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Algorithm design paradigms

High-level strategies for constructing algorithms.
Analysis of algorithms.
* Greedy algorithms.
* Reductions.
* Dynamic programming.
* Divide-and-conquer.

 Randomized algorithms.
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EGG DROP

Goal. Find threshold floor 7T using as few drops as possible.

breaks -
<« threshold floor
does not -
break




EGG DROP

Goal. Find threshold floor 7T using as few drops as possible.

Rules, reais | [
* An egg breaks if dropped from any floor > T. -

* An egg does not break if dropped from any floor < T. reshold

D E— resno oor
* An egg that breaks cannot be reused. -
* An egg that does not break can be reused. -
* The effect of a drop is the same for all eggs. -
does not

break




EGG DROP

Goal. Find threshold floor 7T using as few drops as possible.
Variant 0. 1 egq.

breaks
Solution. Use sequential search: drop from floors 1,2,3, ...

until the egg breaks.

Analysis. 1 egg and exactly 7 drops.

\ does not

# drops depends on break

a parameter you don’t know a priori




EGG DROP

Goal. Find threshold floor 7T using as few drops as possible.

1 A

Variant 1. oo eggs. =
1
breaks - 1
Solution. Binary search for T. - 1
o Initialize [lo, hi] = [0, n+1]. |

« Loop invariant: egg breaks on floor i but not on /o. -
0

« Repeat until length of interval is 1: -
0

- drop from floor mid = |(lo + hi) / 2]. -
0

- if it breaks, update hi = mid. -
does not 0
- otherwise, update lo = mid. break 0
:
Analysis. ~ log,n eggs, ~ log,n drops. 0

T binary search

to find the first 1

Suppose T is much smaller than n. (0 = survive, 1 = break)

Can you guarantee O(log T) drops?



EGG DROP

Goal. Find threshold floor 7T using as few drops as possible.

Variant 1°. oo eggs and O(log T') drops.

Solution. Use repeated doubling, then binary search.

 Drop from floors 1,2,4,8, 16, ..., x until you find a floor x

where the egg breaks from x but does not break from Ly.

2
. Then, binary search the interval [%x, x].

Analysis. ~log,T eggs, ~ 2log, T drops.
« Repeated doubling: 1 egg and 1+ log, x drops.

 Binary search: ~ log, x eggs and ~ log, x drops.

« Total: ~ log, x eggs and ~ 2log, x drops.
* And because T < x < 27, the total is ®(log T").

breaks

does not
break
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Algorithm design: poll 1

Goal. Find threshold floor T using as few drops as possible.

Variant 2. 2 edgs.

As a function of n, what is the fewest drops

that an algorithm can guarantee?

A. O(1)
B. O(logn)
C. O n)
D. ®0m)

breaks

does not
break

11



EGG DROP (ASYMMETRIC SEARCH)

Goal. Find threshold floor 7T using as few drops as possible.

Variant 2. 2 eggs.

breaks
Solution. Use gridding, then sequential search.
. Drop from floors \/n, 24/n, 3v/n, ..., cy/n until the first egg breaks.
. Using second egg, sequentially search the interval [(c - 1)y/n, c\/n].
Analysis. Total drops < 24/n.
. First egg: < +/n drops. oes not
. Second egg: < +/n drops. break

Signing bonus 1. Use 2 eggs and < 1/2n drops.

Signing bonus 2. Use 2 eggs and 0(/T) drops.
Signing bonus 3. Use 3 eggs and ox'’®) drops.

(= Dy/n

12
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Greedy algorithms

Make locally optimal, irrevocable, choices at each step.

Familiar examples.
* Prim’s algorithm.
» Kruskal’s algorithm.

* Dijkstra’s algorithm.

I\ R v ey
L AS T ONENTR D
"rﬁru-n ,f-:m—~‘.—‘?""ﬁ—‘=“"-"‘"

T T R

GREED 15 GOOD

More classic examples. P
* A* search algorithm (artificial intelligence).
* Gale-Shapley algorithm (stable marriage).
 Huffman coding (data compression).

* Greedy basis algorithm (matroids).

Caveat. Greedy algorithms rarely lead to provably optimal solutions.

14



COIN CHANGING PROBLEM: GREEDY ALGORITHM

Goal. Given U. S. coin denominations { 1,5, 10, 25, 100 },

devise a method to make change using fewest coins.

Ex. 34¢.

6 coins

Cashier’s (greedy) algorithm. Repeatedly choose the largest coin value

that does not exceed the remaining amount.

Ex. $2.89.

10 coins

15



Algorithm design: poll 2

Is the cashier’s algorithm optimal for U.S. coin denominations { 1,5, 10,25, 100 } ?

