
ROBERT SEDGEWICK | KEVIN WAYNE

F O U R T H E D I T I O N

Algorithms

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

Last updated on 12/2/25 12:05  AM

INTRACTABILITY

‣ introduction

‣ computational problems

‣ poly-time algorithms

‣ P vs. NP

‣ poly-time reductions

‣ coping with intractabilityhttps://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Overview: introduction to advanced topics

Main topics. [final two lectures]

・Intractability: barriers to designing efficient algorithms.

・Algorithm design: general paradigms for solving computational problems.
 
Shifting gears.

・From individual problems to problem-solving models.

・From linear/quadratic to poly-time/exponential scale.

・From implementation details to conceptual frameworks.
 
Goals.

・Introduce you to essential ideas.

・Place algorithms and techniques we’ve studied in a larger context.

2

INTRACTABILITY

‣ introduction

‣ computational problems

‣ poly-time algorithms

‣ P vs. NP

‣ poly-time reductions

‣ coping with intractability

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Fundamental questions

Q1. What is an algorithm?

Q2. What is an efficient algorithm?

Q3. Which problems are intractable?

Q4. How can we cope with intractability?

Q5. How can we benefit from intractability?

4

Integer multiplication

 37 ⋅ 79 = 2923

5

?

Integer factorization

6

 43 ⋅ 67 = 2881 ? ?

334780716989568
987860441698482
126908177047949
837137685689124
313889828837938
780022876147116
525317430877378
14467999489

12301866845301177551304949583
84962720772853569595334792197
32245215172640050726365751874
52021997864693899564749427740
63845925192557326303453731548
26850791702612214291346167042
92143116022212404792747377940
80665351419597459856902143413

Integer factorization

7

=⋅ ?
$50,000

 RSA factoring challenge
2 years, team of mathematicians

367460436667995
904282446337996
279526322791581
643430876426760
322838157396665
112792333734171
433968102700927
98736308917

?

334780716989568
987860441698482
126908177047949
837137685689124
313889828837938
780022876147116
525317430877378
14467999489

367460436667995
904282446337996
279526322791581
643430876426760
322838157396665
112792333734171
433968102700927
98736308917

12301866845301177551304949583
84962720772853569595334792197
32245215172640050726365751874
52021997864693899564749427740
63845925192557326303453731548
26850791702612214291346167042
92143116022212404792747377940
80665351419597459856902143413

Integer multiplication

8

=⋅ ?
Computed in a split second by a standard laptop!

9

INTRACTABILITY

‣ introduction

‣ computational problems

‣ poly-time algorithms

‣ P vs. NP

‣ poly-time reductions

‣ coping with intractability

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Integer multiplication: computationally easy

MULTIPLY. Given positive integers and , compute .  
 
 

Ex.  
 
 
 
 

 
Algorithm. Grade-school multiplication runs in time , where  
 is the number of digits in and .

x y x ⋅ y

Θ(n2)

n x y

11

x = 1098015960
y =5860348

xy = 6434755635154080

a MULTIPLY instance
the product

1 0 9 8 0 1 5 9 6 0
x 5 8 6 0 3 4 8

8 7 8 4 1 2 7 6 8 0
4 3 9 2 0 6 3 8 4 0

3 2 9 4 0 4 7 8 8 0
0 0 0 0 0 0 0 0 0 0

6 5 8 8 0 9 5 7 6 0
8 7 8 4 1 2 7 6 8 0

5 4 9 0 0 7 9 8 0 0

6 4 3 4 7 5 5 6 3 5 1 5 4 0 8 0

Integer factorization: computationally hard?

FACTOR. Given positive integer , find a nontrivial factor.
 
 
 
Ex.  
 
 
 
 

 
Brute-force search. Try all possible divisors between and .  

Applications. Cryptography. [stay tuned]

x

2 x

12

between 1 and x

or report that no such factor exists

a nontrivial factor
implies another

> x
< x

147573952589676412927 193707721

a FACTOR instance a factor

2519590847565789349402718324004839857142928212620403
2027777137836043662020707595556264018525880784406918
2906412495150821892985591491761845028084891200728449
9268739280728777673597141834727026189637501497182469
1165077613379859095700097330459748808428401797429100
6424586918171951187461215151726546322822168699875491
8242243363725908514186546204357679842338718477444792
0739934236584823824281198163815010674810451660377306
0562016196762561338441436038339044149526344321901146
5754445417842402092461651572335077870774981712577246
7962926386356373289912154831438167899885040445364023
527381951378636564391212010397122822120720357

a very challenging FACTOR instance
(factor to earn an A+ in COS 226)

How difficult can it be?

