time reduction: ST-CONN to SHORTEST-PATHS

Example 1. ST-CONN poly-time reduces to SHORTEST-PATHS. \leftarrow *decision reduces to search*



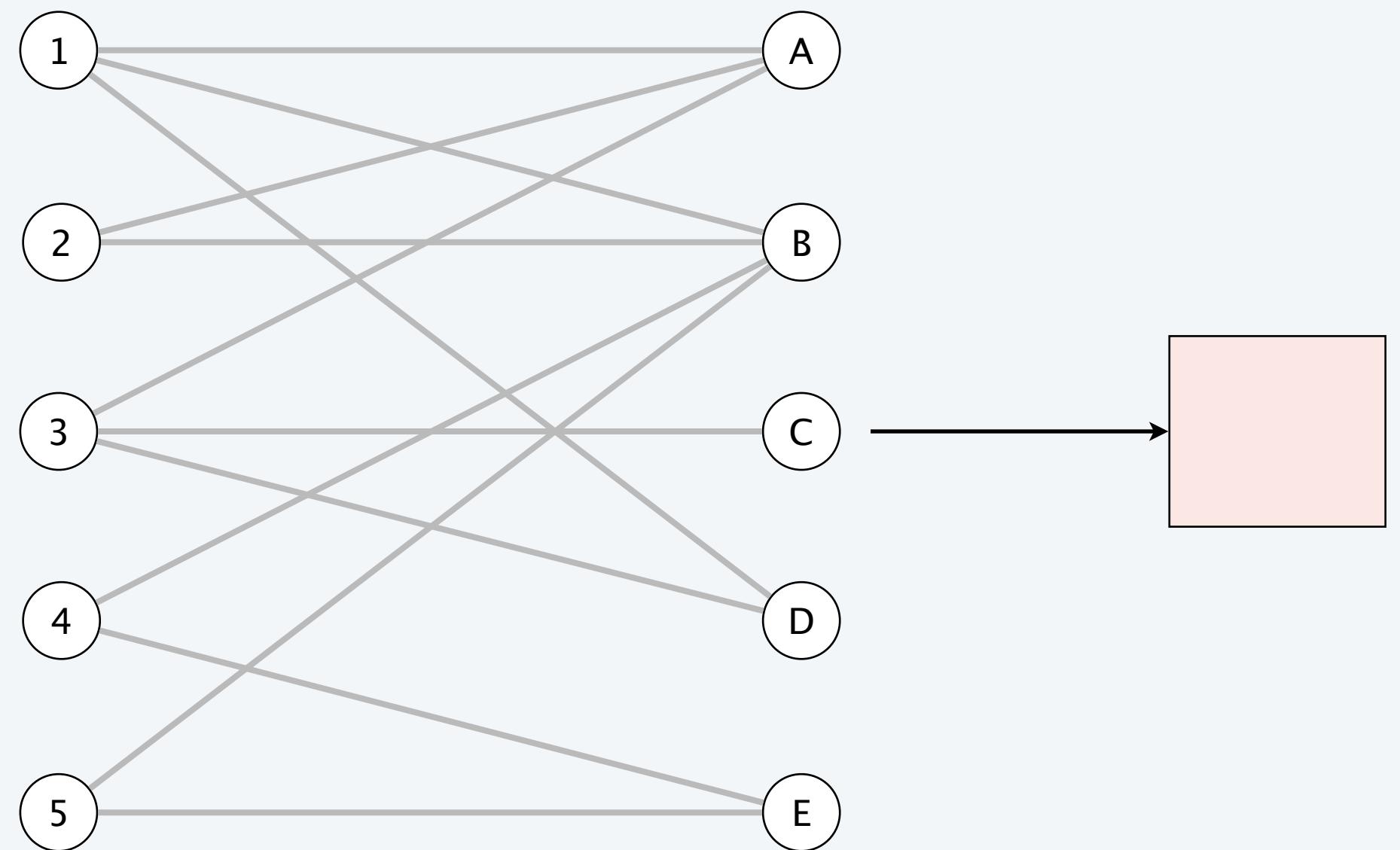
Poly-time reduction: ST-CONN to SHORTEST-PATHS

Example 1. ST-CONN poly-time reduces to SHORTEST-PATHS. \leftarrow *decision reduces to search*



