
ROBERT SEDGEWICK | KEVIN WAYNE

F O U R T H E D I T I O N

Algorithms

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

Last updated on 10/21/25 9:17  AM

GEOMETRIC APPLICATIONS OF BSTS

‣1d range search

‣ line segment intersection

‣ k-d trees

‣ context

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Overview

This lecture. Intersections among geometric objects.
 
 
 
 
 
 
 
 
 
 
 
 
Applications. CAD, games, movies, virtual reality, databases, GIS, …
 
Efficient solutions. Binary search trees (and extensions).

2

2d orthogonal range search line segment intersection

Overview

This lecture. Only the tip of the iceberg.

3medical imaging fluid flowVoronoi tessellation

GEOMETRIC APPLICATIONS OF BSTS

‣1d range search

‣ line segment intersection

‣ k-d trees

‣ context
ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

1d range search

Extension of ordered symbol table.

・Insert key–value pair.

・Search for key .

・Delete key k (and associated value).

・1d range search: find all keys between and .
 
 
Application. Database queries.
 
 
Geometric interpretation.

・Keys are point on a line.

・Find points in a given 1d interval.

k

k1 k2

5

insert B	 B

insert D	 B D

insert A	 A B D

insert I	 A B D I

insert H	 A B D H I

insert F	 A B D F H I

insert P	 A B D F H I P

search G to K	 H I

Geometric applications of BSTs: poll 1

Design an efficient algorithm for 1d range search in a sorted array.  
What is its worst-case running time as a function of both and ?  

A.

B.

C.

D.

m n

Θ(log m)

Θ(log n)

Θ(log n + m)

Θ(m + n)

6

number of
matching keys

binary search + scan for matches
(à la Autocomplete)

log n and m and are incomparable terms
(neither is a lower-order term)

number
of keys

1d range search: elementary implementations

Unordered list/array.	 Slow insert; slow range search.
Sorted array.	 	 Slow insert; fast range search.

data structure insert range search

unordered list/array n n

sorted array n log n + m

goal log n log n + m

7

m = number of keys that match
n = number of keys

order of growth of running time for 1d range search

1d range search: BST implementation

1d range search. Find all keys between and .

・Recursively find all keys in left subtree (if any could fall in range).

・Check key in current node.

・Recursively find all keys in right subtree (if any could fall in range).
 
 
 
 
 
 
 
 
 
 
Proposition. Takes time in the worst case.
Pf. Nodes examined = { search path to } { search path to } { matches }.

k1 k2

Θ(log n + m)
k1 ∪ k2 ∪

G

8

X

RA

C H

E

U

M

L P

range search [D…Q]

S

E
G
H
L
M
P

assuming BST is balanced

Θ(log n) Θ(log n) Θ(m)

1d range search: summary of performance

Unordered list/array.	 Slow insert; slow range search.
Sorted array.	 	 Slow insert; fast range search.
Balanced BST.	 	 Fast insert; fast range search.

9

data structure insert range search

unordered list/array n n

sorted array n log n + m

balanced BST log n log n + m

order of growth of running time for 1d range search

m = number of keys that match
n = number of keys

GEOMETRIC APPLICATIONS OF BSTS

‣1d range search

‣ line segment intersection

‣ k-d trees

‣ context
ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Orthogonal line segment intersection

Given horizontal and vertical line segments, find all intersections.
 
 
 
 
 
 
 
 
 
 
 
 
 
Brute-force algorithm. Check all pairs of line segments for intersection.

n

Θ(n2)

11

Microprocessors and geometry

Early 1970s. microprocessor design became a geometric problem.

・Very Large Scale Integration (VLSI).

・Computer-Aided Design (CAD).

Design-rule checking.

・Certain wires cannot intersect.

・Certain spacing needed between different types of wires.

・Debugging = line segment (or rectangle) intersection.

12

Orthogonal line segment intersection: sweep-line algorithm

Non-degeneracy assumption. All - and -coordinates are distinct.x y

13

0

1

2

3

5

6

4
7

8

9
10

Orthogonal line segment intersection: sweep-line algorithm

Sweep vertical line from left to right. [-coordinates define events]

・Horizontal segment (left endpoint): insert -coordinate into BST.

・Horizontal segment (right endpoint): remove -coordinate from BST.

