
ROBERT SEDGEWICK | KEVIN WAYNE

F O U R T H E D I T I O N

Algorithms

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

Last updated on 12/3/25 9:27  PM

ALGORITHM DESIGN

‣ analysis of algorithms
‣ greedy algorithms
‣ poly-time reductions
‣ dynamic programming
‣ divide-and-conquer
‣ randomized algorithmshttps://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Algorithm design paradigms

High-level strategies for constructing algorithms.

・Analysis of algorithms.

・Greedy algorithms.

・Reductions.

・Dynamic programming.

・Divide-and-conquer.

・Randomized algorithms.
 
 
 
 
 
 
 
 
Want more? See COS 240, COS 330, COS 343, COS 423, COS 445, COS 451, MAT 375, MAT 478, …

2

INTERVIEW QUESTIONS

3

ALGORITHM DESIGN

‣ analysis of algorithms
‣ greedy algorithms
‣ poly-time reductions
‣ dynamic programming
‣ divide-and-conquer
‣ randomized algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

EGG DROP

Goal. Find threshold floor using as few drops as possible.T

6

n

.

.

.

T

.

.

.

.

3

2

1

breaks

does not
break

threshold floor

EGG DROP

Goal. Find threshold floor using as few drops as possible.
 
Rules.

・An egg breaks if dropped from any floor .

・An egg does not break if dropped from any floor .

・An egg that breaks cannot be reused.

・An egg that does not break can be reused.

・The effect of a drop is the same for all eggs.

T

≥ T
< T

7

breaks

does not
break

threshold floor

n

.

.

.

T

.

.

.

.

3

2

1

EGG DROP

Goal. Find threshold floor using as few drops as possible.
Variant 0. 1 egg.
 
Solution. Use sequential search: drop from floors

until the egg breaks.
 
Analysis. egg and at most drops.
Analysis. egg and exactly drops.

T

1, 2, 3, …

1 n
1 T

8

n

.

.

.

T

.

.

.

.

3

2

1

drops depends on
a parameter you don’t know a priori

breaks

does not
break

EGG DROP

Goal. Find threshold floor using as few drops as possible.  
Variant 1. eggs.
 
Solution. Binary search for .

・Initialize .

・Loop invariant: egg breaks on floor but not on .

・Repeat until length of interval is :
– drop from floor .
– if it breaks, update .
– otherwise, update .

 
Analysis. eggs, drops.

T
∞

T
[lo, hi] = [0, n+1]

hi lo

1
mid = ⌊(lo + hi) / 2⌋

hi = mid

lo = mid

∼ log2 n ∼ log2 n

9

Suppose T is much smaller than n.
Can you guarantee O(log T) drops?

n

.

.

.

T

.

.

.

.

3

2

1

breaks

does not
break

0

0

0

0

0

0

0

1

1

1

1

1

binary search
to find the first 1

(0 = survive, 1 = break)

EGG DROP

Goal. Find threshold floor using as few drops as possible.  
Variant 1′. eggs and drops.
 
Solution. Use repeated doubling, then binary search.

・Drop from floors until you find a floor  
where the egg breaks from but does not break from .

・Then, binary search the interval .
 
Analysis. eggs, drops.

・Repeated doubling: egg and drops.

・Binary search: eggs and drops.

・Total: eggs and drops.

・And because , the total is .

T
∞ O(log T)

1, 2, 4, 8, 16, …, x x
x 1

2 x
[1

2 x, x]

∼ log2 T ∼ 2 log2 T
1 1 + log2 x

∼ log2 x ∼ log2 x
∼ log2 x ∼ 2 log2 x

T ≤ x < 2T Θ(log T)

10

n

.

.

.

T

.

.

.

.

3

2

1

breaks

does not
break

1
2 x

x

Algorithm design: poll 1

Goal. Find threshold floor using as few drops as possible.
Variant 2. eggs.

As a function of , what is the fewest drops  
that an algorithm can guarantee?

A.

B.

C.

D.

T
2

n

Θ(1)

Θ(log n)

Θ(n)

Θ(n)

11

n

.

.

.

T

.

.

.

.

