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Overview: introduction to advanced topics

Main topics.
 Intractability: barriers to designing efficient algorithms.

« Algorithm design: general paradigms for solving computational problems.

Shifting gears.

3

* From linear/quadratic to poly-time/exponential scale. Fo"

* From individual problems to problem-solving models.
 From implementation details to conceptual frameworks.
Goals.

 Introduce you to essential ideas.

- Place algorithms and techniques we’ve studied in a larger context.
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Fundamental questions

Q1. What is an algorithm?

Q2. What is an efficient algorithm?

Q3. Which problems are intractable?

Q4. How can we cope with intractability?

Q5. How can we benefit from intractability?



Integer multiplication
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Integer factorization
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Integer factorization

$50,000
RSA factoring challenge

2 years, team of mathematicians

12301866845301177551304949583
34962720772853569595334°792197
32245215172640050726365751874
52021997864693899564749427°740
63845925192557326303453731548
26850791702612214291346167042
9214311602221240479274°7377940
30665351419597459856902143413



Integer multiplication

367460436667995
904282446337996
2'79526322791581
643430876426760
322838157396665
112792333734171
433968102700927
98736308917

334780716989568
987860441698482
126908177047949
337137685689124
313889828837938
780022876147116
525317430877378
14467999489

Computed in a split second by a standard laptop!
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Integer multiplication: computationally easy

MuLTIPLY. Given positive integers x and y, compute x - y.

x = 1098015960
EX. xy = 6434755635154080

y =5860348

the product
a MULTIPLY instance

Algorithm. Grade-school multiplication runs in time ©(?), where

n is the number of digits in x and y.
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Integer factorization: computationally hard?

FACTOR. Given positive integer x, find a nontrivial factor. <—  or report that no such factor exists

Ex. 147573952589676412927 193707721

a FACTOR instance a factor

Brute-force search. Try all possible divisors between 2 and \/}

Applications. Cryptography.

251959084°7565789349402718324004839857142928212620403
2027777137836043662020707595556264018525880784406918
2906412495150821892985591491761845028084891200728449
9268739280728777673597141834727026189637501497182469
1165077613379859095700097330459748808428401797429100
6424586918171951187461215151726546322822168699875491
8242243363725908514186546204357679842338°7184°774447792
0739934236584823824281198163815010674810451660377306
0562016196762561338441436038339044149526344321901146
575444541°7842402092461651572335077870774981712577246
7962926386356373289912154831438167899885040445364023
527381951378636564391212010397122822120720357

a very challenging FACTOR instance
(factor to earn an A+ in COS 226)

12



How difficult can it be?

Imagine a galactic computer...
« With as many processors as electrons in the universe.
« Each processor having the power of today’s supercomputers.

« Each processor working for the lifetime of the universe.

quantity estimate
electrons in universe 107
instructions per second 10"
age of universe in seconds 10"

Q. Could galactic computer factor a 300-digit integer using brute-force search?
A. Not even close: +/10°° =10 > 10".10". 10" = 10'"°.

Lesson. Exponential growth dwarfs technological change.

13



Boolean satisfiability: computationally hard?

SAT. Given a system of boolean equations, find a satisfying truth assignment. «——

- a or = b or - C
a or b or d
EX. - a or = b or - d
a or b or c
a or = b

a SAT instance

Brute-force search. Try all 2" truth assignments (where n is number of variables).

rrue

rrue

rrue

rrue

rrue

or report that no such
assignment is possible

a = true
b = true
c = false
d = false

a satisfying truth assignment

Applications. Automatic software verification, mean field diluted spin glass model, EDA...

Remark. More “evidence” of hardness than FACTOR.

14
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Algorithm

Q1. What is an algorithm?
Al. Formally, a Turing machine!

Equivalently, a program in Java, Python, C++, ...

Church-Turing thesis. Any computational problem
that can be solved by a physical system can also be

solved by a Turing machine.