Imagine a galactic computer…

・With as many processors as electrons in the universe.

・Each processor having the power of today’s supercomputers.

・Each processor working for the lifetime of the universe.
 
 
 
 
 
 
 
 
Q. Could galactic computer factor a 300-digit integer using brute-force search?
A. Not even close: .

 
Lesson. Exponential growth dwarfs technological change.

10300 = 10150 ≫ 1079 ⋅ 1013 ⋅ 1017 = 10109

13

quantity estimate

electrons in universe 1079

instructions per second 1013

age of universe in seconds 1017

Boolean satisfiability: computationally hard?

SAT. Given a system of boolean equations, find a satisfying truth assignment.
 
 
 
Ex.  
 
 
 
 
 

Brute-force search. Try all truth assignments (where is number of variables).  

Applications. Automatic software verification, mean field diluted spin glass model, EDA…
 
Remark. More “evidence” of hardness than FACTOR.

2n n

14

¬ a or ¬ b or ¬ c = true

a or b or d = true

¬ a or ¬ b or ¬ d = true

a or b or c = true

a or ¬ b = true

a SAT instance

a = true

b = true

c = false

d = false

a satisfying truth assignment

or report that no such
assignment is possible

equivalent to P ≠ NP

INTRACTABILITY

‣ introduction

‣ computational problems

‣ poly-time algorithms

‣ P vs. NP

‣ poly-time reductions

‣ coping with intractability

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Algorithm

Q1. What is an algorithm?
A1. Formally, a Turing machine!
A1. Equivalently, a program in Java, Python, C++, …
 
 
 
 
 
Church-Turing thesis. Any computational problem
that can be solved by a physical system can also be
solved by a Turing machine.

16

A Turing machine

Efficient algorithm

Q2. What is an efficient algorithm?
A2. One with worst-case running time
polynomial in the size of its input.
 
 
 
Polynomial time. Number of elementary
operations is for some constants , .
 
 
 
Context. We use poly-time as a surrogate
for efficient in practice.

・Robust.

・Closed under composition.

・In practice, constants tend to be small.

≤ anb a b

17

n = # of bits in input

order emoji name today

Θ(1) 😍 constant 🙂

Θ(log n) 😎 logarithmic 🙂

Θ(n) 😁 linear 🙂

Θ(n log n) 😀 linearithmic 🙂

Θ(n2) 😕 quadratic 🙂

Θ(n3) 🙁 cubic 🙂

Θ(nlog n) 😨 quasipolynomial 👿

Θ(1.1n) 😭 exponential 👿

Θ(2n) 😈 exponential 👿

Θ(n!) 👿 factorial 👿

Intractability: poll 1

Which of the following are poly-time algorithms?

A. Brute-force search for boolean satisfiability.

B. Brute-force search for integer factoring.

C. Both A and B.

D. Neither A nor B.

18

enumerates over 2n truth assignments
(n = # variables, m = # equations)

checks possible divisors
(n = # bits in integer x)

x = 2n = 2n / 2

Some computational problems

19

problem description example instance a solution poly-time algorithm

SHORTEST-PATHS

(single-source
shortest paths)

given an unweighted graph,
find the shortest paths from source BFS

PRIME

(primality)
is the given integer prime? 53 yes Agrawal-Kayal-Saxena

JAVA

(Java compilation)
given a text file, compile

into Java byte code
Percolation.java Percolation.class javac

FACTOR

(integer factorization)
given a positive integer,
find a nontrivial factor 147573952589676412927 193707721 ?

BITCOIN

(bitcoin mining)
given 76 bytes, find 4 bytes such

that concatenation hashes to ≤ target 0020b128b5fe690…7995389f1 995389f1 ?

⋮ ⋮ ⋮ ⋮ ⋮

s s

Types of computational problems

Search problem. Find a solution.
Decision problem. Does there exist a solution?
Optimization problem. Find the best solution.
Function problem. Compute the output of a mathematical function.
 
 
 
 
 
 
 
 
Remarks.

・Problems often naturally formulated in one regime.

・Types are not technically equivalent, but conclusions generalize.