3

2

1

breaks

does not
break

EGG DROP (ASYMMETRIC SEARCH)

Goal. Find threshold floor using as few drops as possible.
Variant 2. eggs.
 
Solution. Use gridding, then sequential search.

・Drop from floors until the first egg breaks.

・Using second egg, sequentially search the interval .
 
Analysis. Total drops .

・First egg: drops.

・Second egg: drops.  

Signing bonus 1. Use eggs and drops.
Signing bonus 2. Use eggs and drops.
Signing bonus 3. Use eggs and drops.

T
2

n, 2 n, 3 n, …, c n

[(c − 1) n, c n]

≤ 2 n

≤ n

≤ n

2 ≤ 2 n

2 O(T)
3 O(n1 / 3)

12

n

.

.

.

T

.

.

.

.

3

2

1

breaks

does not
break

(c − 1) n

c n

ALGORITHM DESIGN

‣ analysis of algorithms
‣ greedy algorithms
‣ poly-time reductions
‣ dynamic programming
‣ divide-and-conquer
‣ randomized algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Greedy algorithms

Make locally optimal, irrevocable, choices at each step.
 
Familiar examples.

・Prim’s algorithm. [for MST]

・Kruskal’s algorithm. [for MST]

・Dijkstra’s algorithm. [for shortest paths]
 
More classic examples.

・A* search algorithm (artificial intelligence).

・Gale–Shapley algorithm (stable marriage).

・Huffman coding (data compression).

・Greedy basis algorithm (matroids).

・...
 
Caveat. Greedy algorithms rarely lead to provably optimal solutions.  
 [but often used anyway in practice, especially for NP-hard optimization problems]

14

COIN CHANGING PROBLEM: GREEDY ALGORITHM

Goal. Given U. S. coin denominations ,  
devise a method to make change using fewest coins.  
 

Ex. 34¢.  
 

Cashier’s (greedy) algorithm. Repeatedly choose the largest coin value  
that does not exceed the remaining amount.  

 
Ex. $2.89.

{ 1, 5, 10, 25, 100 }

15

6 coins

10 coins

Algorithm design: poll 2

Is the cashier’s algorithm optimal for U.S. coin denominations ?

A. Yes, greedy algorithms are always optimal.

B. Yes, for any set of coin denominations provided .

C. Yes, because of special structural properties of U.S. coin denominations.

D. No.

{ 1, 5, 10, 25, 100 }

d1 < d2 < … < dn d1 = 1

16

Properties of any optimal solution (for U.S. coin denominations)

Property 1. Number of pennies .
Pf. Replace pennies with nickel.
 
Property 2. Number of nickels .
Property 3. Number of dimes .
Property 4. Number of quarters .  

Property 5. .
Pf.

・From Properties 2 and 3, and .

・If and , replace with quarter.
 
 
Property 6. .

P ≤ 4
5 1

N ≤ 1
D ≤ 2
Q ≤ 3

N + D ≤ 2

N ≤ 1 D ≤ 2
N = 1 D = 2 1

P + 5N + 10D + 25Q ≤ 99

17

exchange argument

P1 contributes
at most 4

⟹ P5 contributes
at most 20

⟹ P4 contributes
at most 75

⟹

replace 2 nickels with 1 dime

replace 3 dimes with 1 quarter and 1 nickel

replace 4 quarters with 1 dollar

significance: total amount of change from
pennies, nickels, dimes, and quarters

Optimality of cashier’s algorithm (for U.S. coin denominations)

Proposition. Cashier’s algorithm yields the unique optimal solution for denominations .
 
Pf. [for dollar coins]

・Suppose that we are making change for $.yz.

・Cashier’s algorithm uses dollar coins.

・Suppose (for the sake of contradiction) that an optimal solution uses fewer than dollar coins.

・Then, the remaining amount (¢) must be made using only pennies, nickels, dimes,  
and quarters, so .

・But Property 6 says , a contradiction.
 