A Turing machine

16



Efficient algorithm

Q2. What is an efficient algorithm?
A2. One with worst-case running time

polynomial in the size of its input.

Polynomial time. Number of elementary

operations is < an” for some constants a, b.

T

n = # of bits in input

Context. We use poly-time as a surrogate
for efficient in practice.

« Robust.

* Closed under composition.

* |n practice, constants tend to be small.

order emoji name today
O(1) ) constant &)
O(log n) (< logarithmic &)
O(n) & linear &)
Omlogn) & linearithmic &)
O(n?) & quadratic &)
O(n?) & cubic ©
O(n'oe") quasipolynomial &
O(.1%) @ exponential O
O02") O exponential 5
On!) 9 factorial L)

17



Intractability: poll 1

Which of the following are poly-time algorithms?

A. Brute-force search for boolean satisfiability.
B. Brute-force search for integer factoring.
C. Both A and B.

D. Neither A nor B.

18



Some computational problems

problem

SHORTEST-PATHS
(single-source

shortest paths)

PRIME
(primality)

JAVA

(Java compilation)

FACTOR

(integer factorization)

BITCOIN

(bitcoin mining)

description

given an unweighted graph,
find the shortest paths from source

1s the given integer prime?

given a text file, compile
into Java byte code

given a positive integer,
find a nontrivial factor

given 76 bytes, find 4 bytes such
that concatenation hashes to < target

example instance

S

33

Percolation. java

147573952589676412927

0020b128b5te690...799538911

a solution

s —)

N

yes
Percolation.class
193707721

99538911

poly-time algorithm

BFS

Agrawal-Kayal-Saxena

javac

19



Types of computational problems

Search problem. Find a solution.
Decision problem. Does there exist a solution?
Optimization problem. Find the best solution.

Function problem. Compute the output of a mathematical function.

S 9 S 4 /9
43 or s 4 o sy
23881 —
67 33 = yes 8 ~{ t 5/ 8
Factoring: a search problem Primality: a decision problem Maxflow: an optimization problem

Remarks.

* Problems often naturally formulated in one regime.

« Types are not technically equivalent, but conclusions generalize.

« Definitions of P and NP are in terms of decision problems.

4/ 4

t

43 . 67 — 2881

Multiplication: a function problem

20
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Decision problems

A decision problem is a partition of input strings into yes—instances and no-instances.

yes instances —»{2, 3, 5, 7, 11, 13, ...}

all instances ——— {2, 3, 4, 5’ 6, 7, 8, 9, 1(), 11, 12, 13, ...}

no instances —»{4’ 6, 8, 9, 1(), 12, ...}

Primality: a decision problem

22



The P complexity class

Solving a decision problem. Designing an algorithm that, on every instance x,

outputs the correct yes or no classification.

Definition. P is the set of all decision problems that are solvable in polynomial time.

23



Some computational decision problems

problem description example yes instance example no instance poly-time algorithm In P?
PRIME 1s the integer x prime? x=53 x=10 Agrawal-Kayal-Saxena Ve
1s the integer x composite
COMPOSITE , x=10 x=253 Agrawal-Kayal-Saxena v
(not prime)?
are the nontrivial factors of =10 =10
COPRIME , . * * Euclid’s GCD algorithm v
integers x and y disjoint? y =14 y =21
1s there a triple in array check all triples with
3-SuM =[-1,1,0 =[-1,1,2
a that sums to 07 a=1 / a=1 / nested for loop v
1S th file a legal ' fil : :
TAVA 1S the text nle a lega any assignment 1le Percolation {} javac v

Java program?

(that compiles)

24



Some computational decision problems

problem

ST-CONN

BIPARTITE-
MATCHING

SAT

FACTOR

description

1s there a path
from s to 7

1s there a perfect
matching in G?