・Definitions of P and NP are in terms of decision problems.
20

Factoring: a search problem

2881 → 43 or
67

Multiplication: a function problem

43 67 2881⋅ →
Primality: a decision problem

53 → yes
Maxflow: an optimization problem

t

s 4 / 9

5 / 8

5 / 5 4 / 4

t

s 9

8

5 4 →

INTRACTABILITY

‣ introduction

‣ computational problems

‣ poly-time algorithms

‣ P vs. NP

‣ poly-time reductions

‣ coping with intractability

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

A decision problem is a partition of input strings into yes-instances and no-instances.

22

Decision problems

{2, 3, 5, 7, 11, 13, …}

{4, 6, 8, 9, 10, 12, …}

{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, …}

Primality: a decision problem

all instances

yes instances

no instances

Solving a decision problem. Designing an algorithm that, on every instance ,
outputs the correct yes or no classification.  
 

Definition. P is the set of all decision problems that are solvable in polynomial time.

x

23

The P complexity class

Some computational decision problems

24

problem description example yes instance example no instance poly-time algorithm In P?

PRIME is the integer x prime? x = 53 x = 10 Agrawal-Kayal-Saxena ✔

COMPOSITE
is the integer x composite

(not prime)? x = 10 x = 53 Agrawal-Kayal-Saxena ✔

COPRIME
are the nontrivial factors of
integers x and y disjoint?

x = 10
y = 14

x = 10
y = 21

Euclid’s GCD algorithm ✔

3-SUM
is there a triple in array

a that sums to 0? a = [-1, 1, 0] a = [-1, 1, 2]
check all triples with

nested for loop ✔

JAVA
is the text file a legal

Java program?
any assignment file

(that compiles)
Percolation {} javac ✔

Some computational decision problems

25

problem description example yes instance example no instance poly-time algorithm In P?

ST-CONN
is there a path
from s to t? BFS ✔

BIPARTITE-
MATCHING

is there a perfect
matching in G? Ford-Fulkerson ✔

SAT
is system Φ of boolean
equations satisfiable? a and (¬ a or ¬ b) a and ¬ a ? ?

FACTOR
does x have nontrivial

factor ≤ k?
x = 49
k = 7

x = 49
k = 5

? ?

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

1

2

A

B

1

2

A

B

t

s

t

s

The NP complexity class

Definition. NP is the set of all decision problems that are verifiable  
in polynomial time.  

Definition’. NP is the set of all decision problems for which a yes 
instance can be verified, provided a witness, in polynomial time.

26

as opposed to “solvable” (P)

The NP complexity class

Definition. NP is the set of all decision problems for which a yes 
instance can be verified, provided a witness, in polynomial time.
 
 
 
Examples.

・SAT: Is the given system of boolean equations satisfiable?

– Witness. A boolean assignment that satisfies every equation.

– Verification algorithm. Output yes if the assignment satisfies  
Verification algorithm. (and no otherwise).

Φ

Φ

27

often, solution of the
search problem.
a.k.a. certificate

¬ a or ¬ b = true

a = true

SAT instance

a = true

b = false

witness

The NP complexity class

Definition. NP is the set of all decision problems for which a yes 
instance can be verified, provided a witness, in polynomial time.
 
 
 
Examples.

・FACTOR: Given integers and , does have a nontrivial factor ?

– Witness. A nontrivial factor of .

– Verification algorithm. Output yes if and divides  
Verification algorithm. (and no otherwise).

x k < x x ≤ k

y ≤ k x

1 < y ≤ k y x

28

 = 2881x

FACTOR instance

 = 50k

43y =

witness

The NP complexity class

Definition. NP is the set of all decision problems for which a yes 
instance can be verified, provided a witness, in polynomial time.
 
 
 
Examples.

・BIPARTITE-MATCHING: Does the given a bipartite graph have a perfect matching?

– Witness. A subset of edges that is a perfect matching in .

– Verification algorithm. Output yes if every vertex of is incident to exactly  
Verification algorithm. one edge in (and no otherwise).

 
 
Remark 1. An NP verifier does not find a witness, and must output no if given 
a no instance (with any purported witness) as input.
Remark 2. NP problems can be solved in exponential time by verifying all witnesses.