Poly-time reduction: BIPARTITE-MATCHING to MAXFLOW

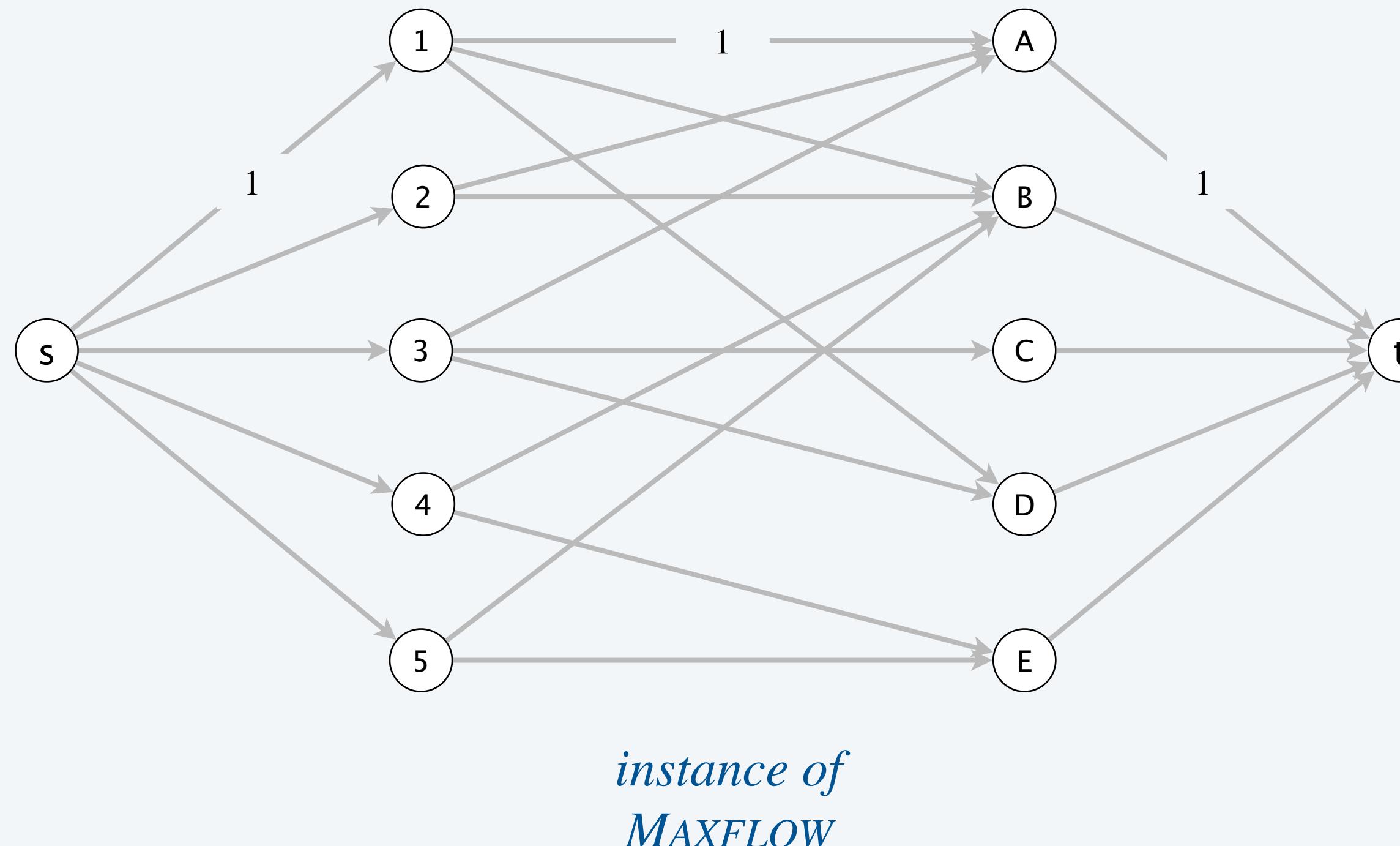
Example 2. Bipartite matching poly-time reduces to maxflow.



