
ROBERT SEDGEWICK | KEVIN WAYNE

F O U R T H E D I T I O N

Algorithms

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

Last updated on 11/8/25 7:39  PM

DYNAMIC PROGRAMMING

‣ introduction

‣ Fibonacci numbers

‣ interview problems

‣ shortest paths in DAGs

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

DYNAMIC PROGRAMMING

‣ introduction

‣ Fibonacci numbers

‣ interview problems

‣ shortest paths in DAGs
ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Dynamic programming overview

Algorithm design paradigm.

・Decompose a complex problem into simpler, overlapping subproblems.

・Build up solutions to progressively larger subproblems.  
(caching results for efficient reuse)

 
 
Applications.

・Operations research: multistage decision processes, control theory, optimization, …

・Computer science: AI/ML, compilers, systems, graphics, databases, robotics, theory, …

・Economics.

・Bioinformatics.

・Information theory.

・Tech job interviews.
 
 
Bottom line. Powerful and broadly applicable technique.

3

THE THEORY OF DYNAMIC PROGRAMMING
RICHARD BELLMAN

1. Introduction. Before turning to a discussion of some representa-
tive problems which will permit us to exhibit various mathematical
features of the theory, let us present a brief survey of the funda-
mental concepts, hopes, and aspirations of dynamic programming.

To begin with, the theory was created to treat the mathematical
problems arising from the study of various multi-stage decision
processes, which may roughly be described in the following way: We
have a physical system whose state at any time / is determined by a
set of quantities which we call state parameters, or state variables.
At certain times, which may be prescribed in advance, or which may
be determined by the process itself, we are called upon to make de-
cisions which will affect the state of the system. These decisions are
equivalent to transformations of the state variables, the choice of a
decision being identical with the choice of a transformation. The out-
come of the preceding decisions is to be used to guide the choice of
future ones, with the purpose of the whole process that of maximizing
some function of the parameters describing the final state.

Examples of processes fitting this loose description are furnished
by virtually every phase of modern life, from the planning of indus-
trial production lines to the scheduling of patients at a medical
clinic ; from the determination of long-term investment programs for
universities to the determination of a replacement policy for ma-
chinery in factories; from the programming of training policies for
skilled and unskilled labor to the choice of optimal purchasing and in-
ventory policies for department stores and military establishments.

I t is abundantly clear from the very brief description of possible
applications tha t the problems arising from the study of these
processes are problems of the future as well as of the immediate
present.

Turning to a more precise discussion, let us introduce a small
amount of terminology. A sequence of decisions will be called a
policy, and a policy which is most advantageous according to some
preassigned criterion will be called an optimal policy.

The classical approach to the mathematical problems arising from
the processes described above is to consider the set of all possible

An address delivered before the Summer Meeting of the Society in Laramie on
September 3, 1953 by invitation of the Committee to Select Hour Speakers for An-
nual and Summer meetings; received by the editors August 27,1954.

503

Richard Bellman *46

Geometry: De Boor (splines).
Utilities. Unix diff (file comparison).
AI/ML: Viterbi (hidden Markov models).
Computer graphics: Avidan–Shamir (seam carving).
Databases: System R algorithm (optimal join order).
Graph processing: Bellman–Ford–Moore (shortest paths).
Computational biology: Nedleman–Wunsch, Smith–Waterman (sequence alignment).
Programming languages: Cocke–Kasami–Younger (parsing context-free grammars).
Theory: NP-complete graph problems on trees (vertex color, vertex cover, independent set, …).
…

see Assignment 6

Classic dynamic programming algorithms

4

shortest paths lecture

Dynamic programming books

5

at informit.com/register for convenient
access to downloads, updates, and
corrections as they become available.

Register Your Product

R O B E R T S E D G E W I C K
K E V I N W A Y N E

Robert Sedgewick and Kevin Wayne’s Computer Science:
An Interdisciplinary Approach is the ideal modern introduction
to computer science with Java programming for both students and
professionals. Taking a broad, applications-based approach, Sedgewick
and Wayne teach through important examples from science, mathematics,
engineering, finance, and commercial computing.

The book demystifies computation, explains its intellectual underpinnings,
and covers the essential elements of programming and computational
problem solving in today’s environments. The authors begin by introducing
basic programming elements such as variables, conditionals, loops,
arrays, and I/O. Next, they turn to functions, introducing key modular
programming concepts, including components and reuse. They present
a modern introduction to object-oriented programming, covering current
programming paradigms and approaches to data abstraction.

Building on this foundation, Sedgewick and Wayne widen their focus
to the broader discipline of computer science. They introduce classical
sorting and searching algorithms, fundamental data structures and their
application, and scientific techniques for assessing an implementation’s
performance. Using abstract models, readers learn to answer basic
questions about computation, gaining insight for practical application.
Finally, the authors show how machine architecture links the theory of
computing to real computers, and to the field’s history and evolution.

For each concept, the authors present all the information readers need
to build confidence, together with examples that solve intriguing problems.
Each chapter contains question-and-answer sections, self-study drills,
and challenging problems that demand creative solutions.

