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Algorithm design paradigms

High-level strategies for constructing algorithms. 

・Analysis of algorithms. 

・Greedy algorithms. 

・Reductions. 

・Dynamic programming. 

・Divide-and-conquer. 

・Randomized algorithms. 
 
 
 
 
 
 
 
 
Want more?  See COS 240, COS 330, COS 343, COS 423, COS 445, COS 451, MAT 375, MAT 478,  …
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INTERVIEW QUESTIONS
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EGG DROP

Goal.   Find threshold floor  using as few drops as possible.T
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EGG DROP

Goal.   Find threshold floor  using as few drops as possible. 
 
Rules. 

・An egg breaks if dropped from any floor . 

・An egg does not break if dropped from any floor . 

・An egg that breaks cannot be reused. 

・An egg that does not break can be reused. 

・The effect of a drop is the same for all eggs.

T
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< T
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EGG DROP

Goal.   Find threshold floor  using as few drops as possible. 
Variant 0.  1 egg. 
 
Solution.  Use sequential search:  drop from floors  

until the egg breaks.  
 
Analysis.   egg and at most  drops.  
Analysis.   egg and exactly  drops.

T
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EGG DROP

Goal.   Find threshold floor  using as few drops as possible.  
Variant 1.   eggs. 
 
Solution.   Binary search for . 

・Initialize . 

・Loop invariant: egg breaks on floor  but not on . 

・Repeat until length of interval is : 
– drop from floor . 
– if it breaks, update . 
– otherwise,  update . 

 
Analysis.   eggs,  drops.

T
∞

T
[lo, hi] = [0, n+1]

hi lo

1
mid = ⌊(lo + hi) / 2⌋

hi = mid

lo = mid

∼ log2 n ∼ log2 n
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Suppose T is much smaller than n.
Can you guarantee O(log T) drops?
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EGG DROP

Goal.   Find threshold floor  using as few drops as possible.  
Variant 1′.   eggs and  drops. 
 
Solution.  Use repeated doubling, then binary search. 

・Drop from floors  until you find a floor   
where the egg breaks from  but does not break from . 

・Then, binary search the interval . 
 
Analysis.   eggs,  drops. 

・Repeated doubling:   egg and     drops. 

・Binary search:  eggs and    drops. 

・Total:              eggs and  drops. 

・And because , the total is .

T
∞ O(log T )

1, 2, 4, 8, 16, …, x x
x 1

2 x
[ 1

2 x, x ]

∼ log2 T ∼ 2 log2 T
1 1 + log2 x

∼ log2 x ∼ log2 x
∼ log2 x ∼ 2 log2 x

T ≤ x < 2T Θ(log T )
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Algorithm design:  poll 1

Goal.   Find threshold floor  using as few drops as possible. 
Variant 2.   eggs. 

As a function of , what is the fewest drops  
that an algorithm can guarantee?

A.

B.

C.

D.

T
2

n

Θ(1)

Θ(log n)

Θ( n)

Θ(n)
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EGG DROP (ASYMMETRIC SEARCH)

Goal.   Find threshold floor  using as few drops as possible. 
Variant 2.   eggs. 
 
Solution.  Use gridding, then sequential search. 

・Drop from floors    until the first egg breaks. 

・Using second egg, sequentially search the interval . 
 
Analysis.  Total drops . 

・First egg:  drops. 

・Second egg:  drops.  

Signing bonus 1.  Use  eggs and  drops. 
Signing bonus 2.  Use  eggs and  drops.  
Signing bonus 3.  Use  eggs and  drops.

T
2

n, 2 n, 3 n, …, c n

[ (c − 1) n, c n ]

≤ 2 n

≤ n

≤ n

2 ≤ 2 n

2 O( T )
3 O(n1 / 3)
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Greedy algorithms

Make locally optimal, irrevocable, choices at each step. 
 
Familiar examples. 

・Prim’s algorithm. [for MST] 

・Kruskal’s algorithm. [for MST] 

・Dijkstra’s algorithm. [for shortest paths] 
 
More classic examples. 