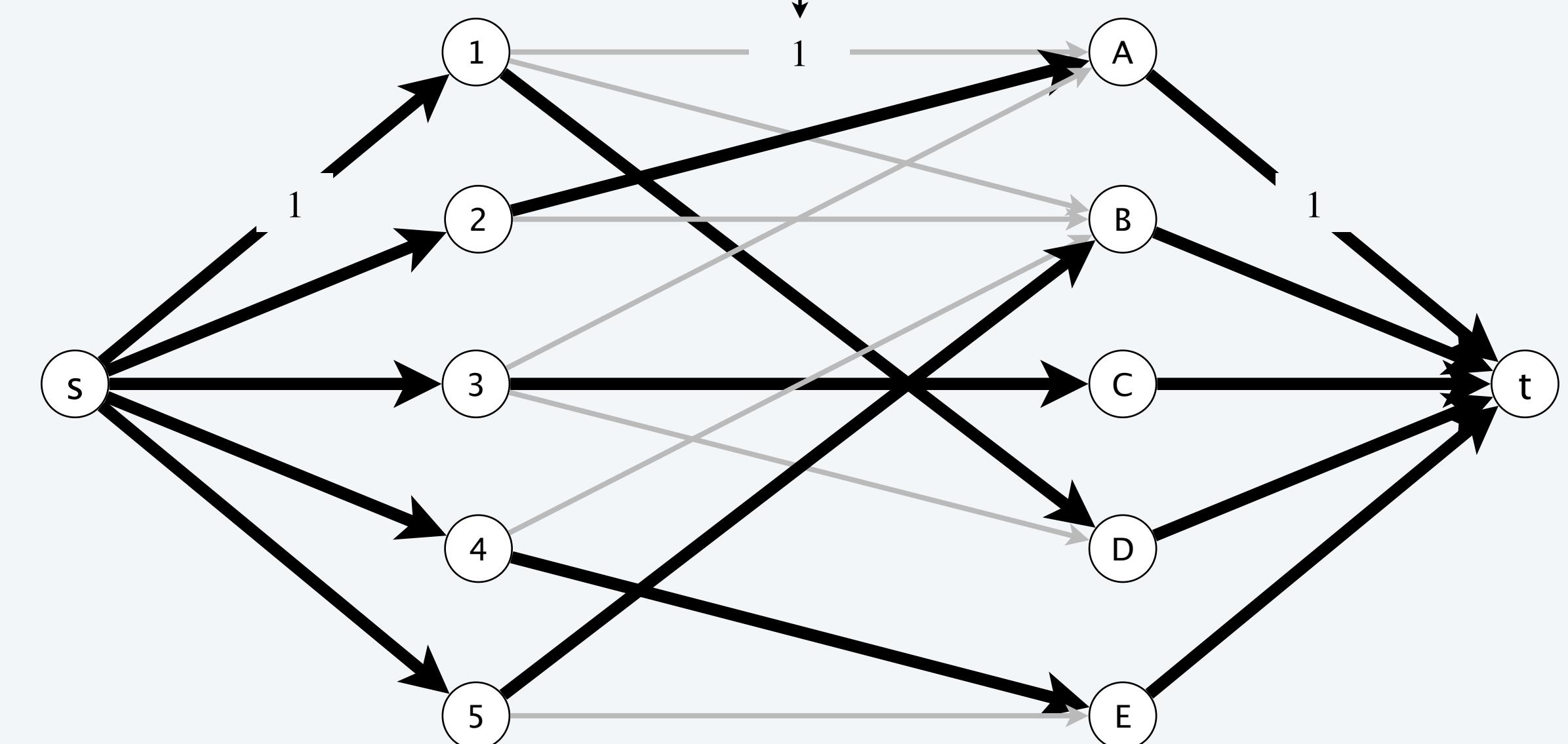
instance of
BIPARTITE-MATCHING

Poly-time reduction: BIPARTITE-MATCHING to MAXFLOW

Example 2. Bipartite matching poly-time reduces to maxflow.