Companion web site (introcs.cs.princeton.edu/java) contains
n Extensive supplementary information, including suggested

approaches to programming assignments, checklists, and FAQs
n Graphics and sound libraries
n Links to program code and test data
n Solutions to selected exercises
n Chapter summaries
n Detailed instructions for installing a Java programming environment
n Detailed problem sets and projects

Companion 20-part series of video lectures is available at
informit.com/title/9780134493831

Cover design by Chuti Prasertsith
Cover illustration by Robert Sedgewick

 Text printed on recycled paper

ROBERT SEDGEWICK is the
William O. Baker Professor of Computer
Science at Princeton University,
where he was founding chairman
of the Department of Computer
Science. He has held visiting
research positions at Xerox PARC,
Institute for Defense Analyses, and
INRIA, and served on the board
of directors at Adobe Systems. His
research interests include analytic
combinatorics, design and analysis
of algorithms and data structures,
and program visualization. He has
written seventeen books.

KEVIN WAYNE is the Phillip Y.
Goldman Senior Lecturer in Computer
Science at Princeton University, where
he has taught since 1998, earning
several teaching awards. He is an
ACM Distinguished Educator and
holds a Ph.D. in operations research
and industrial engineering from
Cornell University.

Sedgewick and Wayne are coauthors
of Introduction to Programming in
Java: An Interdisciplinary Approach
(2015) and Algorithms, Fourth
Edition (2011), both from Addison-
Wesley. They have developed
extensive web content and MOOCs
on computer science and algorithms
(Sedgewick and Wayne), and on the
analysis of algorithms and analytic
combinatorics (Sedgewick). Their
pioneering MOOCs have attracted
more than 1 million learners; their
web content draws millions of
hits annually.

informit.com/aw
informit.com/sedgewick
introcs.cs.princeton.edu/java

ISBN-13:
ISBN-10:

978-0-13-407642-3
0-13-407642-7

9 7 8 0 1 3 4 0 7 6 4 2 3

5 7 9 9 9

$79.99 U.S. | $99.99 CANADA

C
om

puter Science
A

n
 In

te
rd

iscip
lin

a
ry

 A
p

p
ro

a
ch

SEDGEWICK

WAYNE

Computer Science/Programming

Computer
Science

An Interdisciplinary Approach

9780134076423_Sedgewick_Computer_Science_Cover.indd 1 4/26/16 10:08 AMpp. 284–289

DYNAMIC PROGRAMMING

‣ introduction

‣ Fibonacci numbers

‣ interview problems

‣ shortest paths in DAGs
ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Fibonacci numbers

Fibonacci numbers. 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, …

7

3 5 13

21 34

8

55 89

Leonardo Fibonacci

Fi =
0 if i = 0
1 if i = 1
Fi−1 + Fi−2 if i > 1

Fibonacci numbers. 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, …

Goal. Given , compute .
 
Direct recursive implementation:

n Fn

Fi =
0 if i = 0
1 if i = 1
Fi−1 + Fi−2 if i > 1

Fibonacci numbers: naïve recursive approach

8

public static long fib(int i) {
 if (i == 0) return 0;
 if (i == 1) return 1;
 return fib(i-1) + fib(i-2);
}

Dynamic programming: poll 1

How long to compute fib(80) using the direct recursive implementation?

A. Less than 1 second.

B. About 1 minute.

C. More than 1 hour.

D. Overflows a 64-bit long integer.

9

~/cos226/dp> java Fibonacci 42
267914296
1.04 seconds

~/cos226/dp> java Fibonacci 43
433494437
1.67 seconds

~/cos226/dp> java Fibonacci 44
701408733
2.70 seconds

⋮
~/cos226/dp> java Fibonacci 80
23416728348467685
2.88 years

seems to increase by a
factor of about 1.6𐄂

Fibonacci numbers: recursion tree and exponential growth

Exponential waste. Same overlapping subproblems are solved repeatedly.
Ex. When computing fib(6):

・ fib(5) is called time.

・ fib(4) is called times.

・ fib(3) is called times.

・ fib(2) is called times.

・ fib(1) is called times.

1
2
3
5
Fn = F6 = 8

10

F0

F1

F2

F1

F3

F0

F1

F2

F1

F0

F1

F2

F3

F4

F5

F0

F1

F2

F1

F0

F1

F2

F3

F4

F6

fib(6)

Fn ∼ ϕn, ϕ =
1 + 5

2
≈ 1.618

F5

F4 F4

F3F3 F3

F2F2 F2 F2 F2

F1 F1F1 F1F1 F1 F1F1

F6

F0F0 F0 F0 F0

“overlapping subproblems”

running time = # subproblems × cost per subproblem

Fibonacci numbers: top-down dynamic programming (memoization)

Memoization.

・Maintain an array (or symbol table) to remember computed values.

・If the value to compute is already known, return it immediately;  
otherwise, compute it; store it; and return it.