 [similar arguments justify greedy strategy for quarters, dimes, and nickels]

{ 1, 5, 10, 25, 100 }

x
x

x
≥ 100

P + 5N + 10D + 25Q ≥ 100
P + 5N + 10D + 25Q ≤ 99

18

ALGORITHM DESIGN

‣ analysis of algorithms
‣ greedy algorithms
‣ poly-time reductions
‣ dynamic programming
‣ divide-and-conquer
‣ randomized algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Poly-time reductions

Problem poly-time reduces to problem if there is an algorithm for that

・makes a polynomial number of calls to an algorithm for , and

・performs poly-time extra work (besides those calls).
 
Ex 1. The median-finding problem reduces to sorting.
Ex 2. Bipartite matching reduces to maxflow.  

Many, many important problems reduce to:

・Sorting.

・Maxflow.

・Suffix arrays.

・Shortest paths.

・Linear programming.

・...
 
Note. Reductions also play a central role in computational complexity (e.g., NP-completeness).

X Y X
Y

20

see ORF 307 or ORF 363

see COS 343

instance I
(of problem X) solution to I

algorithm for problem X

calls subroutine for Y
(plus poly-time extra work)

algorithm for
problem Y

SHORTEST PATH WITH ORANGE AND BLACK EDGES

Goal. Given a digraph with positive edges weights in which each edge is colored orange or black,  
and an integer , find a shortest path that uses orange edges.k s↝ t ≤ k

21

k = 0: s→w→t (17)
k = 1: s→x→t (13)
k = 2: s→v→x→t (11)
k = 3: s→v→w→x→t (10)
k = 4: s→v→w→x→t (10)

s

v x

wG

t

8

21

4 3

9

7

10

Goal. Given a digraph with positive edges weights in which each edge is colored orange or black,  
and an integer , find a shortest path that uses orange edges.k s↝ t ≤ k
Goal. Given a digraph with positive edges weights in which each edge is colored orange or black,  
and an integer , find a shortest path that uses orange edges.
 
A poly-time reduction to the single-source shortest paths problem:

・Create copies of the vertices in digraph , labeled .

・For each black edge → in : add an edge in .

・For each orange edge → in : add an edge from to .

・Compute shortest paths from and select the path to the nearest .

k s↝ t ≤ k

k+1 G G0 , G1 , …, Gk

v w G vi →wi Gi

v w G vi →wi+1 Gi Gi+1

s0 ti

SHORTEST PATH WITH ORANGE AND BLACK EDGES

22

v0 x0

w0

t0

s1

v1 x1

w1

t1

s2

v2 x2

w2G0 G1 G2

k = 2

t2

8 8 8

3

s

v x

wG

t

8

21

4 3

9

7

10

s0

3

Algorithm design: poll 3

What is the algorithm’s worst-case running time as a function of , , and ?  
Assume and .

A.

B.

C.

D.

k V E
E ≥ V k ≥ 1

Θ(E log V)

Θ(k E)

Θ(k E log V)

Θ(k2 E log V)

23

Θ((k+1) E) log ((k+1) V)

number
of edges

number
of vertices

Dijkstra: Θ(E log V)

ALGORITHM DESIGN

‣ analysis of algorithms
‣ greedy algorithms
‣ poly-time reductions
‣ dynamic programming
‣ divide-and-conquer
‣ randomized algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Dynamic programming

・Decompose a complex problem into simpler, overlapping subproblems.

・Build up solutions to progressively larger subproblems.  
(caching intermediate results in a table for efficient reuse)

Familiar examples.

・Bellman–Ford.

・Seam carving.

・Shortest paths in DAGs.
 
More classic examples.

・Unix diff (file comparison).

・Viterbi (hidden Markov models).

・Cocke–Kasami–Younger (parsing context-free grammars).

・Needleman–Wunsch/Smith–Waterman (DNA sequence alignment).

・...

25

THE THEORY OF DYNAMIC PROGRAMMING
RICHARD BELLMAN

1. Introduction. Before turning to a discussion of some representa-
tive problems which will permit us to exhibit various mathematical
features of the theory, let us present a brief survey of the funda-
mental concepts, hopes, and aspirations of dynamic programming.