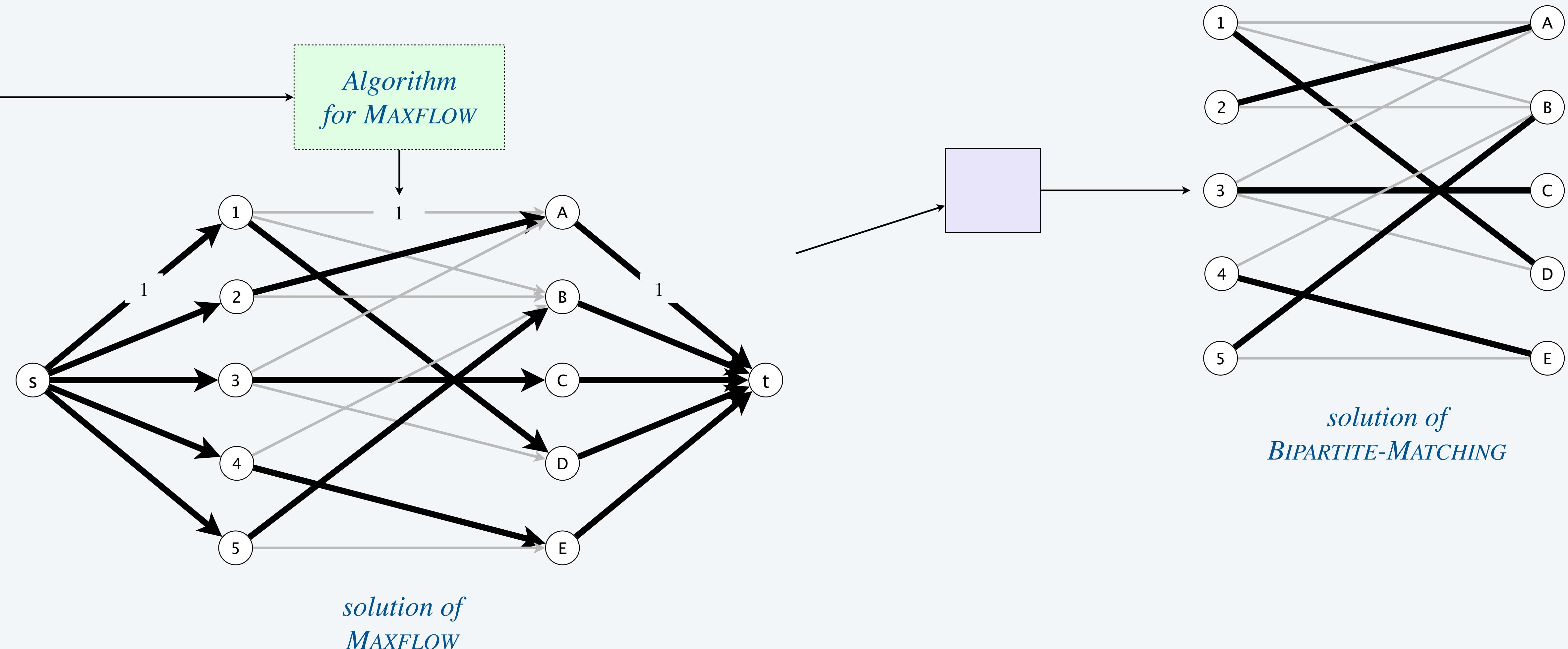


Algorithm
for MAXFLOW



Poly-time reduction: BIPARTITE-MATCHING to MAXFLOW

Example 2. Bipartite matching poly-time reduces to maxflow.



How many vertices and edges are there in the flow network obtained from a V -vertex, E -edge graph via the reduction?

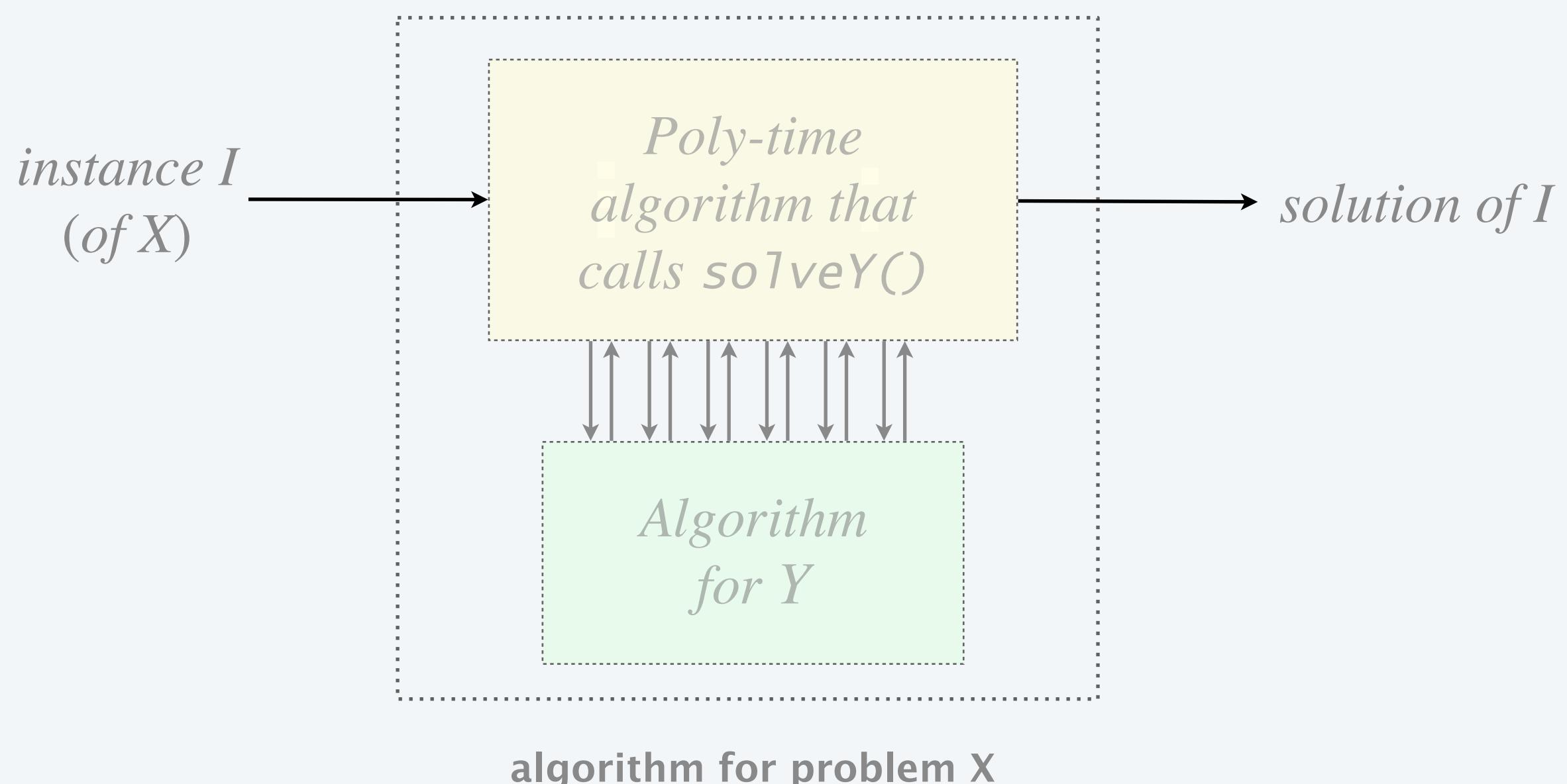
- A. $\Theta(V)$ vertices, $\Theta(E)$ edges
- B. $\Theta(V)$ vertices, $\Theta(V + E)$ edges
- C. $\Theta(V^2)$ vertices, $\Theta(V + E)$ edges
- D. $\Theta(V^2)$ vertices, $\Theta(E^2)$ edges