・A* search algorithm (artificial intelligence). 

・Gale–Shapley algorithm (stable marriage). 

・Huffman coding (data compression). 

・Greedy basis algorithm (matroids). 

・... 
 
Caveat.  Greedy algorithms rarely lead to provably optimal solutions.  
             [ but often used anyway in practice, especially for NP-hard optimization problems ]
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COIN CHANGING PROBLEM:  GREEDY ALGORITHM

Goal.  Given U. S. coin denominations ,  
devise a method to make change using fewest coins.  
 

Ex.  34¢.  
 

Cashier’s (greedy) algorithm.  Repeatedly choose the largest coin value  
that does not exceed the remaining amount.  

 
Ex.  $2.89.

{ 1, 5, 10, 25, 100 }

15

6 coins

10 coins



Algorithm design:  poll 2

Is the cashier’s algorithm optimal for U.S. coin denominations  ?

A. Yes, greedy algorithms are always optimal.

B. Yes, for any set of coin denominations  provided .

C. Yes, because of special structural properties of U.S. coin denominations.

D. No.

{ 1, 5, 10, 25, 100 }

d1 < d2 < … < dn d1 = 1
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Properties of any optimal solution (for U.S. coin denominations)

Property 1.  Number of pennies . 
Pf.  Replace  pennies with  nickel. 
 
Property 2.  Number of nickels . 
Property 3.  Number of dimes . 
Property 4.  Number of quarters .  

Property 5.  . 
Pf. 

・From Properties 2 and 3,   and .  

・If  and , replace with  quarter. 
 
 
Property 6.  .

P ≤ 4
5 1

N ≤ 1
D ≤ 2
Q ≤ 3

N + D ≤ 2

N ≤ 1 D ≤ 2
N = 1 D = 2 1

P + 5N + 10D + 25Q ≤ 99

17

exchange argument

P1  contributes
at most 4

⟹ P5  contributes
at most 20

⟹ P4  contributes
at most 75

⟹

replace 2 nickels with 1 dime

replace 3 dimes with 1 quarter and 1 nickel

replace 4 quarters with 1 dollar

significance:  total amount of change from
pennies, nickels, dimes, and quarters



Optimality of cashier’s algorithm (for U.S. coin denominations)

Proposition.  Cashier’s algorithm yields the unique optimal solution for denominations . 
 
Pf.  [ for dollar coins ] 

・Suppose that we are making change for $ .yz. 

・Cashier’s algorithm uses  dollar coins. 

・Suppose (for the sake of contradiction) that an optimal solution uses fewer than  dollar coins. 

・Then, the remaining amount ( ¢) must be made using only pennies, nickels, dimes,  
and quarters, so      . 

・But Property 6 says , a contradiction.          
 
      [ similar arguments justify greedy strategy for quarters, dimes, and nickels ]

{ 1, 5, 10, 25, 100 }

x
x

x
≥ 100

P + 5N + 10D + 25Q ≥ 100
P + 5N + 10D + 25Q ≤ 99
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Poly-time reductions

Problem  poly-time reduces to problem  if there is an algorithm for  that 

・makes a polynomial number of calls to an algorithm for , and 

・performs poly-time extra work (besides those calls). 
 
Ex 1.  The median-finding problem reduces to sorting. 
Ex 2.  Bipartite matching reduces to maxflow.  

Many, many important problems reduce to: 

・Sorting. 

・Maxflow. 

・Suffix arrays. 

・Shortest paths. 

・Linear programming. 

・... 
 
Note.  Reductions also play a central role in computational complexity (e.g., NP-completeness).