To begin with, the theory was created to treat the mathematical
problems arising from the study of various multi-stage decision
processes, which may roughly be described in the following way: We
have a physical system whose state at any time / is determined by a
set of quantities which we call state parameters, or state variables.
At certain times, which may be prescribed in advance, or which may
be determined by the process itself, we are called upon to make de-
cisions which will affect the state of the system. These decisions are
equivalent to transformations of the state variables, the choice of a
decision being identical with the choice of a transformation. The out-
come of the preceding decisions is to be used to guide the choice of
future ones, with the purpose of the whole process that of maximizing
some function of the parameters describing the final state.

Examples of processes fitting this loose description are furnished
by virtually every phase of modern life, from the planning of indus-
trial production lines to the scheduling of patients at a medical
clinic ; from the determination of long-term investment programs for
universities to the determination of a replacement policy for ma-
chinery in factories; from the programming of training policies for
skilled and unskilled labor to the choice of optimal purchasing and in-
ventory policies for department stores and military establishments.

I t is abundantly clear from the very brief description of possible
applications tha t the problems arising from the study of these
processes are problems of the future as well as of the immediate
present.

Turning to a more precise discussion, let us introduce a small
amount of terminology. A sequence of decisions will be called a
policy, and a policy which is most advantageous according to some
preassigned criterion will be called an optimal policy.

The classical approach to the mathematical problems arising from
the processes described above is to consider the set of all possible

An address delivered before the Summer Meeting of the Society in Laramie on
September 3, 1953 by invitation of the Committee to Select Hour Speakers for An-
nual and Summer meetings; received by the editors August 27,1954.

503

Richard Bellman, *46

HOUSE COLORING PROBLEM

Goal. Paint a row of houses red, green, or blue so that:

・Total cost is minimized, where is the cost to paint house that color.

・No two adjacent houses have the same color.

n
cost(i, color) i

26

1 2 3 4 5 6

cost(i, red) 7 6 7 8 9 20

cost(i, green) 3 8 9 22 12 8

cost(i, blue) 16 10 4 2 5 7

cost to paint house i the given color
(3 + 6 + 4 + 8 + 5 + 8 = 34)

HOUSE COLORING PROBLEM: DYNAMIC PROGRAMMING FORMULATION

Goal. Paint a row of houses red, green, or blue so that:

・Total cost is minimized, where is the cost to paint house that color.

・No two adjacent houses have the same color.
 
Subproblems.

・ = min cost to paint houses with house i red.

・ = min cost to paint houses with house i green.

・ = min cost to paint houses with house i blue.

・Optimal cost = .
 
Dynamic programming recurrence.

・R(0) = G(0) = B(0) = 0

・R(i) = cost(i, red) + min { G(i − 1), B(i − 1) }

・G(i) = cost(i, green) + min { B(i − 1), R(i − 1) }

・B(i) = cost(i, blue) + min { R(i − 1), G(i − 1) }

n
cost(i, color) i

R(i) 1, …, i
G(i) 1, …, i
B(i) 1, …, i

min { R(n), G(n), B(n) }

27

“optimal substructure”
(optimal solution can be constructed from
optimal solutions to smaller subproblems)

R(6) = cost(6, red) + min { G(5), B(5) }
 = 20 + min { 32, 26 }
 = 46

G(6) = cost(6, green) + min { R(5), B(5) }
 = 8 + min { 29, 26 }
 = 34

B(6) = cost(6, blue) + min { R(5), G(5) }
 = 7 + min { 29, 32 }
 = 36

Bottom-up DP trace. Given , , and , easy to compute , , and .R(i) G(i) B(i) R(i+1) G(i+1) B(i+1)

6

46

34

36

HOUSE COLORING: TRACE

28

0 1 2 3 4 5

R(i) 0 7 9 20 21 29

G(i) 0 3 15 18 35 32

B(i) 0 16 13 13 20 26

cost to paint houses 1, 2, …, i with house i the given color

HOUSE COLORING: BOTTOM-UP IMPLEMENTATION

Bottom-up DP implementation.  
 
 
 
 
 
 
 
 
 
 
 

Performance. Computes optimal value in time; uses extra space.
Remark. Can reconstruct an optimal solution using backtracing.