・Vertical segment: 1d range search for interval of -endpoints.

x
y

y
y

14

y-coordinates
(of horizontal lines that intersect sweep line)

0

1

2

3

5

6

4
7

8

9
10

Orthogonal line segment intersection: sweep-line analysis

Proposition. The sweep-line algorithm takes time in the worst case  
to find all intersections among horizontal and vertical line segments.
 
Pf.

・Sort -coordinates.	 	 []

・Insert -coordinates into BST.	 []

・Delete -coordinates from BST.	 []

・1d range searches in BST.	 []
 
 
 
 
 
 
 
Bottom line. Sweep line reduces 2d orthogonal line segment intersection to 1d range search.

Θ(n log n + m)
m n

x n log n
y n log n
y n log n

n log n + m

15

(log n + m1) + (log n + m2) + (log n + m3) + …

 and are incomparable terms
(neither is a lower-order term)

n log n m

Sweep-line algorithm: context

The sweep-line algorithm is a powerful technique in computational geometry.  

Geometric intersection.

・General line-segment intersection.

・Axis-aligned rectangle intersection.

・…
 
More problems (solvable with sweep-line algorithms).

・Convex hull (Andrew’s algorithm).

・Voronoi diagram (Fortune’s algorithm).

・Rendering computer graphics (scanline algorithm).

・…

16

GEOMETRIC APPLICATIONS OF BSTS

‣1d range search

‣ line segment intersection

‣ k-d trees

‣ context
ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Two-dimensional orthogonal range search

Extension of ordered symbol table to 2d keys.

・Insert a 2d key.

・Search for a 2d key.

・2d orthogonal range search:	 find all keys that lie in a 2d range.
 
 
 
Applications. Networking, circuit design, databases, …
 
 
Geometric interpretation.

・Keys are point in the plane.

・Find points in a given h–v rectangle.

18

rectangle is axis-aligned

Space-partitioning trees

Use a tree to represent a recursive subdivision of 2d space.
 
Grid. Divide space uniformly into squares.
Quadtree. Recursively divide space into four quadrants.
2d tree. Recursively divide space into two halfplanes.
BSP tree. Recursively divide space into two regions.

19

Grid 2d tree BSP treeQuadtree

Space-partitioning trees: applications

Applications.

・Ray tracing.

・Flight simulators.

・N-body simulation.

・Collision detection.

・Astronomical databases.

・Nearest neighbor search.

・Adaptive mesh generation.

・2d orthogonal range search.

・Accelerate rendering in Doom.

・Hidden surface removal and shadow casting.

20

Grid 2d tree BSP treeQuadtree

2d tree demo: insertion

Recursively partition plane into two halfplanes.

21

A

B

C

D

F

G

H

I

J

E

A

B

HG

J I

C

D F

E

Geometric applications of BSTs: poll 2

Where to insert point K in the 2d tree below?

A. Left child of G.

B. Left child of J.

C. Right child of J.

D. Right child of I.

22

A

B

HG

I

C

D F

E

A B

C

D

F

G

H

I

J

E

K
J

2d tree: representation

Data structure. BST, but alternate using - and -coordinates as key.

・Even levels:	 compare -coordinates.

・Odd levels:	 compare -coordinates.

x y
x
y

23

p

points
left of p

points
right of p

p

even levels

q

points
below q

points
above q

odd levels

q

A

B

HG

I

C

D F

E

A B

C

D

F

G

H

I

J

E

K
J

2d tree demo: range search

Goal. Find all points in a query rectangle.

・Check if query rectangle contains point in node.

・Recursively search left/bottom and right/top subtrees.

・Optimization: prune subtree if it can’t contain a point in rectangle.

24

A

B

C

D

F

G

H

I

J

E

A

B

HG

J I

C

D F

E

query
rectangle

2d tree demo: range search

Goal. Find all points in a query rectangle.

・Check if query rectangle contains point in node.

・Recursively search left/bottom and right/top subtrees.

・Optimization: prune subtree if it can’t contain a point in rectangle.

25

B

C

G

H

I

J

B

HG

J I

C

A

A

D

D

E E

F

F

done

query
rectangle

Geometric applications of BSTs: poll 4

Suppose we explore the right/top subtree before the left/bottom subtree
in range search. What effect would it have on typical inputs?

A. Returns wrong answer.

B. Explores more nodes.

C. Both A and B.

D. Neither A nor B.

26

2d tree demo: nearest neighbor

Goal. Find closest point to query point.

27

B

C

D

G

H

I

J

E

A

B

HG

J I

C

D F

E

query
point

F

A

2d tree demo: nearest neighbor

・Check distance from point in node to query point.

