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Dynamic programming overview

Algorithm design paradigm.

 Decompose a complex problem into simpler, overlapping subproblems.
» Build up solutions to progressively larger subproblems.

(caching results for efficient reuse)

THE THEORY OF DYNAMIC PROGRAMMING
RICHARD BELLMAN

1. Introduction. Before turning to a discussion of some representa-
tive problems which will permit us to exhibit various mathematical
features of the theory, let us present a brief survey of the funda-
mental concepts, hopes, and aspirations of dynamic programming.

To begin with, the theory was created to treat the mathematical
problems arising from the study of various multi-stage decision
processes, which may roughly be described in the following way: We
have a physical system whose state at any time ¢ is determined by a
set of quantities which we call state parameters, or state variables.
At certain times, which may be prescribed in advance, or which may
be determined by the process itself, we are called upon to make de-
cisions which will affect the state of the system. These decisions are
equivalent to transformations of the state variables, the choice of a
decision being identical with the choice of a transformation. The out-
come of the preceding decisions is to be used to guide the choice of
future ones, with the purpose of the whole process that of maximizing
some function of the parameters describing the final state.

Examples of processes fitting this loose description are furnished
by virtually every phase of modern life, from the planning of indus-
trial production lines to the scheduling of patients at a medical
clinic; from the determination of long-term investment programs for
universities to the determination of a replacement policy for ma-
chinery in factories; from the programming of training policies for
skilled and unskilled labor to the choice of optimal purchasing and in-
ventory policies for department stores and military establishments.

Richard Bellman *46

Applications.

* Operations research: multistage decision processes, control theory, optimization, ...

 Computer science: Al/ML, compilers, systems, graphics, databases, robotics, theory, ...
e Economics.

» Bioinformatics.
* Information theory.

* Tech job interviews.

Bottom line. Powerful and broadly applicable technique.



Classic dynamic programming algorithms

Geometry: De Boor (splines).

Utilities. Unix diff (file comparison).

Al/ML: Viterbi (hidden Markov models).

Computer graphics: Avidan-Shamir (seam carving). <—— see Assignment 6

Databases: System R algorithm (optimal join order).

Graph processing: Bellman-Ford-Moore (shortest paths). <—— shortest paths lecture
Computational biology: Nedleman-Wunsch, Smith-Waterman (sequence alignment).
Programming languages: Cocke-Kasami-Younger (parsing context-free grammars).

Theory: NP-complete graph problems on trees (vertex color, vertex cover, independent set,
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Fibonacci numbers

Fibonacci numbers. 0,1,1,2,3,5,8, 13,21, 34,55, 89, ...

|
-

0 if i
F.=1 1 if i=1
F._ +F_, if i>1

Leonardo Fibonacci




Fibonacci numbers: naive recursive approach

Fibonacci numbers. 0,1,1,2,3,5,8,13,21, 34, 55,89, ...

0 if i=0
F,=11 if 1=1
F_ +F_, if i>1

Goal. Given n, compute F, .

Direct recursive implementation:

public static long fib(int 1) {
1f (1 == 0) return O;
if (1 == 1) return 1;
return fib(1-1) + fib(1-2);



Dynamic programming: poll 1

How long to compute fib(80) using the direct recursive implementation?

A. Less than 1 second.
B. About 1 minute.
C. More than 1 hour.

D. Overflows a 64-bit Tong integer.



Fibonacci numbers: recursion tree and exponential growth

Exponential waste. Same overlapping subproblems are solved repeatedly.

Ex. When computing fib(6):
0 (5) is called 1 time. 1+4/5

fi
fi
fi
fi
fi

h(4) is called 2 times.

h(3) is called 3 times.

h(2) is called 5 times.

(1) is called F, = F, = 8 times.

running time = # subproblems x cost per subproblem

10



Fibonacci numbers: top-down dynamic programming (memoization)

Memoization.
 Maintain an array (or symbol table) to remember computed values.
 |If the value to compute is already known, return it immediately;

otherwise, compute it; store it; and return it.

public static long fib(int 1) {
1f (1 == 0) return O;
1f (1 == 1) return 1;
it (f[1] == 0) f[1] = fib(1-1) + fib(1-2);
return f[1];

Impact. Solves each subproblem F; only once.

