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Dynamic programming overview

Algorithm design paradigm.  

・Decompose a complex problem into simpler, overlapping subproblems. 

・Build up solutions to progressively larger subproblems.  
(caching results for efficient reuse) 

 
 
Applications. 

・Operations research:  multistage decision processes, control theory, optimization, … 

・Computer science:  AI/ML, compilers, systems, graphics, databases, robotics, theory, … 

・Economics. 

・Bioinformatics. 

・Information theory. 

・Tech job interviews. 
 
 
Bottom line.  Powerful and broadly applicable technique.
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THE THEORY OF DYNAMIC PROGRAMMING 
RICHARD BELLMAN 

1. Introduction. Before turning to a discussion of some representa-
tive problems which will permit us to exhibit various mathematical 
features of the theory, let us present a brief survey of the funda-
mental concepts, hopes, and aspirations of dynamic programming. 

To begin with, the theory was created to treat the mathematical 
problems arising from the study of various multi-stage decision 
processes, which may roughly be described in the following way: We 
have a physical system whose state at any time / is determined by a 
set of quantities which we call state parameters, or state variables. 
At certain times, which may be prescribed in advance, or which may 
be determined by the process itself, we are called upon to make de-
cisions which will affect the state of the system. These decisions are 
equivalent to transformations of the state variables, the choice of a 
decision being identical with the choice of a transformation. The out-
come of the preceding decisions is to be used to guide the choice of 
future ones, with the purpose of the whole process that of maximizing 
some function of the parameters describing the final state. 

Examples of processes fitting this loose description are furnished 
by virtually every phase of modern life, from the planning of indus-
trial production lines to the scheduling of patients at a medical 
clinic ; from the determination of long-term investment programs for 
universities to the determination of a replacement policy for ma-
chinery in factories; from the programming of training policies for 
skilled and unskilled labor to the choice of optimal purchasing and in-
ventory policies for department stores and military establishments. 

I t is abundantly clear from the very brief description of possible 
applications tha t the problems arising from the study of these 
processes are problems of the future as well as of the immediate 
present. 

Turning to a more precise discussion, let us introduce a small 
amount of terminology. A sequence of decisions will be called a 
policy, and a policy which is most advantageous according to some 
preassigned criterion will be called an optimal policy. 

The classical approach to the mathematical problems arising from 
the processes described above is to consider the set of all possible 

An address delivered before the Summer Meeting of the Society in Laramie on 
September 3, 1953 by invitation of the Committee to Select Hour Speakers for An-
nual and Summer meetings; received by the editors August 27,1954. 
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Geometry:  De Boor (splines). 
Utilities.  Unix diff (file comparison). 
AI/ML:  Viterbi (hidden Markov models). 
Computer graphics:  Avidan–Shamir (seam carving). 
Databases:  System R algorithm (optimal join order). 
Graph processing:  Bellman–Ford–Moore (shortest paths). 
Computational biology:  Nedleman–Wunsch, Smith–Waterman (sequence alignment). 
Programming languages:  Cocke–Kasami–Younger (parsing context-free grammars). 
Theory:  NP-complete graph problems on trees (vertex color, vertex cover, independent set, …). 
…

see Assignment 6

Classic dynamic programming algorithms

4

shortest paths lecture



Dynamic programming books
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Fibonacci numbers

Fibonacci numbers.  0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,  …

7

3 5 13

21 34

8

55 89

Leonardo Fibonacci

Fi =
0 if  i = 0
1 if  i = 1
Fi−1 + Fi−2 if  i > 1



Fibonacci numbers.  0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,  …
 
 
 
 
 
Goal.  Given , compute  . 
 
Direct recursive implementation:

n Fn

Fi =
0 if  i = 0
1 if  i = 1
Fi−1 + Fi−2 if  i > 1

Fibonacci numbers:  naïve recursive approach

8

public static long fib(int i) { 
   if (i == 0) return 0; 
   if (i == 1) return 1; 
   return fib(i-1) + fib(i-2); 
}



Dynamic programming:  poll 1

How long to compute fib(80) using the direct recursive implementation? 