Θ(n) Θ(n)

29

int[] r = new int[n+1];
int[] g = new int[n+1];
int[] b = new int[n+1];

for (int i = 1; i <= n; i++) {
 r[i] = cost[i][RED] + Math.min(g[i-1], b[i-1]);
 g[i] = cost[i][GREEN] + Math.min(b[i-1], r[i-1]);
 b[i] = cost[i][BLUE] + Math.min(r[i-1], g[i-1]);
}

return min3(r[n], g[n], b[n]);

R(i) = cost(i, red) + min { G(i − 1), B(i − 1) }

G(i) = cost(i, green) + min { B(i − 1), R(i − 1) }

B(i) = cost(i, blue) + min { R(i − 1), G(i − 1) }

ALGORITHM DESIGN

‣ analysis of algorithms
‣ greedy algorithms
‣ poly-time reductions
‣ dynamic programming
‣ divide-and-conquer
‣ randomized algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Divide and conquer

・Break the problem into two or more independent subproblems.

・Solve each subproblem recursively.

・Combine subproblem solutions to solve the original problem.
 
Familiar examples.

・Mergesort.

・Quicksort.  

More classic examples.

・Cooley–Tukey FFT (convolution).

・Shamos–Hoey algorithm (closest pair).

・Strassen’s algorithm (matrix multiplication).

・Karatsuba’s algorithm (integer multiplication).  
…

 
Prototypical usage. Turn a brute-force algorithm into a algorithm.Θ(n2) Θ(n log n)

31

cosplaying a COS 226 student?

Personalized recommendations

Music site tries to match your song preferences with others.

・Your ranking of songs: 0, 1, …, n−1.

・My ranking of songs: a0, a1, …, an−1.

・Music site consults database to find people with similar tastes.  

Kendall-tau distance. Number of inversions between two rankings.
Inversion. Songs i and j are inverted if i < j, but ai > aj.

32

A B C D E F G H

you 0 1 2 3 4 5 6 7

me 0 2 3 1 4 5 7 6

3 inversions: 2-1, 3-1, 7-6

COUNTING INVERSIONS

Goal. Given a permutation of length , count the number of inversions.
 
 
 
 
 
 
 
Brute-force algorithm. For each check if .
Running time. Takes time.
A bit better. Run insertion sort; return number of exchanges.
 
Goal. Algorithm that takes time.

n

i < j ai > aj

Θ(n2)

O(n log n)

33

0 2 3 1 4 5 7 6

3 inversions: 2-1, 3-1, 7-6

COUNTING INVERSIONS: DIVIDE-AND-CONQUER ALGORITHM

34

0 4 3 7 9 1 5 8 2 6input

count inversions  
in left subarray

0 3 4 7 9 1 5 8 2 6 1

count inversions  
in right subarray 0 3 4 7 9 1 2 5 6 8 3

count inversions
with one element
in each subarray

0 3 4 7 9 1 2 5 6 8 13

4-3

5-2 8-2 8-6

3-1 3-2 4-1 4-2 7-1 7-2 7-5 7-6 9-1 9-2 9-5 9-6 9-8

1 + 3 + 13 = 17output 0 1 2 3 4 5 6 7 8 9

this step seems to
require Θ(n2) time

COUNTING INVERSIONS: DIVIDE-AND-CONQUER ALGORITHM

35

0 4 3 7 9 1 5 8 2 6input

count inversions  
in left subarray

and sort
0 3 4 7 9 1 5 8 2 6 1

count inversions  
in right subarray

and sort

0 3 4 7 9 1 2 5 6 8 3

count inversions
with one element in

each sorted subarray

0 3 4 7 9 1 2 5 6 8 13

1 + 3 + 13 = 17and merge into 
sorted whole

0 1 2 3 4 5 6 7 8 9

Algorithm design: poll 5

What is running time of algorithm as a function of ?

A.

B.

C.

D.

n

Θ(n)

Θ(n log n)

Θ(n log2 n)

Θ(n2)

36

ALGORITHM DESIGN

‣ analysis of algorithms
‣ greedy algorithms
‣ poly-time reductions
‣ dynamic programming
‣ divide-and-conquer
‣ randomized algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Randomized algorithms

Algorithm whose performance (or output) depends on the results of random coin flips.  

Familiar examples.

・Quicksort (sorting).

・Quickselect (selection).