1s system @ of boolean
equations satisfiable?

does x have nontrivial
factor < k?

example yes instance

aand (—aor = b)

example no instance

@
()

QO

aand - a
x =49
k=25

poly-time algorithm

BFS

Ford-Fulkerson

In P?

25



The NP complexity class

Definition. NP is the set of all decision problems that are verifiable <«— asopposedto “solvable” (P)

in polynomial time.

Definition’. NP is the set of all decision problems for which a yes

instance can be verified, provided a witness, in polynomial time.

26



The NP complexity class

Definition. NP is the set of all decision problems for which a yes

instance can be verified, provided a witness, in polynomial time.

often, solution of the
search problem. ——a or b
a.k.a. certificate

rrue

a = rrue

Examples. SAT instance

« SAT: Is the given system ® of boolean equations satisfiable?

- Witness. A boolean assignment that satisfies every equation. a true

- Verification algorithm. Output yes if the assignment satisfies @ b

false

(and no otherwise).
withess

27



The NP complexity class

Definition. NP is the set of all decision problems for which a yes

instance can be verified, provided a witness, in polynomial time.

Examples.
« Factor: Given integers x and k < x, does x have a nontrivial factor <k ?
- Witness. A nontrivial factor y < k of x.

- Verification algorithm. Output yes if 1 <y <k and y divides x

(and no otherwise).

x = 2881 k=150

FACTOR Instance

y=43

withess

28



The NP complexity class

Definition. NP is the set of all decision problems for which a yes

instance can be verified, provided a witness, in polynomial time.

ORORO

@)
(@)
)

Examples.
P BIPARTITE-MATCHING Instance

- Verification algorithm. Output yes if every vertex of G is incident to exactly O

one edge in M (and no otherwise). @ @

withess

« BIPARTITE-MATCHING: Does the given a bipartite graph G have a perfect matching?

- Witness. A subset of edges M that is a perfect matching in G. O
(2

Remark 1. An NP verifier does not find a witness, and must output no if given
a ho instance (with any purported witness) as input.

Remark 2. NP problems can be solved in exponential time by verifying all witnesses.

29



Some NP problems

problem

instance

description

withess

verification algorithm

Any problem Q in P

SAT

LLONGEST-ST-PATH

BITCOIN

system @ of boolean
equations

weighted digraph G, source s,
target  and integer k

positive integers x and ¢

1S x a yes 1nstance of Q7

1s @ satisfiable?

1s the length of the longest
simple st-path > &k ?

1s there y such that
h(xoy)=<t?

w = empty String

w = truelfalse
assignment for all
variables

w = st-path with
>k edges

algorithm that solves O

plug w into equations of @,
check that all evaluate to frue

check that w does not repeat
vertices and 1s > k edges of G

check that i(x o y) <t

30



Intractability: poll 2

Which of these problems are (known to be) in NP?

A. Given a graph G, find a simple path with the most edges.

B. Given a graph G and an integer k, is there a simple path with = k£ edges?

C. Both A and B.

D. Neither A nor B.

31



P vs. NP

The central question. Does P = NP ?
« P = set of decision problems solvable in poly-time.

« NP = set of decision problems verifiable in poly-time (given witness).

Two possible worlds. Since NP contains P, < empiy siring serves as wiiness

e

intractable
A

P = NP P = NP
brute-force search may be poly-time algorithms for
the best we can do FACTOR, SAT, LONGEST-ST-PATH, ...

but nobody has been able to

Consensus opinion. Pz NP. ——— .
prove or disprove (!!!)

32



P vs. NP

The central question. Does P = NP ?
« P = set of decision problems solvable in poly-time.

« NP = set of decision problems verifiable in poly-time (given witness).

33



Why P vs. NP is so central?