X Y X
Y

20

see ORF 307 or ORF 363

see COS 343

instance I 
(of problem X) solution to I

algorithm for problem X

calls subroutine for Y
(plus poly-time extra work)

algorithm for
problem Y



SHORTEST PATH WITH ORANGE AND BLACK EDGES

Goal.  Given a digraph with positive edges weights in which each edge is colored orange or black,  
and an integer , find a shortest  path that uses  orange edges.k s↝ t ≤ k

21

k = 0:  s→w→t            (17) 
k = 1:  s→x→t            (13)
k = 2:  s→v→x→t       (11)
k = 3:  s→v→w→x→t  (10)
k = 4:  s→v→w→x→t  (10)
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Goal.  Given a digraph with positive edges weights in which each edge is colored orange or black,  
and an integer , find a shortest  path that uses  orange edges.k s↝ t ≤ k
Goal.  Given a digraph with positive edges weights in which each edge is colored orange or black,  
and an integer , find a shortest  path that uses  orange edges. 
 
A poly-time reduction to the single-source shortest paths problem: 

・Create  copies of the vertices in digraph , labeled . 

・For each black    edge →  in :  add an edge  in . 

・For each orange edge →  in :  add an edge  from  to . 

・Compute shortest paths from  and select the path to the nearest .

k s↝ t ≤ k

k+1 G G0 , G1 , …, Gk

v w G vi →wi Gi

v w G vi →wi+1 Gi Gi+1

s0 ti

SHORTEST PATH WITH ORANGE AND BLACK EDGES

22
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t2

8 8 8
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Algorithm design:  poll 3

What is the algorithm’s worst-case running time as a function of , , and  ?  
Assume  and .

A.  

B.  

C.  

D.  

k V E
E ≥ V k ≥ 1

Θ(E log V )

Θ(k E)

Θ(k E log V )

Θ(k2 E log V )

23

Θ((k+1) E)  log ((k+1) V)

number
of edges

number
of vertices

Dijkstra:  Θ(E log V)
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Dynamic programming

・Decompose a complex problem into simpler, overlapping subproblems. 

・Build up solutions to progressively larger subproblems.  
(caching intermediate results in a table for efficient reuse) 

Familiar examples. 

・Bellman–Ford. 

・Seam carving. 

・Shortest paths in DAGs. 
 
More classic examples. 

・Unix diff (file comparison). 

・Viterbi (hidden Markov models). 

・Cocke–Kasami–Younger (parsing context-free grammars). 

・Needleman–Wunsch/Smith–Waterman (DNA sequence alignment). 

・...

25

THE THEORY OF DYNAMIC PROGRAMMING 
RICHARD BELLMAN 

1. Introduction. Before turning to a discussion of some representa-
tive problems which will permit us to exhibit various mathematical 
features of the theory, let us present a brief survey of the funda-
mental concepts, hopes, and aspirations of dynamic programming. 

To begin with, the theory was created to treat the mathematical 
problems arising from the study of various multi-stage decision 
processes, which may roughly be described in the following way: We 
have a physical system whose state at any time / is determined by a 
set of quantities which we call state parameters, or state variables. 
At certain times, which may be prescribed in advance, or which may 
be determined by the process itself, we are called upon to make de-
cisions which will affect the state of the system. These decisions are 
equivalent to transformations of the state variables, the choice of a 
decision being identical with the choice of a transformation. The out-
come of the preceding decisions is to be used to guide the choice of 
future ones, with the purpose of the whole process that of maximizing 
some function of the parameters describing the final state. 

Examples of processes fitting this loose description are furnished 
by virtually every phase of modern life, from the planning of indus-
trial production lines to the scheduling of patients at a medical 
clinic ; from the determination of long-term investment programs for 
universities to the determination of a replacement policy for ma-
chinery in factories; from the programming of training policies for 
skilled and unskilled labor to the choice of optimal purchasing and in-
ventory policies for department stores and military establishments. 

I t is abundantly clear from the very brief description of possible 
applications tha t the problems arising from the study of these 
processes are problems of the future as well as of the immediate 
present. 

Turning to a more precise discussion, let us introduce a small 
amount of terminology. A sequence of decisions will be called a 
policy, and a policy which is most advantageous according to some 
preassigned criterion will be called an optimal policy. 