Poly-time reduction (review)

Definition. Problem X poly-time reduces to problem Y if

X can be solved with:

- Polynomial number of elementary operations.
- Polynomial number of calls to algorithm for Y .



Common mistake. Confusing X poly-time reduces to Y with Y poly-time reduces to X .

Suppose that Problem X poly-time reduces to Problem Y .

Which of the following can we infer?

- A.** If X can be solved in poly-time, then so can Y .
- B.** If X cannot be solved in $\Theta(n^3)$ time, Y cannot be solved in poly-time.
- C.** If Y can be solved in $\Theta(n^3)$ time, then X can be solved in poly-time.
- D.** If Y cannot be solved in poly-time, then neither can X .

Intractable problems

Q3. Which problems are **intractable**?

A3. Those with **no poly-time algorithm**.

Bird's-eye view (counterpoint)

Design strategy. Suppose we can solve problem X efficiently.

Which other problems can we solve efficiently?

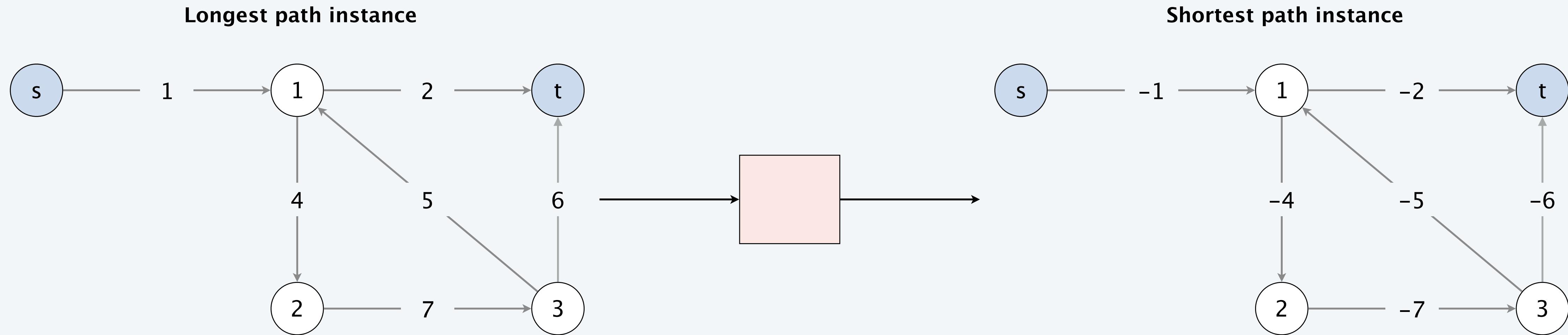
Establishing intractability. Suppose problem X is intractable.

Which other problems are also intractable?

“ Give me a lever long enough and a fulcrum on which to place it, and I shall move the world. ” — Archimedes

Poly-time reduction: LONGEST-ST-PATH to SHORTEST-ST-PATH

Example. Longest simple path poly-time reduces to shortest simple path with negative weights.