 
 
 
 
 
 
 
 
 
 
Impact. Solves each subproblem only once.
Performance. Computes in time; uses extra space.

Fi

Fn Θ(n) Θ(n)
11

public static long fib(int i) {
 if (i == 0) return 0;
 if (i == 1) return 1;
 if (f[i] == 0) f[i] = fib(i-1) + fib(i-2);
 return f[i];
}

assume global long array f[],
initialized to 0 (unknown)

Fibonacci numbers: bottom-up dynamic programming (tabulation)

Tabulation.

・Build computation from the “bottom up.”

・Solve small subproblems first and save their solutions.

・Use those solutions to solve progressively larger subproblems.
 
 
 
 
 
 
 
 
 
 
Impact. Solves each subproblem only once; no recursion.
Performance. Computes in time; uses extra space.

Fi

Fn Θ(n) Θ(n)
12

public static long fib(int n) {
 long[] f = new long[n+1];
 f[0] = 0;
 f[1] = 1;
 for (int i = 2; i <= n; i++)
 f[i] = f[i-1] + f[i-2];
 return f[n];
} smaller subproblems

Fibonacci numbers: further improvements

Performance improvements.

・Can reduce space by maintaining only two most recent Fibonacci numbers.  
 
 
 
 
 
 
 
 
 

・Can exploit additional properties of problem:

13

Fn = [ϕn

5], ϕ =
1 + 5

2 (Fi+1 Fi

Fi Fi−1) = (1 1
1 0)

I

public static long fib(int n) {
 int f = 0, g = 1;
 for (int i = 0; i < n; i++) {
 g = f + g;
 f = g - f;
 }
 return f;
}

f and g are consecutive
Fibonacci numbers

but, here, our goal is to
introduce dynamic programming

Dynamic programming recap

Decompose a complex problem into simpler, overlapping subproblems. 
[define subproblems: subproblem = compute Fibonacci number]  

Develop a recurrence that expresses larger subproblems in terms of smaller ones.  
[easy to solve subproblem if we know solutions to subproblems and]  
 
 
 
 

Store each subproblem’s solution after computing it once.  
[store solution to subproblem in array entry f[i]]  

Use stored solutions to solve the original problem.  
[solution to subproblem = original problem]

i Fi

i i − 1 i − 2

i

n

14

Fi =
0 if i = 0
1 if i = 1
Fi−1 + Fi−2 if i > 1

DYNAMIC PROGRAMMING

‣ introduction

‣ Fibonacci numbers

‣ interview problems

‣ shortest paths in DAGs
ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

House painting problem

Goal. Given a row of black houses, paint some orange so that:

・Maximize total profit, where = profit earned for painting house orange.

・Constraint: no two adjacent houses painted orange.

n
profit(i) i

i 1 2 3 4 5 6

profit(i) 10 9 13 20 30 25

16

profit earned for painting houses 1, 3, and 5 orange
(10+ 13 + 30 = 53)

House painting problem

Goal. Given a row of black houses, paint some orange so that:

・Maximize total profit, where = profit earned for painting house orange.

・Constraint: no two adjacent houses painted orange.

n
profit(i) i

i 1 2 3 4 5 6

profit(i) 10 9 13 20 30 25

17

profit earned for painting houses 1, 4, and 6 orange
(10+ 20 + 25 = 55)

House painting problem: dynamic programming formulation

Goal. Given a row of black houses, paint some orange so that:

・Maximize total profit, where = profit earned for painting house orange.

・Constraint: no two adjacent houses painted orange.
 
Subproblems. = max profit achievable from houses .
Optimal value. .

n
profit(i) i

OPT(i) 1,…, i
OPT(n)

18

i 0 1 2 3 4 5 6

profit(i) 10 9 13 20 30 25

OPT(i) 0 10 10 23 30 53 ?

paint house 6 orangekeep house 6 black

55

 = max { 53, 25 + 30 }

OPT(6) =

 = 55

max { OPT(5), profit(6) + OPT(4) }

House painting problem: dynamic programming formulation

Goal. Given a row of black houses, paint some orange so that:

・Maximize total profit, where = profit earned for painting house orange.

・Constraint: no two adjacent houses painted orange.
 
Subproblems. = max profit achievable from houses .
Optimal value. .
 
Binary choice. To compute , either:

・Don’t paint house orange: .

・Paint house orange: .
 