Performance. Computes F, in O(n) time; uses O(n) extra space.

11



Fibonacci numbers: bottom-up dynamic programming (tabulation)

Tabulation.
* Build computation from the “bottom up.”
* Solve small subproblems first and save their solutions.

» Use those solutions to solve progressively larger subproblems.

public static long fib(int n) {
long[] f = new long[n+1];
f[0] = O;
f[1] = 1;
for (Aint 1 = 2; 1 <= n; 1++)
fl1] = f[1-1] + f[1-2];

return f[nl; “~__

} smaller subproblems

Impact. Solves each subproblem F, only once; no recursion.

Performance. Computes F, in O(n) time; uses O(n) extra space.

12



Fibonacci numbers: further improvements

Performance improvements.

* Can reduce space by maintaining only two most recent Fibonacci numbers.

public static long fib(int n) {

int f =0, g = 1; < f and g are consecutive
for (int i =0: i <n: i++) { Fibonacci numbers
g="1+9;
f=9g-T;
¥
return f:

but, here, our goal is to
introduce dynamic programming

* Can exploit additional properties of problem: -«

P" 1+4/5 (Fi+1 F; >
- F._,




Dynamic programming recap

Decompose a complex problem into simpler, overlapping subproblems.

[ define subproblems: subproblem i = compute Fibonacci number F, ]

Develop a recurrence that expresses larger subproblems in terms of smaller ones.

[ easy to solve subproblem i if we know solutions to subproblems i—1and i—2]

0 if 1=0
F. = 1 if 1=1
F,_ +F,_, if i>1

Store each subproblem’s solution after computing it once.

[ store solution to subproblem i in array entry f[i] ]

Use stored solutions to solve the original problem.

' solution to subproblem n = original problem ]

14
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House painting problem

Goal. Given a row of n black houses, paint some orange so that:
« Maximize total profit, where profiz(i) = profit earned for painting house i orange.

» Constraint: no two adjacent houses painted orange.

I 2\

. > 3 456
profit(i) 9 20 25

profit earned for painting houses 1, 3, and 5 orange
(10+ 13 + 30 = 53)

16



House painting problem

Goal. Given a row of n black houses, paint some orange so that:
« Maximize total profit, where profiz(i) = profit earned for painting house i orange.

» Constraint: no two adjacent houses painted orange.

AALA

. > 3456
profit(i) 9 13 30

profit earned for painting houses 1, 4, and 6 orange
(10+ 20 + 25 = 55)

17



House painting problem: dynamic programming formulation

Goal. Given a row of n black houses, paint some orange so that:

« Maximize total profit, where profiz(i) = profit earned for painting house i orange.

» Constraint: no two adjacent houses painted orange.

Subproblems. OPT(i) = max profit achievable from houses 1,...,:
Optimal value. OPT(n).

profit(i)

OPT(i) 0 10 10 23 - -

keep house 6 black  paint house 6 orange
OPT(6) = max { OPT(5), profit(6) + OPT(4) }
= max { 53, 25+ 30 }
= 55

18



House painting problem: dynamic programming formulation &3

Goal. Given a row of n black houses, paint some orange so that:
« Maximize total profit, where profiz(i) = profit earned for painting house i orange.

» Constraint: no two adjacent houses painted orange.

Subproblems. OPT(i) = max profit achievable from houses 1,..., 1.
Optimal value. OPT(n).

“optimal substructure”
(optimal solution can be constructed from

Binary choice. To compute OPT(i) , either: optimal solutions to smaller subproblems)
 Don’t paint house i orange: OPT(i — 1).
< take best
* Paint house i orange: profit(i) + OPT(i — 2).
Dynamic programming recurrence.
0 if i =0
OPT (i) = « profit(1) if 1 =1
. max{ OPT(i — 1), profit(i) + OPT(i —2)} if¢>2

19



House painting: naive recursive approach

Direct recursive implementation:

private static int opt(int 1, i1nt[] profit) {
1f (1 == 0) return O;
1f (1 == 1) return profit[1l];
return Math.max(opt(i-1), profit[i] + opt(i-2));

Dynamic programming recurrence.

y

0 ifte=20
OPT (i) = « profit(1) if 1 =1

max{ OPT(¢t — 1), profit(i) + OPT(i —2)} ifi¢>2

\



Dynamic programming: poll 2 L

What is running time of the direct recursive implementation as a function of n ?