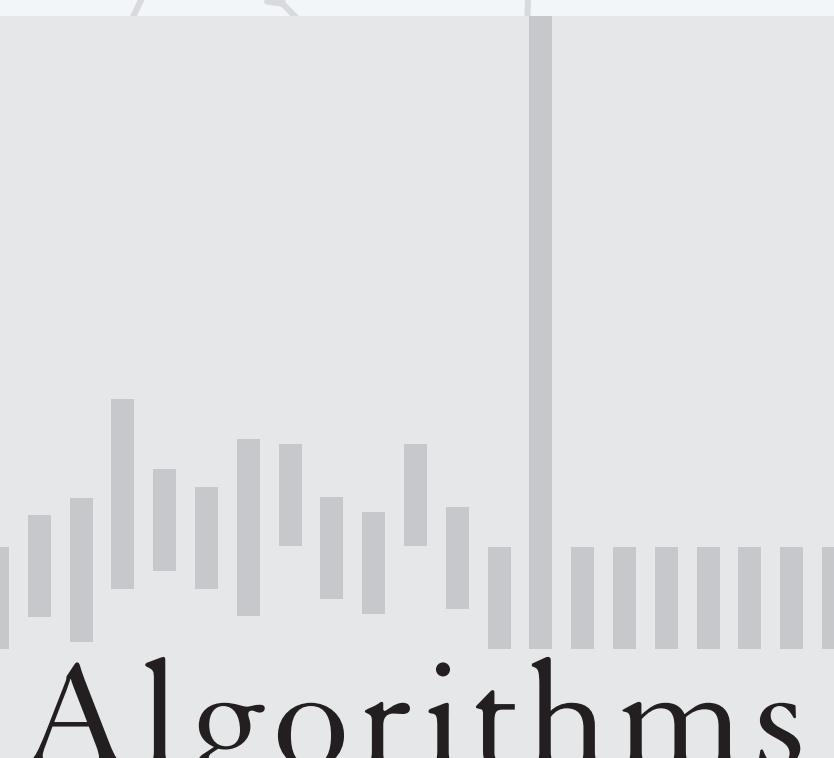


Conjecture (equivalent to $P \neq NP$). LONGEST-ST-PATH is intractable.

Conditional conclusion. SHORTEST-ST-PATH with negative weights is intractable.

INTRACTABILITY

- ▶ *introduction*
- ▶ *computational problems*
- ▶ *poly-time algorithms*
- ▶ *P vs. NP*
- ▶ *poly-time reductions*
- ▶ ***coping with intractability***