G

M G

G

M

29

BIPARTITE-MATCHING instance

3

1

2

A

C

B

3

1

2

A

C

B

witness

Some NP problems

30

problem instance description witness verification algorithm

Any problem Q in P x is x a yes instance of Q? w = empty string algorithm that solves Q

SAT
system Φ of boolean

equations is Φ satisfiable?
w = true/false

assignment for all
variables

plug w into equations of Φ,
check that all evaluate to true

LONGEST-ST-PATH
weighted digraph G, source s,

target t and integer k
is the length of the longest

simple st-path ≥ k ?
w = st-path with

≥ k edges
check that w does not repeat
vertices and is ≥ k edges of G

BITCOIN positive integers x and t
is there y such that

h(x ⚬ y) ≤ t? w = y check that h(x ⚬ y) ≤ t

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

Intractability: poll 2

Which of these problems are (known to be) in NP?

A. Given a graph G, find a simple path with the most edges.

B. Given a graph G and an integer k, is there a simple path with ≥ k edges?

C. Both A and B.

D. Neither A nor B.

31

poly-time checking algorithm:
check that it is a simple path;

check that it has ≥ k edges

search, not decision, problem

The central question. Does P = NP ?

・P = set of decision problems solvable in poly-time.

・NP = set of decision problems verifiable in poly-time (given witness).
 
Two possible worlds. Since NP contains P,  
 
 
 
 
 
 
 
 
 

Consensus opinion. P ≠ NP.

P vs. NP

32

but nobody has been able to
prove or disprove (!!!)

P = NP

P = NP
poly-time algorithms for

FACTOR, SAT, LONGEST-ST-PATH, …

empty string serves as witness

P NP

intractable

P ≠ NP
brute-force search may be

the best we can do

P vs. NP

The central question. Does P = NP ?

・P = set of decision problems solvable in poly-time.

・NP = set of decision problems verifiable in poly-time (given witness).

33

Why P vs. NP is so central?

Analogy. Creative genius vs. ordinary appreciation of creativity.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Intuition. Verifying a solution should be way easier than finding one.

34

creative genius (NP)

domain problem witness/certificate

mathematics find a proof of a conjecture mathematical proof

engineering
given constraints (size, weight, energy),

find a design (bridge, medicine, computer) blueprint

science
given data on a phenomenon,

find a theory explaining it scientific theory

the arts
write a beautiful poem/novel/pop song;

draw a beautiful painting
poem, novel,

pop song, painting

programming write a program to solve a problem program

ordinary appreciation (P)

Princeton computer science building

35

Princeton computer science building (closeup)

36

0
1

1
0

0

0

01
1

0
1

0

1

11
0

1
1

1

0

00
1

1
0

0

0

01
1

0
1

1

1

1

char ASCII binary

P 80 1010000
= 61 0111101
N 78 1001110
P 80 1010000
? 63 0111111

INTRACTABILITY

‣ introduction

‣ computational problems

‣ poly-time algorithms

‣ P vs. NP

‣ poly-time reductions

‣ coping with intractability

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Bird’s-eye view

Design strategy. Suppose we can solve problem efficiently.
Which other problems can we solve efficiently?

X

38

“ Give me a lever long enough and a fulcrum on which to

 place it, and I shall move the world. ” — Archimedes

Poly-time reduction

Definition. Problem poly-time reduces to problem () if 
 can be solved with:

・Polynomial number of elementary operations.

・Polynomial number of calls to algorithm for .
 
 
 
 
 
 
 
 
 
 
 
Remark. We can reduce to/from search, decision or optimization problems.

X Y X ⪯ Y

X

Y

39

Cook reduction

instance x
(of X) solution of x

algorithm for problem X

Poly-time
algorithm that
calls solveY()

Algorithm
for Y

Poly-time reduction

Important special case. Problem poly-time reduces to problem if 
 can be solved by:

1. Mapping instance of into instance of (in poly-time).
2. Running algorithm for on new instance;
3. Mapping solution of to solution of (in poly-time).

 
 
 
 
 
 
 
 
 
 
Algorithm design. Efficient algorithm for yields efficient algorithm for .

X Y
X

X Y

Y

Y X

Y X

40

Levin reduction (Cook with one call to solveY)

instance x
(of X) solution of x

algorithm for problem X

Algorithm
for Y

instance y
(of Y) solution of y

Example 1. ST-CONN poly-time reduces to SHORTEST-PATHS.

Poly-time reduction: ST-CONN to SHORTEST-PATHS

41

decision reduces to search

s

4

6

1

5

2

t

3

instance of
ST-CONN

Example 1. ST-CONN poly-time reduces to SHORTEST-PATHS.