A.  Less than 1 second. 

B.  About 1 minute. 

C.  More than 1 hour. 

D.  Overflows a 64-bit long integer.

9

~/cos226/dp> java Fibonacci 42 
267914296 
1.04 seconds 

~/cos226/dp> java Fibonacci 43 
433494437 
1.67 seconds 

~/cos226/dp> java Fibonacci 44 
701408733 
2.70 seconds 

⋮ 
~/cos226/dp> java Fibonacci 80 
23416728348467685 
2.88 years

seems to increase by a
factor of about 1.6𐄂



Fibonacci numbers:  recursion tree and exponential growth

Exponential waste.  Same overlapping subproblems are solved repeatedly. 
Ex.  When computing fib(6): 

・ fib(5) is called  time. 

・ fib(4) is called  times. 

・ fib(3) is called  times. 

・ fib(2) is called  times. 

・ fib(1) is called  times.

1
2
3
5
Fn = F6 = 8

10

F0

F1

F2

F1

F3

F0

F1

F2

F1

F0

F1

F2

F3

F4

F5

F0

F1

F2

F1

F0

F1

F2

F3

F4

F6

fib(6)

Fn ∼ ϕn, ϕ =
1 + 5

2
≈ 1.618

F5

F4 F4

F3F3 F3

F2F2 F2 F2 F2

F1 F1F1 F1F1 F1 F1F1

F6

F0F0 F0 F0 F0

“overlapping subproblems”

running time = # subproblems × cost per subproblem



Fibonacci numbers:  top-down dynamic programming (memoization)

Memoization. 

・Maintain an array (or symbol table) to remember computed values. 

・If the value to compute is already known, return it immediately;  
otherwise, compute it; store it; and return it. 

 
 
 
 
 
 
 
 
 
 
Impact.  Solves each subproblem  only once. 
Performance.  Computes  in  time; uses  extra space.

Fi

Fn Θ(n) Θ(n)
11

public static long fib(int i) { 
   if (i == 0) return 0; 
   if (i == 1) return 1; 
   if (f[i] == 0) f[i] = fib(i-1) + fib(i-2); 
   return f[i]; 
}

assume global long array f[],
initialized to 0 (unknown)



Fibonacci numbers:  bottom-up dynamic programming (tabulation)

Tabulation. 

・Build computation from the “bottom up.” 

・Solve small subproblems first and save their solutions. 

・Use those solutions to solve progressively larger subproblems. 
 
 
 
 
 
 
 
 
 
 
Impact.  Solves each subproblem  only once; no recursion. 
Performance.  Computes  in  time; uses  extra space.

Fi

Fn Θ(n) Θ(n)
12

public static long fib(int n) { 
   long[] f = new long[n+1]; 
   f[0] = 0; 
   f[1] = 1; 
   for (int i = 2; i <= n; i++) 
      f[i] = f[i-1] + f[i-2];  
   return f[n]; 
} smaller subproblems



Fibonacci numbers:  further improvements

Performance improvements. 

・Can reduce space by maintaining only two most recent Fibonacci numbers.  
 
 
 
 
 
 
 
 
 

・Can exploit additional properties of problem:

13

Fn = [ ϕn

5 ], ϕ =
1 + 5

2 (Fi+1 Fi

Fi Fi−1) = (1 1
1 0)

I

public static long fib(int n) { 
   int f = 0, g = 1; 
   for (int i = 0; i < n; i++) { 
      g = f + g; 
      f = g - f; 
   } 
   return f; 
}

f and g are consecutive
Fibonacci numbers

but, here, our goal is to
introduce dynamic programming



Dynamic programming recap

Decompose a complex problem into simpler, overlapping subproblems. 
[ define subproblems: subproblem  = compute Fibonacci number  ]  