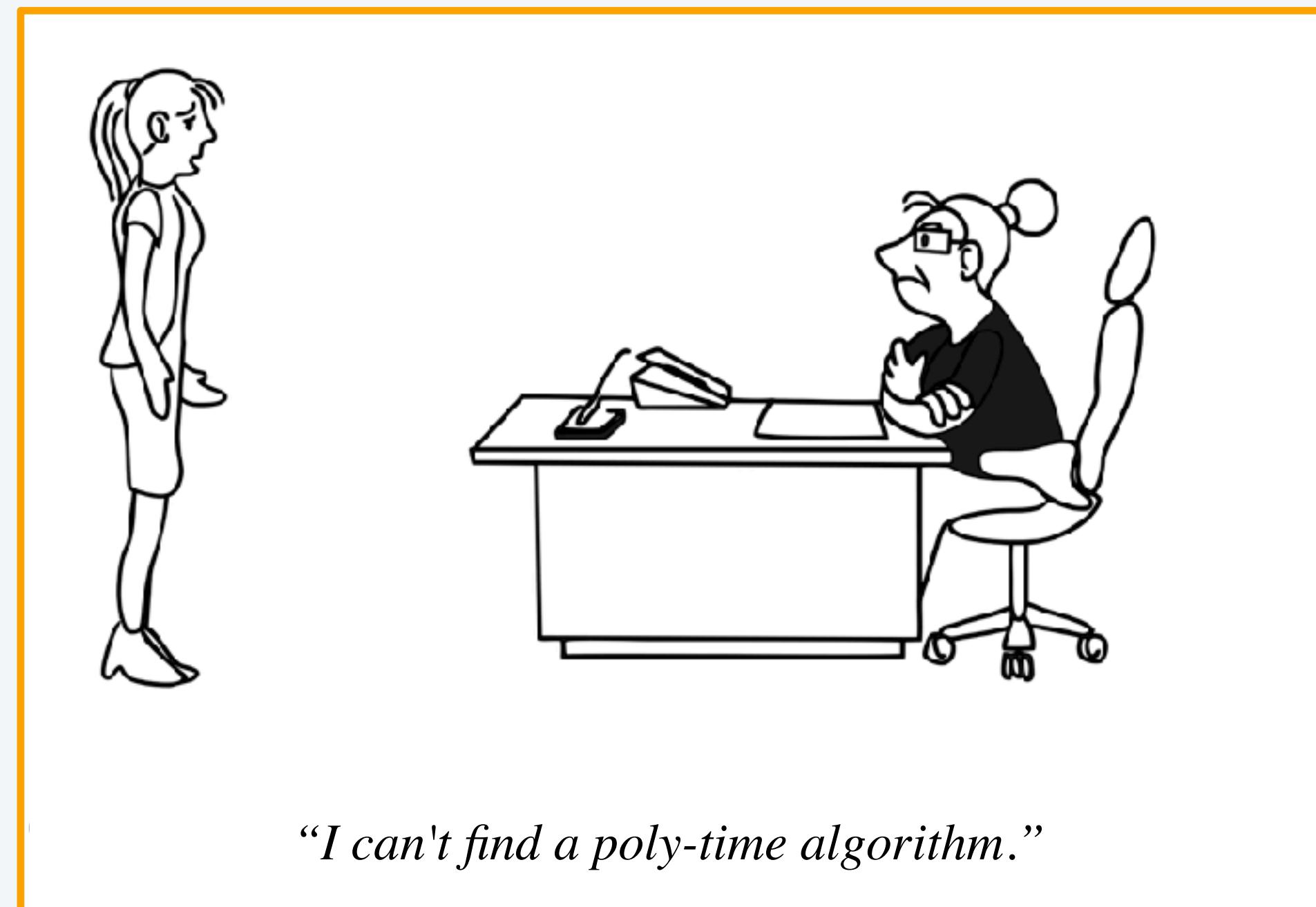


<https://algs4.cs.princeton.edu>

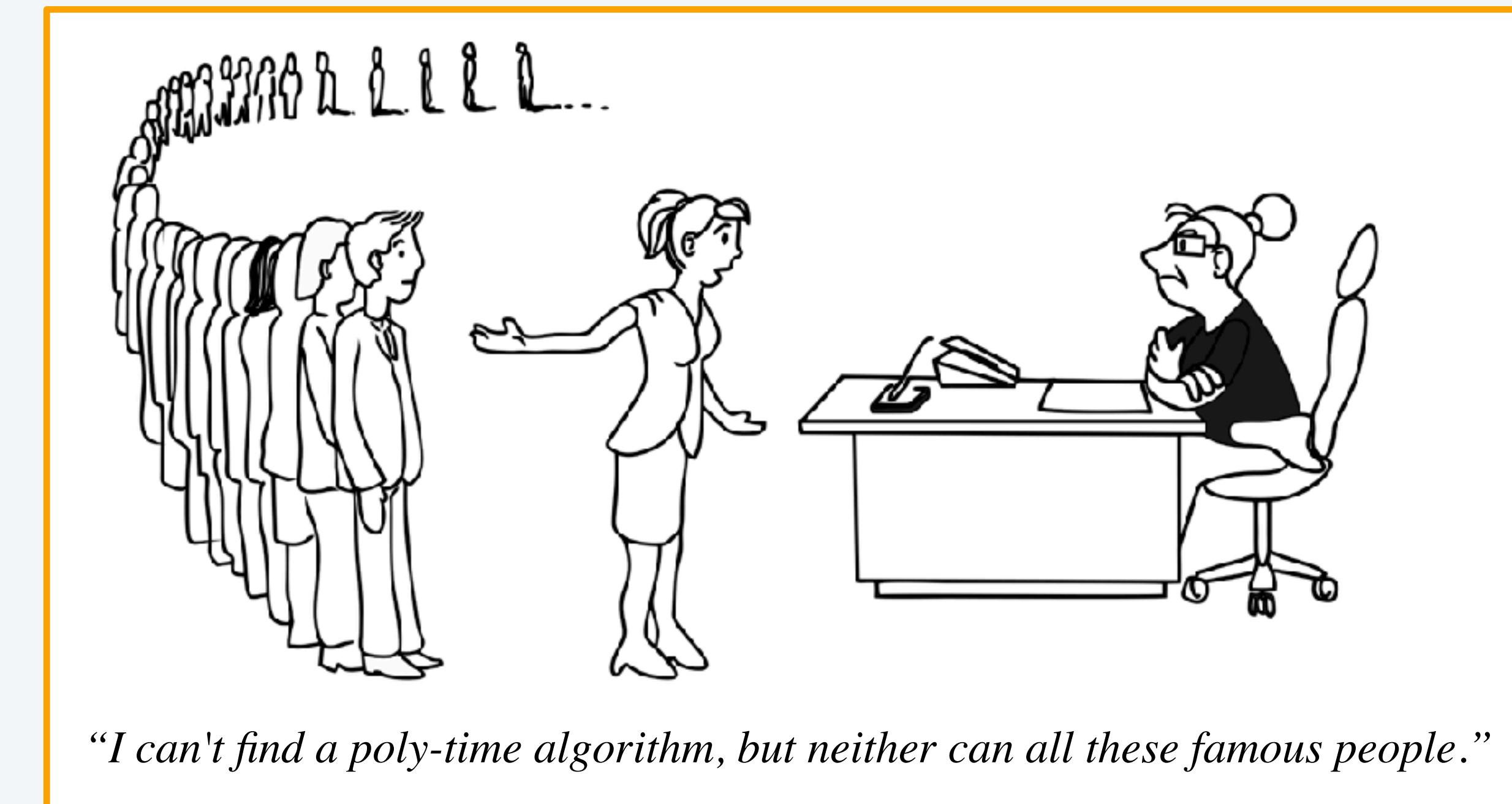
Identifying intractable problems

Step 1. Start with an **NP** problem believed to be intractable (e.g., LONGEST-ST-PATH).

Step 2. Find a poly-time reduction from it to your problem.



does not know reduction from LONGEST-ST-PATH



knows reduction from LONGEST-ST-PATH

Approaches to dealing with intractability

Q. What to do when you find a poly-time reduction from (conjectured) hard problem?

A. Safe to assume intractable: no (worst-case) poly-time algorithm.

Q1. Must your algorithm *always* run fast?