Poly-time reduction: ST-CONN to SHORTEST-PATHS

42

decision reduces to search

Algorithm
for SHORTEST-PATHS

instance of
SHORTEST-PATHS

solution of
SHORTEST-PATHS

v s 1 2 3 4 5 6 t

marked[] ✔ ✘ ✘ ✘ ✔ ✔ ✔ ✔

s

4

6

1

5

2

t

3 s

4

6

1

5

2

t

3

Example 1. ST-CONN poly-time reduces to SHORTEST-PATHS.

Poly-time reduction: ST-CONN to SHORTEST-PATHS

43

decision reduces to search

Algorithm
for SHORTEST-PATHS

solution of
SHORTEST-PATHS

yes

solution of
ST-CONN

v s 1 2 3 4 5 6 t

marked[] ✔ ✘ ✘ ✘ ✔ ✔ ✔ ✔

s

4

6

1

5

2

t

3

Example 2. Bipartite matching poly-time reduces to maxflow.

Poly-time reduction: BIPARTITE-MATCHING to MAXFLOW

44

3

1

5

2

4

A

C

D

B

E

ts 3

1

5

2

4

A

C

D

B

E

11

1

instance of
BIPARTITE-MATCHING

instance of
MAXFLOW

instance of
BIPARTITE-MATCHING

Example 2. Bipartite matching poly-time reduces to maxflow.

Poly-time reduction: BIPARTITE-MATCHING to MAXFLOW

45

Algorithm
for MAXFLOW

ts 3

1

5

2

4

A

C

D

B

E

11

1

ts 3

1

5

2

4

A

C

D

B

E

11

1

instance of
MAXFLOW

solution of
MAXFLOW

Example 2. Bipartite matching poly-time reduces to maxflow.

Poly-time reduction: BIPARTITE-MATCHING to MAXFLOW

46

Algorithm
for MAXFLOW

ts 3

1

5

2

4

A

C

D

B

E

11

1
3

1

5

2

4

A

C

D

B

E

solution of
MAXFLOW

solution of
BIPARTITE-MATCHING

Intractability: poll 3

How many vertices and edges are there in the flow network obtained from a
-vertex, -edge graph via the reduction?

A. vertices, edges

B. vertices, edges

C. vertices, edges

D. vertices, edges

V E

Θ(V) Θ(E)

Θ(V) Θ(V + E)

Θ(V2) Θ(V + E)

Θ(V2) Θ(E2)

47

Poly-time reduction (review)

Definition. Problem poly-time reduces to problem if
 can be solved with:

・Polynomial number of elementary operations.

・Polynomial number of calls to algorithm for .
 
 
 
 
 
 
 
 
 
 
 
Common mistake. Confusing poly-time reduces to with poly-time reduces to .

X Y
X

Y

X Y Y X
48

instance I
(of X) solution of I

algorithm for problem X

Poly-time
algorithm that
calls solveY()

Algorithm
for Y

Intractability: poll 4

Suppose that Problem X poly-time reduces to Problem Y.  
Which of the following can we infer?

A. If X can be solved in poly-time, then so can Y.

B. If X cannot be solved in Θ(n3) time, Y cannot be solved in poly-time.

C. If Y can be solved in Θ(n3) time, then X can be solved in poly-time.

D. If Y cannot be solved in poly-time, then neither can X.

49

Intractable problems

Q3. Which problems are intractable?
A3. Those with no poly-time algorithm.

50

Bird’s-eye view (counterpoint)

Design strategy. Suppose we can solve problem X efficiently.
Which other problems can we solve efficiently?
 
Establishing intractability. Suppose problem is intractable.
Which other problems are also intractable?

X

51

“ Give me a lever long enough and a fulcrum on which to

 place it, and I shall move the world. ” — Archimedes

Example. Longest simple path poly-time reduces to shortest simple path with negative weights.
 
 
 
 
 
 
 
 
 
 
 
Conjecture (equivalent to P ≠ NP). LONGEST-ST-PATH is intractable.
Conditional conclusion. SHORTEST-ST-PATH with negative weights is intractable.  

Poly-time reduction: LONGEST-ST-PATH to SHORTEST-ST-PATH

52

s

2

1 t

3

1

4

7

2

5 6

s

2

1 t

3

-1

-4

-7

-2

-5 -6

Longest path instance Shortest path instance

INTRACTABILITY

‣ introduction

‣ computational problems

‣ poly-time algorithms

‣ P vs. NP

‣ poly-time reductions

‣ coping with intractability

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Step 1. Start with an NP problem believed to be intractable (e.g., LONGEST-ST-PATH).
Step 2. Find a poly-time reduction from it to your problem.