A. Yes, greedy algorithms are always optimal.
B. Yes, for any set of coin denominations d, < d, < ... <d, provided d, = 1.
C. Yes, because of special structural properties of U.S. coin denominations.

D. No.

16



Properties of any optimal solution (for U.S. coin denominations)

Property 1. Number of pennies P < 4.

«—— exchange argument

Pf. Replace 5 pennies with 1 nickel.

Property 2. Number of nickels N < 1. <—— replace 2 nickels with 1 dime
Property 3. Number of dimes D < 2. <—— replace 3 dimes with | quarter and 1 nickel

Property 4. Number of quarters Q < 3. <—— replace 4 quarters with 1 dollar

Property 5. N+ D < 2.

Pf.
 From Properties 2 and 3, N<1and D < 2.
« If N=1and D =2, replace with 1 quarter.

significance: total amount of change from
pennies, nickels, dimes, and quarters

Property 6. P + 5N + 10D + 250 < 99.
T_ A T
Pl = contributes @ P5 = contributes @ P4 —> contributes
at most 4 at most 20 at most 75




Optimality of cashier’s algorithm (for U.S. coin denominations)

Proposition. Cashier’s algorithm yields the unique optimal solution for denominations { 1,5, 10, 25, 100 }.

Pf.
« Suppose that we are making change for $x.yz.
« Cashier’s algorithm uses x dollar coins.
« Suppose (for the sake of contradiction) that an optimal solution uses fewer than x dollar coins.
 Then, the remaining amount ( > 100¢) must be made using only pennies, nickels, dimes,
and quarters, so P+ 5N+ 10D + 250 > 100.
« But Property 6 says P + 5N + 10D + 250 < 99, a contradiction. ==
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Poly-time reductions

Problem X poly-time reduces to problem Y if there is an algorithm for X that
* makes a polynomial number of calls to an algorithm for Y, and

» performs poly-time extra work (besides those calls).

...............................................................................

Ex 1. The median-finding problem reduces to sorting.

instance 1 ) calls subroutine for Y i
Ex 2. Bipartite matching reduces to maxflow. (of problem X) i (plus poly-time extra work) .
Many, many important problems reduce to: ; N “””””
o i algorithm for
>orting. . problem'Y
 Maxflow.

 Suffix arrays. -
algorithm for problem X

* Shortest paths.

* Linear programming.

Note. Reductions also play a central role in computational complexity (e.g., NP-completeness).

> solution to 1

20



SHORTEST PATH WITH ORANGE AND BLACK EDGES

Goal. Given a digraph with positive edges weights in which each edge is colored orange or black,

and an integer k, find a shortest s~ path that uses < k orange edges.

4 3
O o
k = 0: sow-t (17)
k =1: s—=ox—t (13)

k = 2: s=ov—ox-t (11)
k =3: s2v=ow-x—t (10)
k =4: sov-ow—=>x—-t (10)

21



SHORTEST PATH WITH ORANGE AND BLACK EDGES

Goal. Given a digraph with positive edges weights in which each edge is colored orange or black,
and an integer k, find a shortest s~ path that uses < k orange edges.

A poly-time reduction to the single-source shortest paths problem: ¢ %ﬁ S
» Create k+1 copies of the vertices in digraph G, labeled G,, G,, ..., G,. 1 e : 9\@
« For each black edge v—w in G: add an edge v.—w; in G.. ; X
« For each orange edge v—w in G: add an edge v.—w,,, from G, to G, ;. Gﬁ .

« Compute shortest paths from s, and select the path to the nearest +.

22



Algorithm design: poll 3

What is the algorithm’s worst-case running time as a function of &k, V,and E ?
Assume £ > Vand k > 1.

A. O(ElogV)

B. OKE)

C. OkElogV)
D. ®Kk?*ElogV)

23
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Dynamic programming

 Decompose a complex problem into simpler, overlapping subproblems.
* Build up solutions to progressively larger subproblems.

(caching intermediate results in a table for efficient reuse)

Familiar examples.
* Bellman-Ford.
 Seam carving.
* Shortest paths in DAGs.

More classic examples.
* Unix diff (file comparison).
 Viterbi (hidden Markov models).
* Cocke-Kasami-Younger (parsing context-free grammars).

* Needleman-Wunsch/Smith-Waterman (DNA sequence alignment).

THE THEORY OF DYNAMIC PROGRAMMING
RICHARD BELLMAN

1. Introduction. Before turning to a discussion of some representa-
tive problems which will permit us to exhibit various mathematical
features of the theory, let us present a brief survey of the funda-
mental concepts, hopes, and aspirations of dynamic programming.