・Karger’s algorithm (global mincut).

More classic examples.

・Miller–Rabin (primality testing).

・Rabin–Karp (substring search).

・Polynomial identity testing.

・Volume of convex body.

・Universal hashing.

・…

38

NUTS AND BOLTS PROBLEM

Goal. Given a jumbled pile of nuts and bolts, match each nut to its corresponding bolt.

・Each nut fits exactly one bolt; each bolt fits exactly one nut.

・Can compare a nut to a bolt to see which is larger.  
 
 
 
 
 
 
 
 
 

Brute-force algorithm. Compare each bolt to each nut: compares.
Challenge. Design an algorithm that uses only compares.

n n

Θ(n2)
O(n log n)

39

but cannot directly compare
two nuts or two bolts

NUTS AND BOLTS PROBLEM: RANDOMIZED ALGORITHM

Shuffle. Randomly shuffle the nuts and bolts.
 
Partition.

・Pick the leftmost bolt . Compare against all nuts;  
partition nuts into those smaller than and those larger than .

・Let be the nut that matches bolt . Compare against all bolts;  
partition bolts into those smaller than and those larger than .

 

 

 

 

 

 

Divide-and-conquer. Recursively solve the two independent subproblems.

x x
x x

x ′ x x ′

x ′ x ′

40

3 0 1 4 2 5 6 9 8 7bolts

2′ 1′ 4′ 0′ 3′ 5′ 7′ 8′ 9′ 6′nuts

5 3 6 0 9 1 4 8 2 7

7′ 2′ 8′ 1′ 5′ 9′ 4′ 0′ 6′ 3′

bolts

nuts

smaller nuts larger nuts

smaller bolts larger bolts

x

x

x ′

Algorithm design: poll 6

What is the expected running time of the randomized algorithm as a function of ?

A.

B.

C.

D.

n

Θ(n)

Θ(n log n)

Θ(n log2 n)

Θ(n2)

41

same analysis as quicksort
(but ~ 2n compares per partition instead of ~ n)

NUTS AND BOLTS PROBLEM: DETERMINISTIC ALGORITHM

Hiring bonus. Design an algorithm for the problem that takes time in the worst case.O(n log n)

42

Chapter 27
Matching Nuts and Bolts in O(nlogn) Time

(Extended Abstract)

Jinos KomMs ‘t4 Yuan Ma 2 Endre Szemerkdi 3y4

Abstract

Given a set of n nuts of distinct widths and a set of n bolts
such that each nut corresponds to a unique bolt of the same
width, how should we match every nut with its correspond-
ing bolt by comparing nuts with bolts (no comparison is
allowed between two nuts or between two bolts)? The prob-
lem can be naturally viewed as a variant of the classic sort-
ing problem as follows. Given two lists of n numbers each
such that one list is a permutation of the other, how should
we sort the lists by comparisons only between numbers in
different lists? We give an O(n log n)-time deterministic al-
gorithm for the problem. This is optimal up to a constant
factor and answers an open question posed by Alon, Blum,
Fiat, Kannan, Naor, and Ostrovsky [3]. Moreover, when
copies of nuts and bolts are allowed, our algorithm runs in
optimal O(logn) t ime on n processors in Valiant’s parallel
comparison tree model. Our algorithm is based on the AKS
sorting algorithm with substantial modifications.

1 Introduction

Given a set of n nuts of distinct widths and a set of n
bolts such that each nut corresponds to a unique bolt
of the same width, how should we match every nut with

‘Department of Mathematics, Rutgers University, P&&away,
NJ 08855. Email: komlos&nath.rutgem.edu.

‘Department of Computer Science, Stanford University,
CA 94305. Supported by an NSF Mathematical Sciences Post-
doctoral Research Fellowship. Part of the work was done
while the author was visiting DIMACS, and part of work
was done while he was at MIT and supported by DARPA
Contracts N00014-91-J-1698 and N00014-92-J-1799. Email:
yuanOcs.stanford.edu.

3Department of Computer Science, Rutgers University, Pis-
CataWay, NJ 08855. Part of the work was done while the au-
thor was at University of Paderborn, Germany. Email: sse-
mered@cs.rutgers.edu.