Identifying intractable problems

54

knows reduction from LONGEST-ST-PATH

“I can't find a poly-time algorithm, but neither can all these famous people.”I guess I'm just to dumb.

does not know reduction from LONGEST-ST-PATH

“I can't find a poly-time algorithm.”

Approaches to dealing with intractability

Q. What to do when you find a poly-time reduction from (conjectured) hard problem?
A. Safe to assume intractable: no (worst-case) poly-time algorithm.
 
 
Q1. Must your algorithm always run fast?
Solve real-world instances. Backtracking, SAT.
 
 
Q2. Do you need the optimal solution or a good solution?
Approximation algorithms. Find slightly suboptimal solutions.
 
 
Q3. Can you use the problem’s hardness in your favor?
Leverage intractability. Cryptography.

55

Intractability: poll 5

A program with which of these running times is most likely to be useful in practice?

A.

B.

C.

D.

Key point. Poly-time is not always a surrogate for useful in practice,  
though it tends to be true for the algorithms we encounter in the wild.

10226n

n226

1.000000001n

(n!)!

56

exponential time
(but probably useful in practice)

poly-time
(but probably not useful in practice)

good luck if n ≥ 5

some poly-time algorithms are slow;
some exponential-time algorithms are fast!

Leveraging intractability: RSA cryptosystem

Modern cryptography applications.

・Secure a secret communication.

・Append a digital signature.

・Credit card transactions.

・…
 
RSA cryptosystem exploits intractability.

・To use: multiply/divide two -digit integers (easy).

・To break: factor a -digit integer (intractable?).
n

2n

57

Len AdelmanAdi ShamirRon Rivest

761838257287 • 193707721 147573952589676412927

multiply
(easy)

factor
(difficult)

Summary

P. Set of decision problems solvable in poly-time.
NP. Set of decision problems verifiable in poly-time (given witness).  
 

Poly-time reduction.

・Algorithm for problem via
– Reduction from to , plus
– Algorithm for .

・Intractability of established via
– Reduction from intractable to .

 
 
Use theory as a guide.

・You will confront (conjectured) intractable problems in your career.

・It is safe to assume that P ≠ NP and that such problems are intractable.

・Identify these situations and proceed accordingly.

X

X Y

Y

X

Y X

58

Lecture Slides © Copyright 2025 Marcel Dall'Agnol, Gillat Kol, Robert Sedgewick, and Kevin Wayne

Credits

image source license

Gears Adobe Stock Education License

Finding a Needle in a Haystack Basic Vision

Galactic Computer Adobe Stock Education License

Taylor Swift Caricature Cory Jensen CC BY-NC-ND

Fans in a Stadium Adobe Stock Education License

P and NP cookbooks Futurama S2E10

Homer Simpson and P = NP Simpsons

Archimedes, Lever, and Fulcrum unknown

COS Building, Western Wall Kevin Wayne

Garey–Johnson Cartoon Updated Stefan Szeider CC BY 4.0

Cartoon of Turing Machine Tom Dunne

Warning sign Adobe Stock Education License

Glass with water Adobe Stock Education License

John Nash Wikimedia CC BY-SA 3.0

https://stock.adobe.com/images/cute-gears-cartoon-color-on-white-background/316321194
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://www.jolyon.co.uk/illustrations/basic-vision/
https://stock.adobe.com/images/outer-space-scene-with-planets-and-galaxies-generative-ai/582431892
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://www.deviantart.com/cor104/art/Taylor-Swift-122021057
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://stock.adobe.com/images/fans-im-fussball-stadion/211064337
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://www.ac.tuwien.ac.at/people/szeider/cartoon/
https://creativecommons.org/licenses/by/4.0/
https://stock.adobe.com/images/iso-7010-w001-general-warning-sign/135224923
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/glass-of-water-set-isolated/605180342
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://en.wikipedia.org/wiki/John_Forbes_Nash_Jr.#/media/File:John_Forbes_Nash,_Jr._by_Peter_Badge.jpg
https://creativecommons.org/licenses/by-sa/3.0/deed.en

A final thought

60

 “ Now my general conjecture is as follows: for almost all sufficiently
complex types of enciphering, […] the mean key computation length
increases exponentially with the length of the key […].

The nature of this conjecture is such that I cannot prove it […].
Nor do I expect it to be proven. ”

 — John Nash