Dynamic programming recurrence.

n
profit(i) i

OPT(i) 1,…, i
OPT(n)

OPT(i)
i OPT(i − 1)

i profit(i) + OPT(i − 2)

19

“optimal substructure”
(optimal solution can be constructed from
optimal solutions to smaller subproblems)

take best

<latexit sha1_base64="cEupkp5ZznMR3kPHtK5OpiwiQIQ=">AAADEHicbVLbihNBEO0Zb2u8ZddHXwqDkqAbZoKsC2FhwRcfBCNsdhfSIfR0apJmey5010jCmJ/wa3wTX/0Df8DvsGeSB5NswcDpU3XqVFdPlGtlKQj+eP6du/fuPzh42Hj0+MnTZ83Do0ubFUbiUGY6M9eRsKhVikNSpPE6NyiSSONVdPOhyl99RWNVll7QMsdxImapipUU5KhJ8+/nwUVbdYD3z3i/wSOcqbSUrqFdNXgfAoDXwAkXBCWoGFag4MyxnI+6J5iMXU2dVVTmJosVrdph5zZJuCVJxAK4xpiAl84a6iHgGMLOW3d0xG5TN+GbddVxrxoWuFGzuZOv9s34DKHn7Boc0+nmLpNmK+gGdcA+CDegxTYxmBx6R3yaySLBlKQW1o7CIKdxKQwpqdEtp7CYC3kjZjhyMBUJ2nFZP8gKXjlmCnFm3JcS1Oz/ilIk1i6TyFUmguZ2N1eRt+VGBcWn41KleUGYyrVRXGigDKrXhakyKEkvHRDSKDcryLkwQpL7B7Zc6t45yq2blIsiVTKb4g6raUFGVFsMd3e2Dy573fCkG3551zo/3ezzgL1gL1mbhew9O2cf2YANmfQ+ecYrvW/+d/+H/9P/tS71vY3mOdsK//c/OjHuhQ==</latexit>

OPT (i) =

8
>>><

>>>:

0 B7 i = 0

T`Q}i(1) B7 i = 1

max { OPT (i� 1), T`Q}i(i) +OPT (i� 2) } B7 i � 2

House painting: naïve recursive approach

Direct recursive implementation:
 
 
 
 
 
 
 
 

Dynamic programming recurrence.

20

private static int opt(int i, int[] profit) {
 if (i == 0) return 0;
 if (i == 1) return profit[1];
 return Math.max(opt(i-1), profit[i] + opt(i-2));
}

<latexit sha1_base64="cEupkp5ZznMR3kPHtK5OpiwiQIQ=">AAADEHicbVLbihNBEO0Zb2u8ZddHXwqDkqAbZoKsC2FhwRcfBCNsdhfSIfR0apJmey5010jCmJ/wa3wTX/0Df8DvsGeSB5NswcDpU3XqVFdPlGtlKQj+eP6du/fuPzh42Hj0+MnTZ83Do0ubFUbiUGY6M9eRsKhVikNSpPE6NyiSSONVdPOhyl99RWNVll7QMsdxImapipUU5KhJ8+/nwUVbdYD3z3i/wSOcqbSUrqFdNXgfAoDXwAkXBCWoGFag4MyxnI+6J5iMXU2dVVTmJosVrdph5zZJuCVJxAK4xpiAl84a6iHgGMLOW3d0xG5TN+GbddVxrxoWuFGzuZOv9s34DKHn7Boc0+nmLpNmK+gGdcA+CDegxTYxmBx6R3yaySLBlKQW1o7CIKdxKQwpqdEtp7CYC3kjZjhyMBUJ2nFZP8gKXjlmCnFm3JcS1Oz/ilIk1i6TyFUmguZ2N1eRt+VGBcWn41KleUGYyrVRXGigDKrXhakyKEkvHRDSKDcryLkwQpL7B7Zc6t45yq2blIsiVTKb4g6raUFGVFsMd3e2Dy573fCkG3551zo/3ezzgL1gL1mbhew9O2cf2YANmfQ+ecYrvW/+d/+H/9P/tS71vY3mOdsK//c/OjHuhQ==</latexit>

OPT (i) =

8
>>><

>>>:

0 B7 i = 0

T`Q}i(1) B7 i = 1

max { OPT (i� 1), T`Q}i(i) +OPT (i� 2) } B7 i � 2

What is running time of the direct recursive implementation as a function of ?

A.

B.

C. for some .

D.

n

Θ(n)

Θ(n2)

Θ(cn) c > 1

Θ(n!)

0

1

2

1

3

0

1

2

1

0

1

2

3

4

5

0

1

2

1

0

1

2

3

4

6

5

4 4

33 3

22 2 2 2

1 11 11 1 11

6

00 0 0 0

Dynamic programming: poll 2

21

opt(6)

“overlapping subproblems”

running time = # subproblems × cost per subproblem

c = φ = 1.618…
(Fibonacci strikes again)

private static int opt(int i, int[] profit) {
 if (i == 0) return 0;
 if (i == 1) return profit[1];
 return Math.max(opt(i-1), profit[i] + opt(i-2));
}

22

“ Those who cannot remember the
 past are condemned to repeat it. ”

(Jorge Agustín Nicolás Ruiz de Santayana y Borrás)

— Dynamic Programming

The essence of dynamic programming: remembering the past

Housing painting: bottom-up implementation

Bottom-up DP implementation.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Proposition. Computing takes time and uses extra space.OPT(n) Θ(n) Θ(n)
23

int[] opt = new int[n+1];
opt[0] = 0;
opt[1] = profit[1];
for (int i = 2; i <= n; i++) {
 opt[i] = Math.max(opt[i-1], profit[i] + opt[i-2]);
}