To begin with, the theory was created to treat the mathematical
problems arising from the study of various multi-stage decision
processes, which may roughly be described in the following way: We
have a physical system whose state at any time ¢ is determined by a
set of quantities which we call state parameters, or state variables.
At certain times, which may be prescribed in advance, or which may
be determined by the process itself, we are called upon to make de-
cisions which will affect the state of the system. These decisions are
equivalent to transformations of the state variables, the choice of a
decision being identical with the choice of a transformation. The out-
come of the preceding decisions is to be used to guide the choice of
future ones, with the purpose of the whole process that of maximizing
some function of the parameters describing the final state.

Examples of processes fitting this loose description are furnished
by virtually every phase of modern life, from the planning of indus-
trial production lines to the scheduling of patients at a medical
clinic; from the determination of long-term investment programs for
universities to the determination of a replacement policy for ma-
chinery in factories; from the programming of training policies for
skilled and unskilled labor to the choice of optimal purchasing and in-
ventory policies for department stores and military establishments.

Richard Bellman, #46



HOUSE COLORING PROBLEM

Goal. Paint a row of n houses red, green, or blue so that:
« Total cost is minimized, where cosi(i, color) is the cost to paint house i that color.

* No two adjacent houses have the same color.

addaaad
B R
cost(i, red) 7/ @ / 9 20

cost(i, green) 3 9 22 12
cost(i, blue) 16 10 2 /

cost to paint house i the given color
3+6+4+8+5+ 8 =34)

26



HOUSE COLORING PROBLEM: DYNAMIC PROGRAMMING FORMULATION

Goal. Paint a row of n houses red, green, or blue so that:
« Total cost is minimized, where cosi(i, color) is the cost to paint house i that color.

* No two adjacent houses have the same color.

Subproblems.

 R(i) = min cost to paint houses 1, ...,i with house i red.
 G(i) = min cost to paint houses 1, ...,i with house i green.
 B(i) = min cost to paint houses 1, ...,i with house i blue.

« Optimal cost = min { R(n), G(n),B(n) }.

Dynamic programming recurrence.
 RO) = G(0O) = B(O) =0
e R(i) = cost(i,red) + mmn{G(Gi-1), Bi—1)}
e G(i) = cost(i,green)+ min{ B(i—-1), RG-1) }
e B(i) = cost(i,blue) + min{R(Gi-1), GG-1) }

27



HOUSE COLORING: TRACE

Bottom-up DP trace. Given R(i), G(i), and B(i), easy to compute R(i+1), G(i+1), and B(i+1).

B(6) = cost(6, blue) + min { R(5), G(5) }
= 7+ min{?29, 32}
= 36

N, N, N, N, 2N, I\
ASAAAEASAE O

o o1 2 o3 |4 s 6
R(0) 0 / 9 20 21 29 46

G(i) 0 3 15 18 35 32 % 34

B(i) 0 16 13 13 20 20 36

cost to paint houses 1, 2, ..., i with house i the given color
28



HOUSE COLORING: BOTTOM-UP IMPLEMENTATION

Bottom-up DP implementation.

1nt r hew 1nt[n+1
intl] ¢ new 1nt[n+1
int b hew 1nt[n+1

for (Aint i = 1; 1 <= n; i++) {

rli cost[1][RED Math.min(g[1-1], b[1-1
gli cost|[1] [GREEN Math.min(b[1-1 ri1-1
b1 cost[1][BLUE Math.min(r[1-1], g[1-1

return min3(r[in], gln], bl[n

Performance. Computes optimal value in ®(n) time; uses ®(n) extra space.

Remark. Can reconstruct an optimal solution using backtracing.

29
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Divide and conquer

* Break the problem into two or more independent subproblems.
* Solve each subproblem recursively.

 Combine subproblem solutions to solve the original problem.

Familiar examples.
* Mergesort.

 Quicksort.

More classic examples.
* Cooley-Tukey FFT (convolution).
 Shamos-Hoey algorithm (closest pair).
» Strassen’s algorithm (matrix multiplication).

« Karatsuba’s algorithm (integer multiplication).

Prototypical usage. Turn a brute-force ®(n?) algorithm into a ®(nlog n) algorithm.

cosplaying a COS 226 student?

31



Personalized recommendations

Music site tries to match your song preferences with others.
* Your ranking of songs: 0,1, ...,n-1.
« My ranking of songs: ay,ay,...,a, ;.

* Music site consults database to find people with similar tastes.

Kendall-tau distance. Number of inversions between two rankings.

Inversion. Songs i and j are inverted if i < j, but g; > a,.

A8 C D E F G H
ou 0 1 2 3 4 5 §) /

3 inversions: 2-1, 3-1, 7-6

y

32



COUNTING INVERSIONS

Goal. Given a permutation of length n, count the number of inversions.

0 2 3 1 4 5 / 6

3 inversions: 2-1, 3-1, 7-6

Brute-force algorithm. For each i <j check if ¢; > q; .
Running time. Takes ®(n?) time.