Analogy. Creative genius vs. ordinary appreciation of creativity.

domain problem witness/certificate
mathematics find a proof of a conjecture mathematical proof
, , 1ven constraints (size, weight, energy), ,
engineering : . . ( . .g 2y) blueprint
find a design (bridge, medicine, computer)
, given data on a phenomenon, o
science .. scientific theory
find a theory explaining it
e art write a beautiful poem/novel/pop song; poem, novel,
e arts . . S
draw a beautiful painting pop song, painting
programming write a program to solve a problem program

Intuition. Verifying a

solution should be way easier than finding one.

creative genius (NP)

ordinary appreciation (P)

34
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Princeton computer science building (closeup)

30 1010000
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? 63 Ol11111
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Bird’s-eye view

Design strategy. Suppose we can solve problem X efficiently.

Which other problems can we solve efficiently?

“ Give me a lever long enough and a fulcrum on which to

place it, and I shall move the world.” — Archimedes

38



Poly-time reduction

Definition. Problem X poly-time reduces to problem Y (X <) if
X can be solved with:
« Polynomial number of elementary operations.

« Polynomial number of calls to algorithm for Y.

: Poly-time -
* algorithm that —> solution of x
 calls solveY()

N

instance x

(of X)

algorithm for problem X

Remark. We can reduce to/from search, decision or optimization problems.

39



Poly-time reduction

Important special case. Problem X poly-time reduces to problem Y if

X can be solved by:

1. Mapping instance of X into instance of Y (in poly-time).

2. Running algorithm for Y on new instance;

3. Mapping solution of Y to solution of X (in poly-time).

instance x

(of X)

instance y

(of V)

Algorithm

for Y —> solution of y ——

algorithm for problem X

Algorithm design. Efficient algorithm for Y yields efficient algorithm for X.



Poly-time reduction: ST-CONN to SHORTEST-PATHS

Example 1. ST-CoNN poly-time reduces to SHORTEST-PATHS.

O
O

(54
(&)

instance of
ST-CONN

(&)
()

(&

41



Poly-time reduction: ST-CONN to SHORTEST-PATHS

Example 1. ST-CoNN poly-time reduces to SHORTEST-PATHS.

k Algorithm

Y% S 1 2 3 4 5 6 t

marked[] ¢« X X X ¥ ¥ ¥ ¥

oS

~ for SHORTEST-PATHS |

instance of
SHORTEST-PATHS

solution of
SHORTEST-PATHS

42



Poly-time reduction: ST-CONN to SHORTEST-PATHS

Example 1. ST-CoNN poly-time reduces to SHORTEST-PATHS.

Y% S 1 2 3 4 5 6 t

marked[] ¢« X X X ¥ ¥ ¥ ¥

oS

.............................................................................

k Algorithm

~ for SHORTEST-PATHS |

solution of
SHORTEST-PATHS

> yes

solution of
ST-CONN

43



Poly-time reduction: BIPARTITE-MATCHING to MAXFLOW

Example 2. Bipartite matching poly-time reduces to maxflow.

ORNO

OBROBORNONNO
@ ©

instance of
BIPARTITE-MATCHING

44



Poly-time reduction: BIPARTITE-MATCHING to MAXFLOW

Example 2. Bipartite matching poly-time reduces to maxflow.

O | ()
‘ 1

@ » Algorithm
 for MAXFLOW |

OBNORNORBNCO

©
O,
()

instance of
MAXFLOW

solution of
MAXFLOW



Poly-time reduction: BIPARTITE-MATCHING to MAXFLOW

Example 2. Bipartite matching poly-time reduces to maxflow.

o Algorithm
~ for MAXFLOW |

Lo l

1

/

N,

N\

N7

solution of
MAXFLOW

solution of
BIPARTITE-MATCHING

46



Intractability: poll 3

How many vertices and edges are there in the flow network obtained from a

V-vertex, I-edge graph via the reduction?

A. O(V) vertices, O(E) edges
B. O() vertices, O(V+ E) edges
C. O(V? vertices, O(V + E) edges

D. ©O(V?) vertices, O(E?) edges

47



Poly-time reduction (review)

Definition. Problem X poly-time reduces to problem Y if
X can be solved with:

« Polynomial number of elementary operations.