・Recursively search left/bottom and right/top subtrees.

・Optimization 1: prune subtree if it can’t contain a closer point.

・Optimization 2: explore subtree toward the query point first.

28

B

D

G

H

I

J

E

B

HG

J I

C

D F

E

A

nearest neighbor = E

F

C

A

query
point

Geometric applications of BSTs: poll 6

Suppose we always explore the left/bottom subtree before the right/top subtree in
nearest-neighbor search. What effect will it have on typical inputs?

A. Returns wrong answer.

B. Explores more nodes.

C. Both A and B.

D. Neither A nor B.

29

2d tree: Java implementation

Q. How to implement a 2d-tree?
A. Explicit node data type for binary tree.

30

private class KdTreeST<Value> {
 private Node root;
 private int n;

 private class Node {

 ...
 }
 ...
}

private Point2D p;
private Value value;

private Node left, right;
private Node parent;

private RectHV rect;

see Ass ignment 4

A
B

C

D

A

BC

D

facilitates pruning in range search
and nearest neighbor search

(RectHV has several useful methods)

each node stores a rectangle
corresponding to subdivision of plane

2d tree: performance

Typical case. 2d trees are useful in practice because of performance on typical inputs.
Worst case. If 2d tree is unbalanced, core operation take time in worst case.
Balanced. Even if 2d tree is balanced, nearest neighbor search takes time in worst case.

Θ(log n)
Θ(n)

Θ(n)

operation typical worst

insertion log n n

2d range search log n + m n

nearest neighbor log n n

31

m = number of keys that match
n = number of keys

order of growth of running time in a 2d tree

GEOMETRIC APPLICATIONS OF BSTS

‣1d range search

‣ line segment intersection

‣ k-d trees

‣ context
ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

K-d tree

K-d tree. Recursively partition -dimensional space into 2 halfspaces.
 
Implementation. BST, but cycle through dimensions à la 2d trees.
 
 
 
 
 
 
 
 
 
Efficient, simple data structure for processing -dimensional data.

・Widely used.

・Adapts well to high-dimensional and clustered data.

・Discovered by an undergrad in an algorithms class!

k

k

33

level ≡ i (mod k)

points
whose ith

coordinate
is less than p’s

points
whose ith

coordinate
is greater than p’s

p

Flocking birds

Q. Which “natural algorithm” do starlings, migrating geese, cranes,  
 bait balls of fish, and flashing fireflies use to flock?

34

https://www.youtube.com/watch?v=XH-groCeKbE

https://www.youtube.com/watch?v=XH-groCeKbE

Flocking boids [Craig Reynolds, 1986]

Boids. Three simple rules lead to complex emergent flocking behavior:

・Flock centering (cohesion):	 	 	 move toward the center of mass of nearest boids.

・Direction matching (alignment):	 update velocity toward average velocity of nearest boids.

・Collision avoidance (separation):	 point away from nearest boids.

k
k

k

35

https://www.youtube.com/watch?v=nbbd5uby0sY

https://www.youtube.com/watch?v=nbbd5uby0sY

N-body simulation

Goal. Simulate the motion of particles, mutually affected by gravity.
 
Brute force. For each pair of particles, compute force: .  
Running time. Time per step is .

n

F =
G m1 m2

r2

Θ(n2)

36

https://www.youtube.com/watch?v=ua7YlN4eL_w

https://www.youtube.com/watch?v=ua7YlN4eL_w

Appel’s algorithm for n-body simulation

Key idea. Suppose that a particle is in a galaxy far, far away from a cluster of particles.

・Treat the cluster of particles as a single aggregate particle.

・Compute force between particle and center of mass of aggregate.

37

Appel’s algorithm for n-body simulation

・Build 3d-tree with particles as nodes.

・Store center-of-mass of subtree in each node.

・To compute total force acting on a particle, traverse tree, but stop  
as soon as distance from particle to subdivision is sufficiently large.

Impact. Running time per step is enables new research.

n

O(n log n) ⟹
38

SIAM J. ScI. STAT. COMPUT.
Vol. 6, No. 1, January 1985

1985 Society for Industrial and Applied Mathematics
O08

AN EFFICIENT PROGRAM FOR MANY-BODY SIMULATION*
ANDREW W. APPEL

Abstract. The simulation of N particles interacting in a gravitational force field is useful in astrophysics,
but such simulations become costly for large N. Representing the universe as a tree structure with the
particles at the leaves and internal nodes labeled with the centers of mass of their descendants allows several
simultaneous attacks on the computation time required by the problem. These approaches range from
algorithmic changes (replacing an O(N’) algorithm with an algorithm whose time-complexity is believed
to be O(N log N)) to data structure modifications, code-tuning, and hardware modifications. The changes
reduced the running time of a large problem (N 10,000) by a factor of four hundred. This paper describes
both the particular program and the methodology underlying such speedups.