<latexit sha1_base64="cEupkp5ZznMR3kPHtK5OpiwiQIQ=">AAADEHicbVLbihNBEO0Zb2u8ZddHXwqDkqAbZoKsC2FhwRcfBCNsdhfSIfR0apJmey5010jCmJ/wa3wTX/0Df8DvsGeSB5NswcDpU3XqVFdPlGtlKQj+eP6du/fuPzh42Hj0+MnTZ83Do0ubFUbiUGY6M9eRsKhVikNSpPE6NyiSSONVdPOhyl99RWNVll7QMsdxImapipUU5KhJ8+/nwUVbdYD3z3i/wSOcqbSUrqFdNXgfAoDXwAkXBCWoGFag4MyxnI+6J5iMXU2dVVTmJosVrdph5zZJuCVJxAK4xpiAl84a6iHgGMLOW3d0xG5TN+GbddVxrxoWuFGzuZOv9s34DKHn7Boc0+nmLpNmK+gGdcA+CDegxTYxmBx6R3yaySLBlKQW1o7CIKdxKQwpqdEtp7CYC3kjZjhyMBUJ2nFZP8gKXjlmCnFm3JcS1Oz/ilIk1i6TyFUmguZ2N1eRt+VGBcWn41KleUGYyrVRXGigDKrXhakyKEkvHRDSKDcryLkwQpL7B7Zc6t45yq2blIsiVTKb4g6raUFGVFsMd3e2Dy573fCkG3551zo/3ezzgL1gL1mbhew9O2cf2YANmfQ+ecYrvW/+d/+H/9P/tS71vY3mOdsK//c/OjHuhQ==</latexit>

OPT (i) =

8
>>><

>>>:

0 B7 i = 0

T`Q}i(1) B7 i = 1

max { OPT (i� 1), T`Q}i(i) +OPT (i� 2) } B7 i � 2

solutions to smaller subproblems already available

OPT(1) = profit(1)

 = 10

OPT(2) = max { OPT(1), profit(2) + OPT(0) }

 = max { 10, 9 + 0 }

 = 10

OPT(3) = max { OPT(2), profit(3) + OPT(1) }

 = max { 10, 13 + 10 }

 = 23

OPT(4) = max { OPT(3), profit(4) + OPT(2) }

 = max { 23, 20 + 10 }

 = 30

OPT(5) = max { OPT(4), profit(5) + OPT(3) }

 = max { 30, 30 + 23 }

 = 53

OPT(6) = max { OPT(5), profit(6) + OPT(4) }

 = max { 53, 25 + 30 }

 = 55

Housing painting: trace

Bottom-up DP implementation trace.

 i 0 1 2 3 4 5 6

profit(i) – 10 9 13 20 30 25

OPT(i) 0 10 10 23 30 53 55

24

OPT(i) = max profit achievable from houses 1, 2, …, i

OPT(1) = profit(1)

 = 10

OPT(2) = max { OPT(1), profit(2) + OPT(0) }

 = max { 10, 9 + 0 }

 = 10

OPT(3) = max { OPT(2), profit(3) + OPT(1) }

 = max { 10, 13 + 10 }

 = 23

OPT(4) = max { OPT(3), profit(4) + OPT(2) }

 = max { 23, 20 + 10 }

 = 30

OPT(5) = max { OPT(4), profit(5) + OPT(3) }

 = max { 30, 30 + 23 }

 = 53

OPT(6) = max { OPT(5), profit(6) + OPT(4) }

 = max { 53, 25 + 30 }

 = 55

Q. We computed the optimal value. How to reconstruct an optimal solution?
A. Retrace optimal choices, starting from optimal value and following choices that led to it.

choice(i) orange black orange orange orange orange

Housing painting: traceback

 i 0 1 2 3 4 5 6

profit(i) – 10 9 13 20 30 25

OPT(i) 0 10 10 23 30 53 55

25
choice(i) = color to paint house i that maximizes total profit achievable from houses 1, 2, …, i

record these choices
while computing
the optimal value

Coin changing problem

Problem. Given coin denominations and a target value ,  
find the fewest coins needed to make change for (or report impossible).
 
Ex. Coin denominations = {1, 10, 25, 100 }, V = 131.
Greedy (8 coins).	 131¢ = 100 + 25 + 1 + 1 + 1 + 1 + 1 + 1.
Optimal (5 coins).	 131¢ = 100 + 10 + 10 + 10 + 1.
 
 
 
 
 
 
 
 
 
Remark. Greedy algorithm is optimal for U.S. coin denominations {1, 5, 10, 25, 100 }.

n { d1, d2, …, dn } V
V

26

vending machine
(out of nickels)

5 coins
(131¢)

8 coins
(131¢)

stay tuned
(Algorithm Design lecture)

Dynamic programming: poll 3

Which subproblems for coin changing problem?

A. = fewest coins needed to make change for target value

using only coin denominations .

B. = fewest coins needed to make change for amount ,  

for .