A bit better. Run insertion sort; return number of exchanges.

Goal. Algorithm that takes O(nlogn) time.

33



COUNTING INVERSIONS: DIVIDE-AND-CONQUER ALGORITHM

input

count inversions
in left subarray

count inversions
in right subarray

count inversions
with one element
in each subarray

output

nn
4-3
n'

5-2 8-2 8-6

3-1 3-2 4-1 4-2 7-1 7-2 7-5 7-6 9-1 9-2 9-5 9-6 9-8

this step seems to
reqm're O(n?) time

1+3+13 =17

34



COUNTING INVERSIONS: DIVIDE-AND-CONQUER ALGORITHM

input 0 4 3 / 9 1 5 8 2 6

count inversions

and sort

count inversions
in right subarray
and sort

count inversions
with one element in 3 4 / 1 2 5 13

each sorted subarray

and merge into
sorted whole

35



Algorithm design: poll 5

What is running time of algorithm as a function of n ?

A. O(n)
B. O(nlogn)
C. O(nlog’n)

D. On?)

36
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Randomized algorithms

Algorithm whose performance (or output) depends on the results of random coin flips.

Familiar examples.
* Quicksort (sorting).
* Quickselect (selection).

« Karger’s algorithm (global mincut).

More classic examples.

« Miller-Rabin (primality testing). Sic ity end Campia RANDOMIZED

Randomized Algorithms and Probabilistic Analysis 2 W o m ; 2|
ALGORITHMS

Rajeev Motwani and Prabhokor Roghavan

» Rabin-Karp (substring search).

RGEG % b

* Polynomial identity testing. {A

0O "

* Volume of convex body.

* Universal hashing.

THE

PROBABILISTIC

METHOD

38



NUTS AND BOLTS PROBLEM

Goal. Given a jumbled pile of n nuts and »n bolts, match each nut to its corresponding bolt.
» Each nut fits exactly one bolt; each bolt fits exactly one nut.

* Can compare a nut to a bolt to see which is larger.
but cannot directly compare

wo nuts or two bolts

Brute-force algorithm. Compare each bolt to each nut: ®(n?) compares.

Challenge. Design an algorithm that uses only O(nlogn) compares.

39



NUTS AND BOLTS PROBLEM: RANDOMIZED ALGORITHM

X
Shuffle. Randomly shuffle the nuts and bolts. L olte @ 3

Partition. nuts 72/ 2/ g 1/ 57 9o 4 o 6 3
« Pick the leftmost bolt x. Compare x against all nuts;
partition nuts into those smaller than x and those larger than x.
e Let x’ be the nut that matches bolt x. Compare x’ against all bolts;

partition bolts into those smaller than x’ and those larger than x’.

X

4 ) 4 )
bolts 3 0 1 4 2 @ 6 9 8 /

nUtS 2/ 1/ 4/ OI 3/ @ 7/ 8/ 9/ 6/

/

X

Divide-and-conquer. Recursively solve the two independent subproblems.

40



Algorithm design: poll 6

What is the expected running time of the randomized algorithm as a function of n ?

A.  O(n)
B. O(nlogn)
C. O(nlog’n)
D. O®n?

41



NUTS AND BOLTS PROBLEM: DETERMINISTIC ALGORITHM

Hiring bonus. Design an algorithm for the problem that takes O(nlogn) time in the worst case.

Chapter 27
Matching Nuts and Bolts in O(nlogn) Time
(Extended Abstract)

Janos Komlés 14 Yuan Ma 2 Endre Szemerédi 34

Abstract

Given a set of n nuts of distinct widths and a set of n bolts
such that each nut corresponds to a unique bolt of the same
width, how should we match every nut with its correspond-
ing bolt by comparing nuts with bolts (no comparison is
allowed between two nuts or between two bolts)? The prob-
lem can be naturally viewed as a variant of the classic sort-
ing problem as follows. Given two lists of n numbers each
such that one list is a permutation of the other, how should
we sort the lists by comparisons only between numbers in
different lists? We give an O(n log n)-time deterministic al-
gorithm for the problem. This is optimal up to a constant
factor and answers an open question posed by Alon, Blum,
Fiat, Kannan, Naor, and Ostrovsky [3]. Moreover, when
copies of nuts and bolts are allowed, our algorithm runs in
optimal O(log n) time on n processors in Valiant’s parallel
comparison tree model. Our algorithm is based on the AKS
sorting algorithm with substantial modifications.

42



Credits )

Co-instructors and preceptors.

Prof. Marcel Dall’Agnol Prof. Maryam Hedayati Viola Chen Alkin Kaz Jiatong Lu Dexin Zhang Mingkun Zhao

Undergrad graders and lab TAs. Apply to be one next semester!




A final thought
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