‘The work presented here is part of the “Hypercomputing &
Design” (HPCD) project; and it is supported (partly) by ARPA
under contract DABT-63-93-C-0064. ‘The content of the infor-
mation herein does not necessarily reflect the position of the
Government and official endorsement should not be inferred.

its corresponding bolt by comparing nuts with bolts (no
comparison is allowed between two nuts or between two
bolts)?

This problem can be naturally viewed as a variant
of the classic sorting problem as follows. Given two
lists of n numbers each such that one list is a permu-
tation of the other, how should we sort the lists by
comparisons only between numbers in different lists?
In fact, the following simple reasoning illustrates that
the problem of matching nuts and bolts and the prob-
lem of sorting them have the same complexity, up to
a constant factor. On one hand, if the nuts and bolts
are sorted, then a nut and a bolt at the same position
in the sorted order certainly match with each other.
On the other hand, if the nuts and bolts are matched,
we can sort them by any optimal sorting algorithm in
O(n log n) time. Hence, the complexity equivalence of
sorting and matching them follows from the simple in-
formation lower bound of R(nlogn) on the matching
problem, which can be easily derived from the fact that
there are n! possible ways to match the nuts and bolts.
So in this paper, we will consider the problem of how
to sort the nuts and bolts, instead of matching them.

The problem of sorting nuts and bolts has a sim-
ple randomized algorithm (e.g., a simple variant of
the QUICKSORT algorithm) that runs in the opti-
mal O(n logn) expected time [8]. However, finding
a nontrivial (say, o(n2)-time) deterministic algorithm
has appeared to be highly nontrivial. Alon, Blum,
Fiat, Kannan, Naor, and Ostrovsky [3] designed an
O(n log4 n)-time deterministic algorithm based on ex-
pander graphs, and they posed the open question of de-
signing an optimal deterministic algorithm to the prob-
lem. Recently, Bradford and Fleischer [6] improved the
running time to O(n log’ n), but the question remains
open if O(n log n) can be achieved.

Since the classic sorting problem has been inten-
sively studied, it is natural to ask if any existing
O(n log n)-time deterministic sorting algorithm can be
easily adapted to sort nuts and bolts. In a certain sense,

232

Chapter 27
Matching Nuts and Bolts in O(nlogn) Time

(Extended Abstract)

Jinos KomMs ‘t4 Yuan Ma 2 Endre Szemerkdi 3y4

Abstract

Given a set of n nuts of distinct widths and a set of n bolts
such that each nut corresponds to a unique bolt of the same
width, how should we match every nut with its correspond-
ing bolt by comparing nuts with bolts (no comparison is
allowed between two nuts or between two bolts)? The prob-
lem can be naturally viewed as a variant of the classic sort-
ing problem as follows. Given two lists of n numbers each
such that one list is a permutation of the other, how should
we sort the lists by comparisons only between numbers in
different lists? We give an O(n log n)-time deterministic al-
gorithm for the problem. This is optimal up to a constant
factor and answers an open question posed by Alon, Blum,
Fiat, Kannan, Naor, and Ostrovsky [3]. Moreover, when
copies of nuts and bolts are allowed, our algorithm runs in
optimal O(logn) t ime on n processors in Valiant’s parallel
comparison tree model. Our algorithm is based on the AKS
sorting algorithm with substantial modifications.

1 Introduction

Given a set of n nuts of distinct widths and a set of n
bolts such that each nut corresponds to a unique bolt
of the same width, how should we match every nut with

‘Department of Mathematics, Rutgers University, P&&away,
NJ 08855. Email: komlos&nath.rutgem.edu.

‘Department of Computer Science, Stanford University,
CA 94305. Supported by an NSF Mathematical Sciences Post-
doctoral Research Fellowship. Part of the work was done
while the author was visiting DIMACS, and part of work
was done while he was at MIT and supported by DARPA
Contracts N00014-91-J-1698 and N00014-92-J-1799. Email:
yuanOcs.stanford.edu.

3Department of Computer Science, Rutgers University, Pis-
CataWay, NJ 08855. Part of the work was done while the au-
thor was at University of Paderborn, Germany. Email: sse-
mered@cs.rutgers.edu.