« Polynomial number of calls to algorithm for Y.

instance 1

(of X)

’ > solution of 1

algorithm for problem X

Common mistake. Confusing X poly-time reduces to Y with Y poly-time reduces to X.



Intractability: poll 4

Suppose that Problem X poly-time reduces to Problem Y.

Which of the following can we infer?

A. If X can be solved in poly-time, then so can Y.
B. If X cannot be solved in ®(n’) time, Y cannot be solved in poly-time.
C. If Y can be solved in ©O(#’) time, then X can be solved in poly-time.

D. If Y cannot be solved in poly-time, then neither can X.

49



Intractable problems

Q3. Which problems are intractable?

A3. Those with no poly-time algorithm.

50



Bird’s-eye view (counterpoint)

Design strategy. Suppose we can solve problem X efficiently.

Which other problems can we solve efficiently?

Establishing intractability. Suppose problem X is intractable.

Which other problems are also intractable?

“ Give me a lever long enough and a fulcrum on which to

place it, and I shall move the world. ” — Archimedes

51



Poly-time reduction: LONGEST-ST-PATH to SHORTEST-ST-PATH

Example. Longest simple path poly-time reduces to shortest simple path with negative weights.

Longest path instance Shortest path instance
02— )
4 5 6 > > -4 -5

Conjecture (equivalent to P # NP). LONGEST-ST-PATH is intractable.
Conditional conclusion. SHORTEST-ST-PATH with negative weights is intractable.

52
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|dentifying intractable problems

Step 1. Start with an NP problem believed to be intractable (e.g., LONGEST-ST-PATH).

Step 2. Find a poly-time reduction from it to your problem.

—

“I can't find a poly-time algorithm.” “I can't find a poly-time algorithm, but neither can all these famous people.”

does not know reduction from LONGEST-ST-PATH knows reduction from LONGEST-ST-PATH

54



Approaches to dealing with intractability

Q. What to do when you find a poly-time reduction from (conjectured) hard problem?

A. Safe to assume intractable: no (worst-case) poly-time algorithm.

Q1. Must your algorithm always run fast?

Solve real-world instances. Backtracking, SAT.

Q2. Do you need the optimal solution or a good solution?

Approximation algorithms. Find slightly suboptimal solutions.

Q3. Can you use the problem’s hardness in your favor?

Leverage intractability. Cryptography.

55



Intractability: poll 5

A program with which of these running times is most likely to be useful in practice?

A. 10%%%p

B n 226

C. 1.000000001"

D. (n!)!

56



Leveraging intractability: RSA cryptosystem

Modern cryptography applications.

« Secure a secret communication.

Verified by  MasterCard.

« Append a digital signature. V’SA

 Credit card transactions.

RSA cryptosystem exploits intractability.

e To use:

« To break: factor a 2n-digit integer (intractable?).

multiply/divide two n-digit integers (easy).

Ron Rivest
multiply
(easy)
761838257287 « 193707721 147573952589676412927
factor

(difficult)

Adi Shamir

Len Adelman
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Summary

P. Set of decision problems solvable in poly-time.

NP. Set of decision problems verifiable in poly-time (given witness).

Poly-time reduction.
« Algorithm for problem X via
- Reduction from X to Y, plus
- Algorithm for Y.
 |Intractability of X established via

- Reduction from intractable Y to X.

Use theory as a guide.
* You will confront (conjectured) intractable problems in your career.
It is safe to assume that P # NP and that such problems are intractable.

 |dentify these situations and proceed accordingly.
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A final thought

“ Now my general conjecture is as follows: for almost all sufficiently
complex types of enciphering, [...] the mean key computation length

increases exponentially with the length of the key [...].

The nature of this conjecture is such that I cannot prove it [...].

29

Nor do I expect it to be proven.

— John Nash