C. Either A or B.

D. Neither A nor B.

OPT(i) V

d1, d2, …, di

OPT(v) v

v = 0, 1, …, V

27

knowing solution to OPT(1), OPT(2), …, OPT(i−1),
doesn’t seem to help with solving OPT(i)

knowing solution to OPT(1), OPT(2), …, OPT(v−1),
makes it easy to solve OPT(v)

Coin changing: dynamic programming formulation

Problem. Given coin denominations and a target value ,  
find the fewest coins needed to make change for (or report impossible).
 
Subproblems. = fewest coins needed to make change for amount .
Optimal value. .
 
Ex. Coin denominations and .

n { d1, d2, …, dn } V
V

OPT(v) v
OPT(V)

{ 1, 5, 8 } V = 10

 = min { 1 + 2, 1 + 1, 1 + 2 }

OPT(10) =

 = 2 28

v 0¢ 1¢ 2¢ 3¢ 4¢ 5¢ 6¢ 7¢ 8¢ 9¢ 10¢

OPT(v) 0 1 2 3 4 1 2 3 1 2 ?

choice(v) – penny penny penny penny nickel penny penny 8-cent penny ?

2

min { 1 + OPT(10 − 1), 1 + OPT(10 − 8) }1 + OPT(10 − 5),

nickel

Coin changing: dynamic programming formulation

Problem. Given coin denominations and a target value ,  
find the fewest coins needed to make change for (or report impossible).
 
Subproblems. = fewest coins needed to make change for amount .
Optimal value. .
 
Multiway choice. To compute ,

・Select a coin of denomination for some .

・Use fewest coins to make change for .
 
Dynamic programming recurrence.

n { d1, d2, …, dn } V
V

OPT(v) v
OPT(V)

OPT(v)
di ≤ v i

v − di

29

optimal substructure

take best
(among all coin denominations)

<latexit sha1_base64="o2H80UrmBhbkbDptSOy+lmYiU7M=">AAAC93icbVFNbxMxEPUuXyV8peXIZUQEKkJEuxSViqioEhduBKlpi+Io8npnEyte78r2Roms/S3cEFd+CD+Af4N3mwNJGcn205s3nudxUkphbBT9CcJbt+/cvbd3v/Pg4aPHT7r7BxemqDTHES9koa8SZlAKhSMrrMSrUiPLE4mXyeJTk79cojaiUOd2XeIkZzMlMsGZ9dS0+/vL8Pxw+Qro4JQOOjTBmVCO+wtN3aEDiABeArW4suBAZFDDEk49S+m4f4z5xGtoLhSVIhfWTB01VWIs4wtHl6ZkHF0/OhKq9gUgfBP40Gzp1GOJsKzr5swsUNfwMbyG1g+8aTSNK6BazOZeUN808rE10qGo0o3labcX9aM24CaIN6BHNjGc7gcHNC14laOyXDJjxnFU2olj2gou0c+gMujfsWAzHHuoWI5m4tq51/DCMylkhfZLWWjZfyscy41Z54lX5szOzW6uIf+XG1c2O5k4ocrKouLXjbJKgi2g+URIhUZu5doDxrXwXoHPmWbc+q/e6tLeXSLfeolbVUrwIsUdVtqV1ayZYrw7s5vg4m0/Pu7HX9/1zk4289wjz8hzckhi8p6ckc9kSEaEB0fBtyAJeLgOv4c/wp/X0jDY1DwlWxH++gu83+dK</latexit>

OPT (v) =

8
><

>:

0 B7 v = 0

min
i : div

{ 1 +OPT (v � di) } B7 v > 0

notation: min is over all coin denominations of value ≤ v
 (min is if no such coin denominations)∞

Coin changing: bottom-up implementation

Bottom-up DP implementation.  
 
 
 
 
 
 
 
 
 
 

Proposition. DP algorithm takes time and uses extra space.
 
Note. Technically, running time not polynomial in input size; underlying problem is NP-complete.

Θ(n V) Θ(V)

30

int[] opt = new int[V+1];
opt[0] = 0;

for (int v = 1; v <= V; v++) {
 opt[v] = INFINITY;
 for (int i = 1; i <= n; i++) {
 if (d[i] <= v) {
 opt[v] = Math.min(opt[v], 1 + opt[v - d[i]]);
 }
 }
}