Develop a recurrence that expresses larger subproblems in terms of smaller ones.  
[ easy to solve subproblem  if we know solutions to subproblems  and  ]  
 
 
 
 

Store each subproblem’s solution after computing it once.  
[ store solution to subproblem  in array entry f[i] ]  

Use stored solutions to solve the original problem.  
[ solution to subproblem  = original problem ]

i Fi

i i − 1 i − 2

i

n

14

Fi =
0 if  i = 0
1 if  i = 1
Fi−1 + Fi−2 if  i > 1
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House painting problem

Goal.  Given a row of  black houses, paint some orange so that: 

・Maximize total profit, where  = profit earned for painting house  orange. 

・Constraint: no two adjacent houses painted orange.

n
profit(i) i

i 1 2 3 4 5 6

profit(i) 10 9 13 20 30 25

16

profit earned for painting houses 1, 3, and 5 orange
(10+ 13 + 30 = 53)



House painting problem

Goal.  Given a row of  black houses, paint some orange so that: 

・Maximize total profit, where  = profit earned for painting house  orange. 

・Constraint: no two adjacent houses painted orange.

n
profit(i) i

i 1 2 3 4 5 6

profit(i) 10 9 13 20 30 25

17

profit earned for painting houses 1, 4, and 6 orange
(10+ 20 + 25 = 55)



House painting problem:  dynamic programming formulation

Goal.  Given a row of  black houses, paint some orange so that: 

・Maximize total profit, where  = profit earned for painting house  orange. 

・Constraint: no two adjacent houses painted orange. 
 
Subproblems.    =  max profit achievable from houses . 
Optimal value.  .

n
profit(i) i

OPT(i) 1,…, i
OPT(n)

18

i 0 1 2 3 4 5 6

profit(i) 10 9 13 20 30 25

OPT(i) 0 10 10 23 30 53 ?

paint house 6 orangekeep house 6 black

55

                =  max { 53,  25 + 30 }

OPT(6)  =

               =  55

max { OPT(5), profit(6) + OPT(4) }



House painting problem:  dynamic programming formulation

Goal.  Given a row of  black houses, paint some orange so that: 

・Maximize total profit, where  = profit earned for painting house  orange. 

・Constraint: no two adjacent houses painted orange. 
 
Subproblems.    =  max profit achievable from houses . 
Optimal value.  . 
 
Binary choice.  To compute  , either: 

・Don’t paint house  orange:  . 

・Paint house  orange:  . 
 
Dynamic programming recurrence.

n
profit(i) i

OPT(i) 1,…, i
OPT(n)

OPT(i)
i OPT(i − 1)

i profit(i) + OPT(i − 2)

19

“optimal substructure”
(optimal solution can be constructed from
optimal solutions to smaller subproblems)

take best

<latexit sha1_base64="cEupkp5ZznMR3kPHtK5OpiwiQIQ="></latexit>

OPT (i) =

8
>>><

>>>:

0 B7 i = 0

T`Q}i(1) B7 i = 1

max { OPT (i� 1), T`Q}i(i) +OPT (i� 2) } B7 i � 2



House painting:  naïve recursive approach

Direct recursive implementation: 
 
 
 
 
 
 
 
 

Dynamic programming recurrence.

20

private static int opt(int i, int[] profit) { 
   if (i == 0) return 0; 
   if (i == 1) return profit[1]; 
   return Math.max(opt(i-1), profit[i] + opt(i-2)); 
}

<latexit sha1_base64="cEupkp5ZznMR3kPHtK5OpiwiQIQ="></latexit>

OPT (i) =

8
>>><

>>>:

0 B7 i = 0

T`Q}i(1) B7 i = 1

max { OPT (i� 1), T`Q}i(i) +OPT (i� 2) } B7 i � 2



What is running time of the direct recursive implementation as a function of  ?

A.  

B.  