The classical approach to the mathematical problems arising from 
the processes described above is to consider the set of all possible 

An address delivered before the Summer Meeting of the Society in Laramie on 
September 3, 1953 by invitation of the Committee to Select Hour Speakers for An-
nual and Summer meetings; received by the editors August 27,1954. 

503 

Richard Bellman, *46



HOUSE COLORING PROBLEM

Goal.  Paint a row of  houses red, green, or blue so that: 

・Total cost is minimized, where  is the cost to paint house  that color.  

・No two adjacent houses have the same color.

n
cost(i, color) i

26

1 2 3 4 5 6

cost(i, red) 7 6 7 8 9 20

cost(i, green) 3 8 9 22 12 8

cost(i, blue) 16 10 4 2 5 7

cost to paint house i the given color
(3 + 6 + 4 + 8 + 5 + 8 = 34)



HOUSE COLORING PROBLEM:  DYNAMIC PROGRAMMING FORMULATION

Goal.  Paint a row of  houses red, green, or blue so that: 

・Total cost is minimized, where  is the cost to paint house  that color.  

・No two adjacent houses have the same color. 
 
Subproblems. 

・ =  min cost to paint houses   with house i red. 

・ =  min cost to paint houses   with house i green. 

・ =  min cost to paint houses   with house i blue. 

・Optimal cost = . 
 
Dynamic programming recurrence. 

・R(0)  =  G(0)  =  B(0)  =  0 

・R(i)  =  cost(i, red)     +  min { G(i − 1),  B(i − 1) }

・G(i)  =  cost(i, green) +  min { B(i − 1),  R(i − 1) }

・B(i)  =  cost(i, blue)    +  min { R(i − 1),  G(i − 1) }

n
cost(i, color) i

R(i) 1, …, i
G(i) 1, …, i
B(i) 1, …, i

min { R(n), G(n), B(n) }

27

“optimal substructure”
(optimal solution can be constructed from
optimal solutions to smaller subproblems)



R(6)  =  cost(6, red) +  min { G(5),  B(5) }
         =  20 + min { 32,  26 }
         =  46

G(6)  =  cost(6, green) +  min { R(5),  B(5) }
         =  8 + min { 29,  26 }
         =  34

B(6)  =  cost(6, blue) +  min { R(5),  G(5) }
         =  7 + min { 29,  32 }
         =  36

Bottom-up DP trace.  Given , , and , easy to compute , , and .R(i) G(i) B(i) R(i+1) G(i+1) B(i+1)

6

46

34

36

HOUSE COLORING:  TRACE

28

0 1 2 3 4 5

R(i) 0 7 9 20 21 29

G(i) 0 3 15 18 35 32

B(i) 0 16 13 13 20 26

cost to paint houses 1, 2, …, i with house i the given color



HOUSE COLORING:  BOTTOM-UP IMPLEMENTATION

Bottom-up DP implementation.  
 
 
 
 
 
 
 
 
 
 
 

Performance.  Computes optimal value in  time; uses  extra space. 
Remark.  Can reconstruct an optimal solution using backtracing.

Θ(n) Θ(n)

29

int[] r = new int[n+1]; 
int[] g = new int[n+1]; 
int[] b = new int[n+1]; 

for (int i = 1; i <= n; i++) { 
   r[i] = cost[i][RED]   + Math.min(g[i-1], b[i-1]); 
   g[i] = cost[i][GREEN] + Math.min(b[i-1], r[i-1]); 
   b[i] = cost[i][BLUE]  + Math.min(r[i-1], g[i-1]); 
} 

return min3(r[n], g[n], b[n]);

R(i)  =  cost(i, red)     +  min { G(i − 1),  B(i − 1) }

G(i)  =  cost(i, green) +  min { B(i − 1),  R(i − 1) }

B(i)  =  cost(i, blue)    +  min { R(i − 1),  G(i − 1) }
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Divide and conquer

・Break the problem into two or more independent subproblems. 

・Solve each subproblem recursively. 

・Combine subproblem solutions to solve the original problem. 
 
Familiar examples. 

・Mergesort. 

・Quicksort.  