n, log V

<latexit sha1_base64="o2H80UrmBhbkbDptSOy+lmYiU7M=">AAAC93icbVFNbxMxEPUuXyV8peXIZUQEKkJEuxSViqioEhduBKlpi+Io8npnEyte78r2Roms/S3cEFd+CD+Af4N3mwNJGcn205s3nudxUkphbBT9CcJbt+/cvbd3v/Pg4aPHT7r7BxemqDTHES9koa8SZlAKhSMrrMSrUiPLE4mXyeJTk79cojaiUOd2XeIkZzMlMsGZ9dS0+/vL8Pxw+Qro4JQOOjTBmVCO+wtN3aEDiABeArW4suBAZFDDEk49S+m4f4z5xGtoLhSVIhfWTB01VWIs4wtHl6ZkHF0/OhKq9gUgfBP40Gzp1GOJsKzr5swsUNfwMbyG1g+8aTSNK6BazOZeUN808rE10qGo0o3labcX9aM24CaIN6BHNjGc7gcHNC14laOyXDJjxnFU2olj2gou0c+gMujfsWAzHHuoWI5m4tq51/DCMylkhfZLWWjZfyscy41Z54lX5szOzW6uIf+XG1c2O5k4ocrKouLXjbJKgi2g+URIhUZu5doDxrXwXoHPmWbc+q/e6tLeXSLfeolbVUrwIsUdVtqV1ayZYrw7s5vg4m0/Pu7HX9/1zk4289wjz8hzckhi8p6ckc9kSEaEB0fBtyAJeLgOv4c/wp/X0jDY1DwlWxH++gu83+dK</latexit>

OPT (v) =

8
><

>:

0 B7 v = 0

min
i : div

{ 1 +OPT (v � di) } B7 v > 0

stay tuned
(Intractability lecture)

DYNAMIC PROGRAMMING

‣ introduction

‣ Fibonacci numbers

‣ interview problems

‣ shortest paths in DAGs
ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Shortest paths in directed acyclic graphs: dynamic programming formulation

Problem. Given a DAG with positive edge weights, find shortest path from to .
Subproblems. = length of shortest path.
Goal. .
 
 
Multiway choice. To compute :

・Select an edge entering .

・Concatenate with shortest path.
 
 
 
Dynamic programming recurrence.

s t
distTo(v) s↝v

distTo(t)

distTo(v)
e = u→v v

s↝u

32

u3

u1

vu 2

optimal substructure

take best among
distTo(u) + weight(e)

u210s

<latexit sha1_base64="cETBrH0OFzew3BYtWq8OoQ6R8og=">AAADIHicbVHLattAFB2pr8R9xEmX3VxqGhxajFxaajCBQDddphAnAY8xo9GVPUQaqTMjx2bQptv2K/o13ZUu0w/puiNZi9jphYHDuWfOfYV5IrQJghvPv3f/wcNHO7utx0+ePttr7x+c66xQHEc8SzJ1GTKNiZA4MsIkeJkrZGmY4EV49bHKXyxQaZHJM7PKcZKymRSx4Mw4atr+26IpM3NhbOSKnWVld3EEdHhMh9CiIc6EtNzZ67JFh44L4JCmYba0IoYS6nDsAo5BA6XjoDfAdLKW0kJGrjAai41hAVSJ2dwwpbJrWJS2Lq1SmwpZlpURTTA2QC3QN7DdV1H19boSNYlrrMzKLh7V8toaaAmHcKvFujsq8QvoFkUZNdNM252gF9QBd0G/AR3SxOl03zugUcaLFKXhCdN63A9yM7FMGcETdOspNOaMX7EZjh2ULEU9sfWBSnjlmAjiTLknDdTs7R+WpVqv0tApq+H0dq4i/5cbFyYeTKyQeWFQ8nWhuEjAZFBdGyKhkJtk5QDjSrhegc+ZYty402xUqb1z5BuT2GUhBc8i3GITszSKVVvsb+/sLjh/2+u/7wWf33VOBs0+d8gL8pJ0SZ98ICfkEzklI8I96n31vnnf/R/+T/+X/3st9b3mz3OyEf6ff4ZQ+yc=</latexit>

distTo(v) =

8
<

:

0 B7 v = s

min
e = u!v

{ distTo(u) + weight(e) } B7 v 6= s

notation: min is over all edges e that enter v
 (if no such edges)∞

Dynamic programming: poll 4

 In which vertex order to apply the dynamic programming recurrence?  

A. Increasing order of distance from .

B. Topological order.

C. Reverse topological order.

D. All of the above.

s

33

u3

u1

vu 2u210s

<latexit sha1_base64="cETBrH0OFzew3BYtWq8OoQ6R8og=">AAADIHicbVHLattAFB2pr8R9xEmX3VxqGhxajFxaajCBQDddphAnAY8xo9GVPUQaqTMjx2bQptv2K/o13ZUu0w/puiNZi9jphYHDuWfOfYV5IrQJghvPv3f/wcNHO7utx0+ePttr7x+c66xQHEc8SzJ1GTKNiZA4MsIkeJkrZGmY4EV49bHKXyxQaZHJM7PKcZKymRSx4Mw4atr+26IpM3NhbOSKnWVld3EEdHhMh9CiIc6EtNzZ67JFh44L4JCmYba0IoYS6nDsAo5BA6XjoDfAdLKW0kJGrjAai41hAVSJ2dwwpbJrWJS2Lq1SmwpZlpURTTA2QC3QN7DdV1H19boSNYlrrMzKLh7V8toaaAmHcKvFujsq8QvoFkUZNdNM252gF9QBd0G/AR3SxOl03zugUcaLFKXhCdN63A9yM7FMGcETdOspNOaMX7EZjh2ULEU9sfWBSnjlmAjiTLknDdTs7R+WpVqv0tApq+H0dq4i/5cbFyYeTKyQeWFQ8nWhuEjAZFBdGyKhkJtk5QDjSrhegc+ZYty402xUqb1z5BuT2GUhBc8i3GITszSKVVvsb+/sLjh/2+u/7wWf33VOBs0+d8gL8pJ0SZ98ICfkEzklI8I96n31vnnf/R/+T/+X/3st9b3mz3OyEf6ff4ZQ+yc=</latexit>

distTo(v) =

8
<

:

0 B7 v = s

min
e = u!v

{ distTo(u) + weight(e) } B7 v 6= s

if there is an edge (u, v), need to know
distTo[u] in order to compute distTo[v]

that would be Dijkstra’s algorithm

Shortest paths in directed acyclic graphs: bottom-up solution

Bottom-up DP implementation. Takes time with two key ideas:

・Solve subproblems in topological order.

・Build the reverse digraph .
 
 
Equivalent (and simpler) computation: Relax vertices in topological order.

・Updates distTo[] values incrementally, as in Dijkstra/Bellman–Ford.

・Propagates information along outgoing edges.
 
 
 
 
 
 
 
Recovering paths. Maintain edgeTo[] array to reconstruct the shortest paths.

Θ(E + V)

GR

s↝v
34

Topological topological = new Topological(digraph);
for (int v : topological.order())
 for (DirectedEdge e : digraph.adj(v))
 relax(e);

ensures that subproblem
are solved before subproblem

s↝ui
s↝v

u3

u1

vuu2

supports efficient access to
all of a vertex’s incoming edges

relax vertices u1, u2, and u3

before vertex v

Dynamic programming: poll 5

Given a DAG, how to find longest path from to in time?
 
 
 
 
 
 
 
 

A. Negate edge weights; use DP algorithm to find shortest path.

B. Replace min with max in DP recurrence.

C. Either A or B.

D. No poly-time algorithm is known (NP-complete).

s t Θ(E + V)

35

0 1 2 3 4 5 6 71

1

1

longest path from s to t in a DAG (all edge weights = 1)

0 2 4 5 6 7

1

s t

Shortest paths in DAGs and dynamic programming

DP subproblem dependency digraph.

・Vertex corresponds to subproblem .

・Edge means subproblem must be solved before subproblem .

・Digraph must be a DAG. Why?
 
Ex 1. Modeling the coin changing problem as a shortest path problem in a DAG.

v v
v→w v w

36

0 1 2 3 4 5 6 7 8 91

1

coin denominations = { 1, 5, 8 }, V = 10

10
1

1

1

1

0 5

1

10

1

s t

Shortest paths in DAGs and dynamic programming

DP subproblem dependency digraph.

・Vertex corresponds to subproblem .

・Edge means subproblem must be solved before subproblem .

・Digraph must be a DAG. Why?
 
Ex 2. Modeling the house painting problem as a longest path problem in a DAG.

v v
v→w v w

37

s t

1 2 3 4 5 6

profit earned for painting
house 6 orange

0 0 00s t

profits = { 10, 9, 13, 20, 30, 25 }n = 6;

9 13 20 30 25

10
00

Designing a dynamic programming algorithm

38

Decompose the problem
into subproblems.

Develop a recurrence
for optimal value.

Determine the
subproblem order.

Compute optimal values
while caching results.

Reconstruct the
optimal solution.

optimal
substructure

overlapping
subproblems

tabulationmemoization

backtracing

Lecture Slides © Copyright 2025 Robert Sedgewick and Kevin Wayne

Credits

39

image source license

Richard Bellman Wikipedia

Biopython biopython.org

ImageMagick Liquid Rescale ImageMagick ImageMagick license

Cubic B-Spline Tibor Stanko

Leonardo Fibonacci Wikimedia public domain

Evoke 5 Vending Machine U-Select-It

U.S. Coins Adobe Stock education license

Seam Carving Avidan and Shamir

Broadway Tower Wikimedia CC BY 2.5

A is for Algorithms Reddit

https://en.wikipedia.org/wiki/File:Richard_Ernest_Bellman.jpg
https://biopython.org/
https://imagemagick.org/Usage/resize/
https://www.imagemagick.org/script/license.php
https://tiborstanko.sk/teaching/geo-num-2017/tp3.html
https://commons.wikimedia.org/wiki/File:Fibonacci5.jpg
https://creativecommons.org/share-your-work/public-domain/
https://vendors-source.com/vending/evoke-5-vending-machine/
https://stock.adobe.com/images/set-of-obvers-and-revers-of-american-money-one-five-ten-and-twenty-five-cent-coins/501427777
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://www.youtube.com/watch?v=vIFCV2spKtg
https://commons.wikimedia.org/wiki/File:Broadway_tower.jpg
https://creativecommons.org/licenses/by/2.5/deed.en
https://www.reddit.com/r/ProgrammerHumor/comments/9wi5vy/how_to_define_algorithm/

A final thought

40