‘The work presented here is part of the “Hypercomputing &
Design” (HPCD) project; and it is supported (partly) by ARPA
under contract DABT-63-93-C-0064. ‘The content of the infor-
mation herein does not necessarily reflect the position of the
Government and official endorsement should not be inferred.

its corresponding bolt by comparing nuts with bolts (no
comparison is allowed between two nuts or between two
bolts)?

This problem can be naturally viewed as a variant
of the classic sorting problem as follows. Given two
lists of n numbers each such that one list is a permu-
tation of the other, how should we sort the lists by
comparisons only between numbers in different lists?
In fact, the following simple reasoning illustrates that
the problem of matching nuts and bolts and the prob-
lem of sorting them have the same complexity, up to
a constant factor. On one hand, if the nuts and bolts
are sorted, then a nut and a bolt at the same position
in the sorted order certainly match with each other.
On the other hand, if the nuts and bolts are matched,
we can sort them by any optimal sorting algorithm in
O(n log n) time. Hence, the complexity equivalence of
sorting and matching them follows from the simple in-
formation lower bound of R(nlogn) on the matching
problem, which can be easily derived from the fact that
there are n! possible ways to match the nuts and bolts.
So in this paper, we will consider the problem of how
to sort the nuts and bolts, instead of matching them.

The problem of sorting nuts and bolts has a sim-
ple randomized algorithm (e.g., a simple variant of
the QUICKSORT algorithm) that runs in the opti-
mal O(n logn) expected time [8]. However, finding
a nontrivial (say, o(n2)-time) deterministic algorithm
has appeared to be highly nontrivial. Alon, Blum,
Fiat, Kannan, Naor, and Ostrovsky [3] designed an
O(n log4 n)-time deterministic algorithm based on ex-
pander graphs, and they posed the open question of de-
signing an optimal deterministic algorithm to the prob-
lem. Recently, Bradford and Fleischer [6] improved the
running time to O(n log’ n), but the question remains
open if O(n log n) can be achieved.

Since the classic sorting problem has been inten-
sively studied, it is natural to ask if any existing
O(n log n)-time deterministic sorting algorithm can be
easily adapted to sort nuts and bolts. In a certain sense,

232

Credits

43

Jiatong LuAlkin KazViola Chen Dexin Zhang Mingkun ZhaoProf. Marcel Dall’Agnol Prof. Maryam Hedayati

 and preceptors.Co-instructors
 
 
 
 
 
 
Undergrad graders and lab TAs. Apply to be one next semester!

44

“ Algorithms and data structures are love.

 Algorithms and data structures are life. ”

 — anonymous COS 226 student

A final thought

Lecture Slides © Copyright 2025 Robert Sedgewick and Kevin Wayne

Credits

45

media source license

Egg Drop New York Times

Broken Egg Adobe Stock education license

Greed is Good Dennis Dugan

Coin Changing unknown

U.S. Coins Adobe Stock education license

Cash Register Adobe Stock education license

Richard Bellman Wikipedia

Divide-and-Conquer T-Shirt Zazzle

Coin Toss clipground.com CC BY 4.0

Nuts and Bolts Adobe Stock education license

Crowd Cheering YouTube

https://archive.nytimes.com/wordplay.blogs.nytimes.com/2010/11/15/numberplay-egg-drop-soup/
https://stock.adobe.com/images/broken-egg-vector-illustration/27982752
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://fineartamerica.com/featured/greed-is-good-dennis-dugan.html
https://stock.adobe.com/images/set-of-obvers-and-revers-of-american-money-one-five-ten-and-twenty-five-cent-coins/501427777
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/cash-register-with-open-drawer-showing-coins-and-currency/316289627
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://en.wikipedia.org/wiki/File:Richard_Ernest_Bellman.jpg
https://www.zazzle.com/divide_and_conquer_t_shirt-235280715708154399
https://clipground.com/images/toss-clipart-1.jpg
https://creativecommons.org/licenses/by-sa/4.0/
https://stock.adobe.com/images/bolts-and-nuts/63244996
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://www.youtube.com/watch?v=n5JHWRUtWB0