A. O(n) private static int opt(int i, int[] profit) {
1f (1 == 0) return 0;
B. O’ if (i == 1) return profit[1];

return Math.max(opt(i-1), profit[i] + opt(i-2));
C. O™ for some c > 1. 1

D. 0!

21



The essence of dynamic programming: remembering the past

“Those who cannot remember the

past are condemned to repeat it. ”

— Dynamic Programming

(Jorge Agustin Nicolds Ruiz de Santayana y Borrds)




Housing painting: bottom-up implementation

Bottom-up DP implementation.

1nt[] opt = new 1nt[n+1];
opt[0] = 0;
opt[1l] = profit[1l];
for (int 1 =2; 1 <= n; 1++) {
opt[1] = Math.max(opt[1-1], profit[i1] + opt[i1-2]);

}

OPT(3)

Proposition. Computing OPT(n) takes ®(n) time and uses ®(n) extra space.

N\

AN /

solutions to smaller subproblems already available

y

0 ite=20

profit(1) if § = 1

max { OPT(¢ — 1), profit(i) + OPT(i —2)} ifi¢>2

\

23



Housing painting: trace

Bottom-up DP implementation trace.

. o > 3455
profit(i) - 10 9 13 20 30 25
OPT(i) 0 10 10 23 30 53

OPT(i) = max profit achievable from houses 1, 2, ..., i

24



Housing painting: traceback

Q. We computed the optimal value. How to reconstruct an optimal solution?

A. Retrace optimal choices, starting from optimal value and following choices that led to it.

/

record these choices
while computing
the optimal value

7“\ 7“\ A
- > 5
10 9 13 20 30 25

profit(i) -
OPT(i) 0 10 10 23 30 53 55

—
choice(i) <€«——range €—— black orange orange orange omngej

choice(i) = color to paint house i that maximizes total profit achievable from houses 1, 2, ..., i

25



Coin changing problem

Problem. Given n coin denominations { d,,d,, ...,d, } and a target value V,

find the fewest coins needed to make change for V (or report impossible).

Ex. Coin denominations = {1, 10,25, 100 }, V=131.
Greedy (8 coins). 131¢=100+25+1+1+1+1+1+1.
Optimal (5 coins). 131¢ =100+ 10+ 10 + 10 + 1.

8 coins 5 COinS
(131¢) (131¢)

Remark. Greedy algorithm is optimal for U.S. coin denominations {1, 5, 10, 25, 100 }.

vending machine
(out of nickels)

26



Dynamic programming: poll 3

Which subproblems for coin changing problem?

A. OPT(i) = fewest coins needed to make change for target value V
using only coin denominations d,,d,, ...,d..

B. OPT(v) = fewest coins needed to make change for amount v,
forv =0,1, ..., V.

C. Either A or B.

D. Neither A nor B.

27



Coin changing: dynamic programming formulation

Problem. Given n coin denominations { d,,d,, ...,d,

d_ } and a target value V,

find the fewest coins needed to make change for V (or report impossible).

Subproblems. OPT(v) = fewest coins needed to make change for amount v.

Optimal value. OPT(V).

Ex. Coin denominations {1,5,8 } and V = 10.

;
OPT(v)

choice(v)

Soc i ne s sl w | a
0 | 1 s | 4 > | 3 | 1

penny penny penny penny nickel penny penny 8-cent penny

OPT(10)

min { 1 + OPT(10 — 1), 1 + OPT(10 - 5), 1 + OPT(10 — 8) }

mn{l+2, 1+1, 1+2}
2

28



Coin changing: dynamic programming formulation B

Problem. Given n coin denominations { d,,d,, ...,d, } and a target value V,

find the fewest coins needed to make change for V (or report impossible).

Subproblems. OPT(v) = fewest coins needed to make change for amount v.
Optimal value. OPT(V).

Multiway choice. To compute OPT(v),

 Select a coin of denomination d. < v for some i.
< take best

« Use fewest coins to make change for v — di' (among all coin denominations)

AN

optimal substructure

Dynamic programming recurrence.