C.   for some . 

D.  

n

Θ(n)

Θ(n2)

Θ(cn) c > 1

Θ(n!)

0

1

2

1

3

0

1

2

1

0

1

2

3

4

5

0

1

2

1

0

1

2

3

4

6

5

4 4

33 3

22 2 2 2

1 11 11 1 11

6

00 0 0 0

Dynamic programming:  poll 2

21

opt(6)

“overlapping subproblems”

running time = # subproblems × cost per subproblem

c = φ = 1.618… 
(Fibonacci strikes again)

private static int opt(int i, int[] profit) { 
   if (i == 0) return 0; 
   if (i == 1) return profit[1]; 
   return Math.max(opt(i-1), profit[i] + opt(i-2)); 
}



22

“ Those who cannot remember the
    past are condemned to repeat it. ”

(Jorge Agustín Nicolás Ruiz de Santayana y Borrás)

— Dynamic Programming

The essence of dynamic programming:  remembering the past



Housing painting:  bottom-up implementation

Bottom-up DP implementation.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Proposition.  Computing  takes  time and uses  extra space.OPT(n) Θ(n) Θ(n)
23

int[] opt = new int[n+1]; 
opt[0] = 0; 
opt[1] = profit[1]; 
for (int i = 2; i <= n; i++) { 
   opt[i] = Math.max(opt[i-1], profit[i] + opt[i-2]); 
} 

<latexit sha1_base64="cEupkp5ZznMR3kPHtK5OpiwiQIQ="></latexit>

OPT (i) =

8
>>><

>>>:

0 B7 i = 0

T`Q}i(1) B7 i = 1

max { OPT (i� 1), T`Q}i(i) +OPT (i� 2) } B7 i � 2

solutions to smaller subproblems already available



OPT(1)  =  profit(1)

              =  10

OPT(2)  =  max { OPT(1),  profit(2) + OPT(0) }

              =  max { 10,  9 + 0 }

              =  10

OPT(3)  =  max { OPT(2),  profit(3) + OPT(1) }

              =  max { 10,  13 + 10 }

              =  23

OPT(4)  =  max { OPT(3),  profit(4) + OPT(2) }

              =  max { 23,  20 + 10 }

              =  30

OPT(5)  =  max { OPT(4),  profit(5) + OPT(3) }

              =  max { 30,  30 + 23 }

              =  53

OPT(6)  =  max { OPT(5),  profit(6) + OPT(4) }

              =  max { 53,  25 + 30 }

              =  55

Housing painting:  trace

Bottom-up DP implementation trace.

   i 0 1 2 3 4 5 6

profit(i) – 10 9 13 20 30 25

OPT(i) 0 10 10 23 30 53 55

24

OPT(i) = max profit achievable from houses 1, 2, …, i



OPT(1)  =  profit(1)

              =  10

OPT(2)  =  max { OPT(1),  profit(2) + OPT(0) }

              =  max { 10,  9 + 0 }

              =  10

OPT(3)  =  max { OPT(2),  profit(3) + OPT(1) }

              =  max { 10,  13 + 10 }

              =  23

OPT(4)  =  max { OPT(3),  profit(4) + OPT(2) }

              =  max { 23,  20 + 10 }

              =  30

OPT(5)  =  max { OPT(4),  profit(5) + OPT(3) }

              =  max { 30,  30 + 23 }

              =  53

OPT(6)  =  max { OPT(5),  profit(6) + OPT(4) }

              =  max { 53,  25 + 30 }

              =  55

Q.  We computed the optimal value. How to reconstruct an optimal solution? 
A.  Retrace optimal choices, starting from optimal value and following choices that led to it.

choice(i) orange black orange orange orange orange

Housing painting:  traceback

   i 0 1 2 3 4 5 6

profit(i) – 10 9 13 20 30 25

OPT(i) 0 10 10 23 30 53 55

25
choice(i) = color to paint house i that maximizes total profit achievable from houses 1, 2, …, i

record these choices 
while computing
the optimal value



Coin changing problem

Problem.  Given  coin denominations  and a target value ,  
find the fewest coins needed to make change for  (or report impossible). 
 