More classic examples. 

・Cooley–Tukey FFT (convolution).  

・Shamos–Hoey algorithm (closest pair). 

・Strassen’s algorithm (matrix multiplication). 

・Karatsuba’s algorithm (integer multiplication).  
… 

 
Prototypical usage.  Turn a brute-force  algorithm into a  algorithm.Θ(n2) Θ(n log n)

31

cosplaying a COS 226 student?



Personalized recommendations

Music site tries to match your song preferences with others. 

・Your ranking of songs:  0, 1, …, n−1. 

・My ranking of songs:  a0, a1, …, an−1. 

・Music site consults database to find people with similar tastes.  

Kendall-tau distance.  Number of inversions between two rankings. 
Inversion.  Songs i and j are inverted if i  <  j, but ai  >  aj.

32

A B C D E F G H

you 0 1 2 3 4 5 6 7

me 0 2 3 1 4 5 7 6

3 inversions:  2-1, 3-1, 7-6



COUNTING INVERSIONS

Goal.  Given a permutation of length , count the number of inversions. 
 
 
 
 
 
 
 
Brute-force algorithm.  For each  check if  . 
Running time. Takes  time. 
A bit better.  Run insertion sort; return number of exchanges. 
 
Goal.  Algorithm that takes  time.

n

i < j ai > aj

Θ(n2)

O(n log n)

33

0 2 3 1 4 5 7 6

3 inversions:  2-1, 3-1, 7-6



COUNTING INVERSIONS:  DIVIDE-AND-CONQUER ALGORITHM

34

0 4 3 7 9 1 5 8 2 6input

count inversions  
in left subarray

0 3 4 7 9 1 5 8 2 6 1

count inversions  
in right subarray 0 3 4 7 9 1 2 5 6 8 3

count inversions
with one element
in each subarray

0 3 4 7 9 1 2 5 6 8 13

4-3

5-2 8-2 8-6

3-1 3-2 4-1 4-2 7-1 7-2 7-5 7-6 9-1 9-2 9-5 9-6 9-8

1 + 3 + 13 = 17output 0 1 2 3 4 5 6 7 8 9

this step seems to 
require Θ(n2) time



COUNTING INVERSIONS:  DIVIDE-AND-CONQUER ALGORITHM

35

0 4 3 7 9 1 5 8 2 6input

count inversions  
in left subarray

and sort
0 3 4 7 9 1 5 8 2 6 1

count inversions  
in right subarray

and sort

0 3 4 7 9 1 2 5 6 8 3

count inversions
with one element in

each sorted subarray

0 3 4 7 9 1 2 5 6 8 13

1 + 3 + 13 = 17and merge into 
sorted whole

0 1 2 3 4 5 6 7 8 9



Algorithm design:  poll 5

What is running time of algorithm as a function of  ?

A.  

B.  

C.  

D.  

n

Θ(n)

Θ(n log n)

Θ(n log2 n)

Θ(n2)

36
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Randomized algorithms

Algorithm whose performance (or output) depends on the results of random coin flips.  

Familiar examples. 

・Quicksort (sorting). 

・Quickselect (selection). 

・Karger’s algorithm (global mincut). 

More classic examples. 

・Miller–Rabin (primality testing). 

・Rabin–Karp (substring search). 

・Polynomial identity testing. 

・Volume of convex body. 

・Universal hashing. 

・…

38



NUTS AND BOLTS PROBLEM

Goal.  Given a jumbled pile of  nuts and  bolts, match each nut to its corresponding bolt. 

・Each nut fits exactly one bolt; each bolt fits exactly one nut. 

・Can compare a nut to a bolt to see which is larger.  
 
 
 
 
 
 
 
 
 

Brute-force algorithm.  Compare each bolt to each nut:   compares. 
Challenge.  Design an algorithm that uses only  compares.

n n

Θ(n2)
O(n log n)

39

but cannot directly compare
two nuts or two bolts



NUTS AND BOLTS PROBLEM:  RANDOMIZED ALGORITHM

Shuffle.  Randomly shuffle the nuts and bolts. 
 