0 it v =20

OPT(U) = in { 14+ OPT(?J _ di) } if v >0

1 d@SU

29



Coin changing: bottom-up implementation

Bottom-up DP implementation.

int[] opt = new 1nt[V+1];
opt[0] = 0O;
0

for (int v = 1; v <= V; v++) {

opt[v] = INFINITY; OPT(v) = min {14+ OPT(v—d;) }

for (int 1 = 1; 1 <= n; 1++) { <
if (d[i] <= v) { =
opt[v] = Math.min(opt[v], 1 + optlv - d[1]]);
}

Proposition. DP algorithm takes ®(n V) time and uses ®(V) extra space.

Note. Technically, running time not polynomial in input size; underlying problem is NP-complete.

it v =20

it v >0

30
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Shortest paths in directed acyclic graphs: dynamic programming formulation

Problem. Given a DAG with positive edge weights, find shortest path from s to .
Subproblems. distTo(v) =length of shortest s ~v path.
Goal. distTo(?).

Multiway choice. To compute distTo(v) :

» Select an edge ¢ = u— v entering v. rake best among (5) 10
distlo(u) + weight(e)

« Concatenate with shortest s~ u path.

|

optimal substructure

& © ®
)

Dynamic programming recurrence.

0 it v=-=s

distTo(v) =
min { distTo(u) + weight(e) } if v # s

€ — UuU—v

32



Dynamic programming: poll 4

In which vertex order to apply the dynamic programming recurrence?

A. Increasing order of distance from s.
B. Topological order.

C. Reverse topological order.

D. All of the above. @

0 it v==s:
distTo(v) =
min { distTo(u) + weight(e) } if v # s

€ — U—

10

&) © ®

33



Shortest paths in directed acyclic graphs: bottom-up solution

Bottom-up DP implementation. Takes ®(F + V) time with two key ideas:
* Solve subproblems in topological order.

. Build the reverse digraph G*.

()

» Updates distTo[] values incrementally, as in Dijkstra/Bellman-Ford. @ @

(1)

relax vertices ui, uz, and us

Equivalent (and simpler) computation: Relax vertices in topological order.

* Propagates information along outgoing edges.

Topological topological = new Topological(digraph);

for (int v : topological.order()) before vertex v
for (DirectedEdge e : digraph.adj(v))
relax(e):

Recovering paths. Maintain edgeTo[] array to reconstruct the shortest s~ v paths.

34



Dynamic programming: poll 5

Given a DAG, how to find longest path from s to 7 in O(E£ + V) time?

sa\\@/,a/@\b—»a—»a—»af

longest path from s to t in a DAG (all edge weights = 1)

A. Negate edge weights; use DP algorithm to find shortest path.
B. Replace min with max in DP recurrence.
C. Either A or B.

D. No poly-time algorithm is known (NP-complete).

35



Shortest paths in DAGs and dynamic programming

DP subproblem dependency digraph.
* Vertex v corresponds to subproblem v.
« Edge v—w means subproblem v must be solved before subproblem w.
* Digraph must be a DAG. Why?

Ex 1. Modeling the coin changing problem as a shortest path problem in a DAG.

a/@@ 0=%0 o0 o}

coin denominations ={1,5,8}, V=10

"o

[
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Shortest paths in DAGs and dynamic programming

DP subproblem dependency digraph.
* Vertex v corresponds to subproblem v.
« Edge v—w means subproblem v must be solved before subproblem w.
* Digraph must be a DAG. Why?

Ex 2. Modeling the house painting problem as a longest path problem in a DAG.

profit earned for painting
house 6 orange

/
o —i s N

1 2 3 4 5 6

n = 6; profits = { 10, 9, 13, 20, 30, 25}

_)a
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Designing a dynamic programming algorithm

(

Decompose the problem
into subproblems.

1

overlapping )
subproblems J

[ optimal
L substructure

Develop a recurrence
for optimal value.

!

Determine the
subproblem order.

(

Compute optimal values
while caching results.

1

[memoizatiOn J

[ tabulation ]

Reconstruct the
optimal solution.

[ backtracing j

N

B
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A final thought

A

ALGORITHM (NOUN)

WORD USED BY
PROGRAMMERS WHEN
THEY DO NOT WANT TO
EXPLAIN WHAT THEY DID.