Ex.  Coin denominations = {1, 10, 25, 100 }, V = 131. 
Greedy   (8 coins).	 131¢ = 100 + 25 + 1 + 1 + 1 + 1 + 1 + 1. 
Optimal (5 coins).	 131¢ = 100 + 10 + 10 + 10 + 1. 
 
 
 
 
 
 
 
 
 
Remark.  Greedy algorithm is optimal for U.S. coin denominations {1, 5, 10, 25, 100 }.

n { d1, d2, …, dn } V
V

26

vending machine
(out of nickels)

5 coins
(131¢)

8 coins
(131¢)

stay tuned
(Algorithm Design lecture)



Dynamic programming:  poll 3

Which subproblems for coin changing problem?

A.   =  fewest coins needed to make change for target value  

using only coin denominations  .

B.   =  fewest coins needed to make change for amount ,  

for .

C. Either A or B.

D. Neither A nor B.

OPT(i) V

d1, d2, …, di

OPT(v) v

v = 0, 1, …, V

27

knowing solution to OPT(1), OPT(2), …, OPT(i−1),
doesn’t seem to help with solving OPT(i)

knowing solution to OPT(1), OPT(2), …, OPT(v−1),
makes it easy to solve OPT(v)



Coin changing:  dynamic programming formulation

Problem.  Given  coin denominations  and a target value ,  
find the fewest coins needed to make change for  (or report impossible). 
 
Subproblems.    =  fewest coins needed to make change for amount . 
Optimal value.  . 
 
Ex.  Coin denominations  and . 

n { d1, d2, …, dn } V
V

OPT(v) v
OPT(V )

{ 1, 5, 8 } V = 10

                =  min { 1 + 2,  1 + 1,  1 + 2 }

OPT(10)  =

               =  2 28

v 0¢ 1¢ 2¢ 3¢ 4¢ 5¢ 6¢ 7¢ 8¢ 9¢ 10¢

OPT(v) 0 1 2 3 4 1 2 3 1 2 ?

choice(v) – penny penny penny penny nickel penny penny 8-cent penny ?

2

min { 1 + OPT(10 − 1), 1 + OPT(10 − 8) }1 + OPT(10 − 5),

nickel



Coin changing:  dynamic programming formulation

Problem.  Given  coin denominations  and a target value ,  
find the fewest coins needed to make change for  (or report impossible). 
 
Subproblems.    =  fewest coins needed to make change for amount . 
Optimal value.  . 
 
Multiway choice.  To compute , 

・Select a coin of denomination   for some . 

・Use fewest coins to make change for . 
 
Dynamic programming recurrence.

n { d1, d2, …, dn } V
V

OPT(v) v
OPT(V )

OPT(v)
di ≤ v i

v − di

29

optimal substructure

take best
(among all coin denominations)

<latexit sha1_base64="o2H80UrmBhbkbDptSOy+lmYiU7M=">AAAC93icbVFNbxMxEPUuXyV8peXIZUQEKkJEuxSViqioEhduBKlpi+Io8npnEyte78r2Roms/S3cEFd+CD+Af4N3mwNJGcn205s3nudxUkphbBT9CcJbt+/cvbd3v/Pg4aPHT7r7BxemqDTHES9koa8SZlAKhSMrrMSrUiPLE4mXyeJTk79cojaiUOd2XeIkZzMlMsGZ9dS0+/vL8Pxw+Qro4JQOOjTBmVCO+wtN3aEDiABeArW4suBAZFDDEk49S+m4f4z5xGtoLhSVIhfWTB01VWIs4wtHl6ZkHF0/OhKq9gUgfBP40Gzp1GOJsKzr5swsUNfwMbyG1g+8aTSNK6BazOZeUN808rE10qGo0o3labcX9aM24CaIN6BHNjGc7gcHNC14laOyXDJjxnFU2olj2gou0c+gMujfsWAzHHuoWI5m4tq51/DCMylkhfZLWWjZfyscy41Z54lX5szOzW6uIf+XG1c2O5k4ocrKouLXjbJKgi2g+URIhUZu5doDxrXwXoHPmWbc+q/e6tLeXSLfeolbVUrwIsUdVtqV1ayZYrw7s5vg4m0/Pu7HX9/1zk4289wjz8hzckhi8p6ckc9kSEaEB0fBtyAJeLgOv4c/wp/X0jDY1DwlWxH++gu83+dK</latexit>