Partition. 

・Pick the leftmost bolt . Compare  against all nuts;  
partition nuts into those smaller than  and those larger than . 

・Let  be the nut that matches bolt . Compare  against all bolts;  
partition bolts into those smaller than  and those larger than . 

 

 

 

 

 

 

Divide-and-conquer.  Recursively solve the two independent subproblems.

x x
x x

x ′ x x ′ 

x ′ x ′ 

40

3 0 1 4 2 5 6 9 8 7bolts

2′ 1′ 4′ 0′ 3′ 5′ 7′ 8′ 9′ 6′nuts

5 3 6 0 9 1 4 8 2 7

7′ 2′ 8′ 1′ 5′ 9′ 4′ 0′ 6′ 3′

bolts

nuts

smaller nuts larger nuts

smaller bolts larger bolts

x

x

x ′



Algorithm design:  poll 6

What is the expected running time of the randomized algorithm as a function of  ?

A.  

B.  

C.  

D.  

n

Θ(n)

Θ(n log n)

Θ(n log2 n)

Θ(n2)

41

same analysis as quicksort
(but ~ 2n compares per partition instead of ~ n)



NUTS AND BOLTS PROBLEM:  DETERMINISTIC ALGORITHM

Hiring bonus.  Design an algorithm for the problem that takes  time in the worst case.O(n log n)

42

Chapter 27 
Matching Nuts and Bolts in O(nlogn) Time 

(Extended Abstract) 

Jinos KomMs ‘t4 Yuan Ma 2 Endre Szemerkdi 3y4 

Abstract 

Given a set of n nuts of distinct widths and a set of n bolts 
such that each nut corresponds to a unique bolt of the same 
width, how should we match every nut with its correspond- 
ing bolt by comparing nuts with bolts (no comparison is 
allowed between two nuts or between two bolts)? The prob- 
lem can be naturally viewed as a variant of the classic sort- 
ing problem as follows. Given two lists of n numbers each 
such that one list is a permutation of the other, how should 
we sort the lists by comparisons only between numbers in 
different lists? We give an O(n log n)-time deterministic al- 
gorithm for the problem. This is optimal up to a constant 
factor and answers an open question posed by Alon, Blum, 
Fiat, Kannan, Naor, and Ostrovsky [3]. Moreover, when 
copies of nuts and bolts are allowed, our algorithm runs in 
optimal O(logn) t ime on n processors in Valiant’s parallel 
comparison tree model. Our algorithm is based on the AKS 
sorting algorithm with substantial modifications. 

1 Introduction 

Given a set of n nuts of distinct widths and a set of n 
bolts such that each nut corresponds to a unique bolt 
of the same width, how should we match every nut with 
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its corresponding bolt by comparing nuts with bolts (no 
comparison is allowed between two nuts or between two 
bolts)? 

This problem can be naturally viewed as a variant 
of the classic sorting problem as follows. Given two 
lists of n numbers each such that one list is a permu- 
tation of the other, how should we sort the lists by 
comparisons only between numbers in different lists? 
In fact, the following simple reasoning illustrates that 
the problem of matching nuts and bolts and the prob- 
lem of sorting them have the same complexity, up to 
a constant factor. On one hand, if the nuts and bolts 
are sorted, then a nut and a bolt at the same position 
in the sorted order certainly match with each other. 
On the other hand, if the nuts and bolts are matched, 
we can sort them by any optimal sorting algorithm in 
O(n log n) time. Hence, the complexity equivalence of 
sorting and matching them follows from the simple in- 
formation lower bound of R(nlogn) on the matching 
problem, which can be easily derived from the fact that 
there are n! possible ways to match the nuts and bolts. 
So in this paper, we will consider the problem of how 
to sort the nuts and bolts, instead of matching them. 