1. Introduction. Isaac Newton calculated the behavior of two particles interacting
through the force of gravity, but he was unable to solve the equations for three particles.
In this he was not alone [7, p. 634], and systems of three or more particles can be
solved only numerically. Iterative methods are usually used, computing at each discrete
time interval the force on each particle, and then computing the new velocities and
positions for each particle.

A naive implementation of an iterative many-body simulator is computationally
very expensive for large numbers of particles, where "expensive" means days of Cray-1
time or a year of VAX time. This paper describes the development of an efficient
program in which several aspects of the computation were made faster. The initial
step was the use of a new algorithm with lower asymptotic time complexity; the use
of a better algorithm is often the way to achieve the greatest gains in speed [2].

Since every particle attracts each of the others by the force of gravity, there are
O(N2) interactions to compute for every iteration. Furthermore, for the same reasons
that the closed form integral diverges for small distances (since the force is proportional
to the inverse square of the distance between two bodies), the discrete time interval
must be made extremely small in the case that two particles pass very close to each
other. These are the two problems on which the algorithmic attack concentrated. By
the use of an appropriate data structure, each iteration can be done in time believed
to be O(N log N), and the time intervals may be made much larger, thus reducing
the number of iterations required. The algorithm is applicable to N-body problems in
any force field with no dipole moments; it is particularly useful when there is a severe
nonuniformity in the particle distribution or when a large dynamic range is required
(that is, when several distance scales in the simulation are of interest).

The use of an algorithm with a better asymptotic time complexity yielded a
significant improvement in running time. Four additional attacks on the problem were
also undertaken, each of which yielded at least a factor of two improvement in speed.
These attacks ranged from insights into the physics down to hand-coding a routine in
assembly language. By finding savings at many design levels, the execution time of a
large simulation was reduced from (an estimated) 8,000 hours to 20 (actual) hours.
The program was used to investigate open problems in cosmology, giving evidence to
support a model of the universe with random initial mass distribution and high mass
density.

* Received by the editors March 24, 1983, and in revised form October 1, 1983.
r Computer Science Department, Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213. This

research was supported by a National Science Foundation Graduate Student Fellowship and by the office
of Naval Research under grant N00014-76-C-0370.

85

problem example solution

1d range search binary search tree

2d orthogonal line
segment intersection

sweep line
(reduces to 1d range search)

2d range search
k-d range search

2d tree
k-d tree

Geometric applications of BSTs

39

Lecture Slides © Copyright 2025 Robert Sedgewick and Kevin Wayne

Credits

40

image source license

Iceberg Adobe Stock education license

Fortune’s Algorithm Kevin Schaal

Return to Castle Wolfenstein FilmWeb

Doom 3 IXBT Labs

3d-Tree Wikimedia GPL v2

Starlings on Otmoor YouTube

Flocking Boid Simulation Gavin Wood

Vivaldi Summer Movement 3 John Harrison CC BY-SA 3.0

N-Body Simulation YouTube

Andromeda Galaxy Jason Ware / NASA

Flight of the Starlings National Geographic

https://stock.adobe.com/images/south-and-north-pole-and-all-things-related/50345538
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://www.youtube.com/watch?v=k2P9yWSMaXE
https://www.filmweb.pl/reviews/recenzja-gry-Return+to+Castle+Wolfenstein-20401
http://ixbtlabs.com/articles2/digest3d/pics/pics-doom3.html
https://commons.wikimedia.org/wiki/File:3dtree.png
https://en.wikipedia.org/wiki/GNU_General_Public_License
https://www.youtube.com/watch?v=XH-groCeKbE
https://www.youtube.com/watch?v=nbbd5uby0sY
https://en.wikipedia.org/wiki/File:06_-_Vivaldi_Summer_mvt_3_Presto_-_John_Harrison_violin.ogg
https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://www.youtube.com/watch?v=ua7YlN4eL_w
https://www.youtube.com/watch?v=V4f_1_r80RY&t=54s

41