OPT (v) =

8
><

>:

0 B7 v = 0

min
i : div

{ 1 +OPT (v � di) } B7 v > 0

notation:  min is over all coin denominations of value ≤  v
                 (min is  if no such coin denominations)∞



Coin changing:  bottom-up implementation

Bottom-up DP implementation.  
 
 
 
 
 
 
 
 
 
 

Proposition.  DP algorithm takes  time and uses  extra space. 
 
Note. Technically, running time not polynomial in input size; underlying problem is NP-complete.

Θ(n V ) Θ(V )

30

int[] opt = new int[V+1]; 
opt[0] = 0; 

for (int v = 1; v <= V; v++) { 
   opt[v] = INFINITY; 
   for (int i = 1; i <= n; i++) { 
      if (d[i] <= v) { 
         opt[v] = Math.min(opt[v], 1 + opt[v - d[i]]); 
      } 
   } 
}

n, log V

<latexit sha1_base64="o2H80UrmBhbkbDptSOy+lmYiU7M="></latexit>

OPT (v) =

8
><

>:

0 B7 v = 0

min
i : div

{ 1 +OPT (v � di) } B7 v > 0

stay tuned
(Intractability lecture)
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Shortest paths in directed acyclic graphs:  dynamic programming formulation

Problem.  Given a DAG with positive edge weights, find shortest path from  to . 
Subproblems.    = length of shortest  path. 
Goal.  . 
 
 
Multiway choice.  To compute  : 

・Select an edge  entering . 

・Concatenate with shortest  path. 
 
 
 
Dynamic programming recurrence.

s t
distTo(v) s↝v

distTo(t)

distTo(v)
e = u→v v

s↝u
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u3

u1

vu 2

optimal substructure

take best among
distTo(u) + weight(e)

u210s

<latexit sha1_base64="cETBrH0OFzew3BYtWq8OoQ6R8og="></latexit>

distTo(v) =

8
<

:

0 B7 v = s

min
e = u!v

{ distTo(u) + weight(e) } B7 v 6= s

notation:  min is over all edges e that enter v
                 (  if no such edges)∞



Dynamic programming:  poll 4

 In which vertex order to apply the dynamic programming recurrence?  

A.  Increasing order of distance from . 

B.  Topological order. 

C.  Reverse topological order.

D.  All of the above.

s
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u3

u1

vu 2u210s

<latexit sha1_base64="cETBrH0OFzew3BYtWq8OoQ6R8og=">AAADIHicbVHLattAFB2pr8R9xEmX3VxqGhxajFxaajCBQDddphAnAY8xo9GVPUQaqTMjx2bQptv2K/o13ZUu0w/puiNZi9jphYHDuWfOfYV5IrQJghvPv3f/wcNHO7utx0+ePttr7x+c66xQHEc8SzJ1GTKNiZA4MsIkeJkrZGmY4EV49bHKXyxQaZHJM7PKcZKymRSx4Mw4atr+26IpM3NhbOSKnWVld3EEdHhMh9CiIc6EtNzZ67JFh44L4JCmYba0IoYS6nDsAo5BA6XjoDfAdLKW0kJGrjAai41hAVSJ2dwwpbJrWJS2Lq1SmwpZlpURTTA2QC3QN7DdV1H19boSNYlrrMzKLh7V8toaaAmHcKvFujsq8QvoFkUZNdNM252gF9QBd0G/AR3SxOl03zugUcaLFKXhCdN63A9yM7FMGcETdOspNOaMX7EZjh2ULEU9sfWBSnjlmAjiTLknDdTs7R+WpVqv0tApq+H0dq4i/5cbFyYeTKyQeWFQ8nWhuEjAZFBdGyKhkJtk5QDjSrhegc+ZYty402xUqb1z5BuT2GUhBc8i3GITszSKVVvsb+/sLjh/2+u/7wWf33VOBs0+d8gL8pJ0SZ98ICfkEzklI8I96n31vnnf/R/+T/+X/3st9b3mz3OyEf6ff4ZQ+yc=</latexit>