The problem of sorting nuts and bolts has a sim- 
ple randomized algorithm (e.g., a simple variant of 
the QUICKSORT algorithm) that runs in the opti- 
mal O(n logn) expected time [8]. However, finding 
a nontrivial (say, o(n2)-time) deterministic algorithm 
has appeared to be highly nontrivial. Alon, Blum, 
Fiat, Kannan, Naor, and Ostrovsky [3] designed an 
O(n log4 n)-time deterministic algorithm based on ex- 
pander graphs, and they posed the open question of de- 
signing an optimal deterministic algorithm to the prob- 
lem. Recently, Bradford and Fleischer [6] improved the 
running time to O(n log’ n), but the question remains 
open if O(n log n) can be achieved. 

Since the classic sorting problem has been inten- 
sively studied, it is natural to ask if any existing 
O(n log n)-time deterministic sorting algorithm can be 
easily adapted to sort nuts and bolts. In a certain sense, 
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Chapter 27 
Matching Nuts and Bolts in O(nlogn) Time 

(Extended Abstract) 

Jinos KomMs ‘t4 Yuan Ma 2 Endre Szemerkdi 3y4 

Abstract 

Given a set of n nuts of distinct widths and a set of n bolts 
such that each nut corresponds to a unique bolt of the same 
width, how should we match every nut with its correspond- 
ing bolt by comparing nuts with bolts (no comparison is 
allowed between two nuts or between two bolts)? The prob- 
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we sort the lists by comparisons only between numbers in 
different lists? We give an O(n log n)-time deterministic al- 
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Fiat, Kannan, Naor, and Ostrovsky [3]. Moreover, when 
copies of nuts and bolts are allowed, our algorithm runs in 
optimal O(logn) t ime on n processors in Valiant’s parallel 
comparison tree model. Our algorithm is based on the AKS 
sorting algorithm with substantial modifications. 

1 Introduction 

Given a set of n nuts of distinct widths and a set of n 
bolts such that each nut corresponds to a unique bolt 
of the same width, how should we match every nut with 
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its corresponding bolt by comparing nuts with bolts (no 
comparison is allowed between two nuts or between two 
bolts)? 

This problem can be naturally viewed as a variant 
of the classic sorting problem as follows. Given two 
lists of n numbers each such that one list is a permu- 
tation of the other, how should we sort the lists by 
comparisons only between numbers in different lists? 
In fact, the following simple reasoning illustrates that 
the problem of matching nuts and bolts and the prob- 
lem of sorting them have the same complexity, up to 
a constant factor. On one hand, if the nuts and bolts 
are sorted, then a nut and a bolt at the same position 
in the sorted order certainly match with each other. 
On the other hand, if the nuts and bolts are matched, 
we can sort them by any optimal sorting algorithm in 
O(n log n) time. Hence, the complexity equivalence of 
sorting and matching them follows from the simple in- 
formation lower bound of R(nlogn) on the matching 
problem, which can be easily derived from the fact that 
there are n! possible ways to match the nuts and bolts. 
So in this paper, we will consider the problem of how 
to sort the nuts and bolts, instead of matching them. 

The problem of sorting nuts and bolts has a sim- 
ple randomized algorithm (e.g., a simple variant of 
the QUICKSORT algorithm) that runs in the opti- 
mal O(n logn) expected time [8]. However, finding 
a nontrivial (say, o(n2)-time) deterministic algorithm 
has appeared to be highly nontrivial. Alon, Blum, 
Fiat, Kannan, Naor, and Ostrovsky [3] designed an 
O(n log4 n)-time deterministic algorithm based on ex- 
pander graphs, and they posed the open question of de- 
signing an optimal deterministic algorithm to the prob- 
lem. Recently, Bradford and Fleischer [6] improved the 
running time to O(n log’ n), but the question remains 
open if O(n log n) can be achieved. 

Since the classic sorting problem has been inten- 
sively studied, it is natural to ask if any existing 
O(n log n)-time deterministic sorting algorithm can be 
easily adapted to sort nuts and bolts. In a certain sense, 
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“ Algorithms and data structures are love.

   Algorithms and data structures are life. ”

         — anonymous COS 226 student

A final thought
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