Solve real-world instances. Backtracking, SAT.

Q2. Do you need the *optimal* solution or a *good* solution?

Approximation algorithms. Find slightly suboptimal solutions.

Q3. Can you use the problem's hardness in your favor?

Leverage intractability. Cryptography.

A program with which of these running times is most likely to be useful in practice?

A. $10^{226}n$

B. n^{226}

C. 1.000000001^n

D. $(n!)!$

Leveraging intractability: RSA cryptosystem

Modern cryptography applications.

- Secure a secret communication.
- Append a digital signature.
- Credit card transactions.
- ...

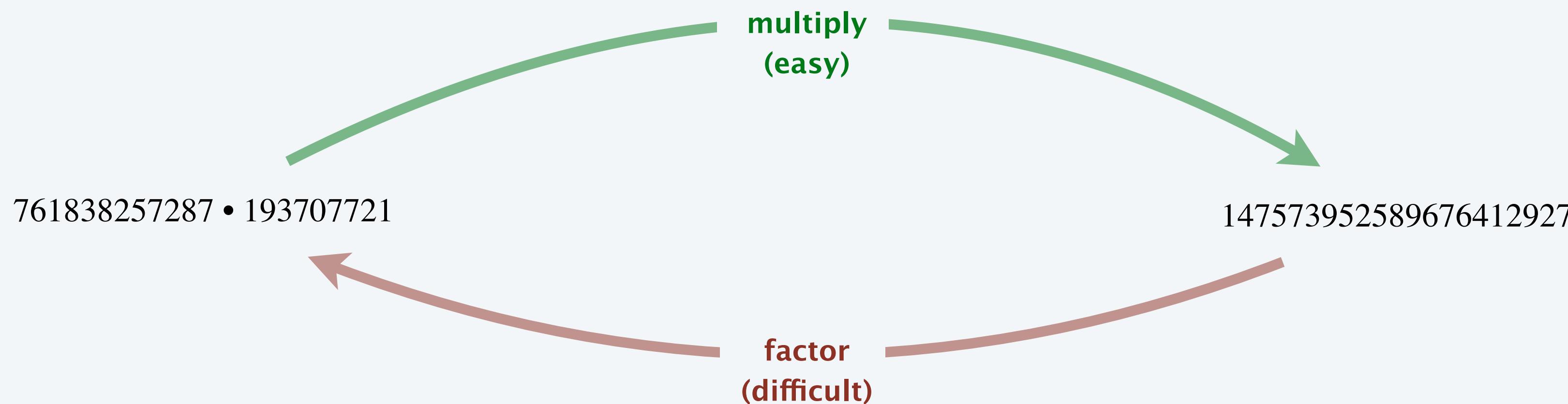
RSA cryptosystem exploits intractability.

- To use: multiply/divide two n -digit integers (easy).
- To break: factor a $2n$ -digit integer (intractable?).

Ron Rivest

Adi Shamir

Len Adelman



Summary

P. Set of decision problems **solvable** in poly-time.

NP. Set of decision problems **verifiable** in poly-time (given witness).

Poly-time reduction.

- Algorithm for problem X via
 - Reduction from X to Y , plus
 - Algorithm for Y .
- Intractability of X established via
 - Reduction from intractable Y to X .

Use theory as a guide.

- You will confront (conjectured) intractable problems in your career.
- It is safe to assume that $P \neq NP$ and that such problems are intractable.
- Identify these situations and proceed accordingly.

Credits

image	source	license
<i>Gears</i>	Adobe Stock	Education License
<i>Finding a Needle in a Haystack</i>	Basic Vision	
<i>Galactic Computer</i>	Adobe Stock	Education License
<i>Taylor Swift Caricature</i>	Cory Jensen	CC BY-NC-ND
<i>Fans in a Stadium</i>	Adobe Stock	Education License
<i>P and NP cookbooks</i>	Futurama S2E10	
<i>Homer Simpson and P = NP</i>	Simpsons	
<i>Archimedes, Lever, and Fulcrum</i>	unknown	
<i>COS Building, Western Wall</i>	Kevin Wayne	
<i>Garey–Johnson Cartoon Updated</i>	Stefan Szeider	CC BY 4.0
<i>Cartoon of Turing Machine</i>	Tom Dunne	
<i>Warning sign</i>	Adobe Stock	Education License
<i>Glass with water</i>	Adobe Stock	Education License
<i>John Nash</i>	Wikimedia	CC BY-SA 3.0

A final thought

“ Now my general conjecture is as follows: for almost all sufficiently complex types of enciphering, [...] the mean key computation length increases exponentially with the length of the key [...].

*The nature of this conjecture is such that I cannot prove it [...].
Nor do I expect it to be proven. ”*

— John Nash