distTo(v) =

8
<

:

0 B7 v = s

min
e = u!v

{ distTo(u) + weight(e) } B7 v 6= s

if there is an edge (u, v), need to know
distTo[u] in order to compute distTo[v]

that would be Dijkstra’s algorithm



Shortest paths in directed acyclic graphs:  bottom-up solution

Bottom-up DP implementation.  Takes  time with two key ideas: 

・Solve subproblems in topological order. 

・Build the reverse digraph . 
 
 
Equivalent (and simpler) computation:  Relax vertices in topological order. 

・Updates distTo[] values incrementally, as in Dijkstra/Bellman–Ford. 

・Propagates information along outgoing edges. 
 
 
 
 
 
 
 
Recovering paths.  Maintain edgeTo[] array to reconstruct the shortest  paths.

Θ(E + V )

GR

s↝v
34

 
Topological topological = new Topological(digraph); 
for (int v : topological.order()) 
   for (DirectedEdge e : digraph.adj(v)) 
      relax(e);

ensures that  subproblem
are solved before  subproblem

s↝ui
s↝v

u3

u1

vuu2

supports efficient access to
all of a vertex’s incoming edges

relax vertices u1, u2, and u3

before vertex v



Dynamic programming:  poll 5

Given a DAG, how to find longest path from  to  in  time?
 
 
 
 
 
 
 
 

A.  Negate edge weights; use DP algorithm to find shortest path. 

B.  Replace min with max in DP recurrence. 

C.  Either A or B.

D.  No poly-time algorithm is known (NP-complete).

s t Θ(E + V )
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0 1 2 3 4 5 6 71

1

1

longest path from s to t in a DAG (all edge weights = 1)

0 2 4 5 6 7

1

s t



Shortest paths in DAGs and dynamic programming

DP subproblem dependency digraph. 

・Vertex  corresponds to subproblem . 

・Edge  means subproblem  must be solved before subproblem . 

・Digraph must be a DAG. Why? 
 
Ex 1.  Modeling the coin changing problem as a shortest path problem in a DAG.

v v
v→w v w
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0 1 2 3 4 5 6 7 8 91

1

coin denominations = { 1, 5, 8 },  V = 10 

10
1

1

1

1

0 5

1

10

1

s t



Shortest paths in DAGs and dynamic programming

DP subproblem dependency digraph. 

・Vertex  corresponds to subproblem . 

・Edge  means subproblem  must be solved before subproblem . 

・Digraph must be a DAG. Why? 
 
Ex 2.  Modeling the house painting problem as a longest path problem in a DAG.

v v
v→w v w
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s t

1 2 3 4 5 6

profit earned for painting
house 6 orange

0 0 00s t

profits = { 10, 9, 13, 20, 30, 25 }n = 6;

9 13 20 30 25

10
00



Designing a dynamic programming algorithm

38

Decompose the problem
into subproblems.

Develop a recurrence
for optimal value.

Determine the
subproblem order.

Compute optimal values
while caching results.

Reconstruct the
optimal solution.

optimal
substructure

overlapping
subproblems

tabulationmemoization

backtracing
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A final thought
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