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Mincut problem

Input. A digraph with positive edge weights (capacities), source vertex s, and target vertex r.
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Mincut problem

Def. An sr—cut (cut) is a partition of the vertices into two disjoint sets,

with s in one set A and 7 in the other set B.

Def. The capacity of a cut (A, B) is the sum of the capacities of the edges from A to B.
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Mincut problem

Def. An sr—cut (cut) is a partition of the vertices into two disjoint sets,

with s in one set A and 7 in the other set B.

Def. The capacity of a cut (A, B) is the sum of the capacities of the edges from A to B.
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Mincut problem

Def. An sr—cut (cut) is a partition of the vertices into two disjoint sets,

with s in one set A and 7 in the other set B.
Def. The capacity of a cut (A, B) is the sum of the capacities of the edges from A to B.

Minimum st-cut (mincut) problem. Find a cut of minimum capacity.
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Maximum flow: poll 1

What is the capacity of thecut {A, E, F, G} ?
A. 11 20+25-8—-11-9-6)
B. 34 8+11+9+06)

C. 45 (20+25)

D. 79 20+25+8+11+9+6)

source .
capacity




Mincut application (RAND 1950s)

“Free world” goal. Disrupt rail network (if Cold War turns into real war).
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rail network connecting Soviet Union with Eastern European countries



Maxflow problem

)

Though maximum flow algorithms have
a long history, revolutionary progress
is still being made.

BY ANDREW V. GOLDBERG AND ROBERT E. TARJAN

Efficient
Maximum
Flow
Algorithms

gorithms in more detail. We restrict
ourselves to basic maximum flow al-
gorithms and do not cover interest-
ing special cases (such as undirected
graphs, planar graphs, and bipartite
matchings) or generalizations (such as
minimum-cost and multi-commodity
flow problems).

Before formally defining the maxi-
mum flow and the minimum cut prob-
lems, we give a simple example of
each problem: For the maximum flow
example, suppose we have a graph that
represents an oil pipeline network
from an oil well to an oil depot. Each
arc has a capacity, or maximum num-
ber of liters per second that can flow
through the corresponding pipe. The
goal is to find the maximum number of
liters per second (maximum flow) that
can be shipped from well to depot. For
the minimum cut problem, we want
to find the set of pipes of the smallest
total capacity such that removing the
pipes disconnects the oil well from the
oil depot (minimum cut).

The maximum flow, minimum cut

Efficient Maximum Flow Algorithms by Andrew Goldberg and Bob Tarjan


https://vimeo.com/100774435

Maxflow problem

Input. A digraph with positive edge weights (capacities), source vertex s, and target vertex r.
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Maxflow problem

Def. An st-flow (flow) is an assignment of real numbers to the edges such that:

« Capacity constraints: 0 < edge’s flow < edge’s capacity.
* Flow conservation constraints: inflow = outflow at every vertex (except s and 7).

flow capacity

\ / inflow at v

D 2 outflowatv = 10+0 =10

5+45+0 =10

5/5

10 / 16
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Maxflow problem

Def. An sr-flow (flow) is an assignment of real numbers to the edges such that:
« Capacity constraints: 0 < edge’s flow < edge’s capacity.

* Flow conservation constraints: inflow = outflow at every vertex (except s and 7).

Def. The value of a flow is the inflow at r.
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Maxflow problem

Def. An st-flow (flow) is an assignment of real numbers to the edges such that:
« Capacity constraints: 0 < edge’s flow < edge’s capacity.
* Flow conservation constraints: inflow = outflow at every vertex (except s and 7).

Def. The value of a flow is the inflow at r.

Maximum st-flow (maxflow) problem. Find a flow of maximum value.
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Maxflow application (Tolstoi 1930s)

Soviet Union goal. Maximize flow of supplies to Eastern Europe.

flow ——

capacity
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The |
bottleneck
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Summary

Input. A digraph with positive edge weights, source vertex s, and target vertex t.

Mincut problem.

Find a cut of minimum capacity.

Maxflow problem. Find a flow of maximum value.
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value of flow = 28

Remarkable fact. These two problems are dual!

o«

10

/

— : —>

4

capacity of cut = 28

10

/

t

15



6.4 MAXIMUM FLOW

» Ford—Fulkerson algorithm
Algorithms

https://algs4.cs.princeton.edu


https://algs4.cs.princeton.edu

Ford-Fulkerson algorithm demo

Initialization. Start with O flow.

initialization

0/5

0/4

0/4

flow capacity
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0/ 16
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value of flow
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Ford-Fulkerson algorithm demo

Augmenting path. Find an (undirected) path from s to 7 such that:

Can increase flow on forward edges (not full). - impact: increases value of flow, while maintaining

capacity and flow conservation constraints

1st augmenting path

forward edge bottleneck capacity = 10

(not full) /
@ \Q

-O-/].O»t O +10 =10

S
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Ford-Fulkerson algorithm demo

Augmenting path. Find an (undirected) path from s to 7 such that:

« Can increase flow on forward edges (not full).

2nd qugmenting path
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Ford-Fulkerson algorithm demo

Augmenting path. Find an (undirected) path from s to 7 such that:

« Can increase flow on forward edges (not full). | | | -
<« impact. increases value of flow, while maintaining

« Can decrease flow on backward edge (not empty). capacity and flow conservation constraints

3rd augmenting path

. backward edge
0/9 ) (not empty)
\ A Q‘S\
10/] 0
S
5 5 \ \
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Ford-Fulkerson algorithm demo

Augmenting path. Find an (undirected) path from s to 7 such that:
« Can increase flow on forward edges (not full).

« Can decrease flow on backward edge (not empty).

4th augmenting path

3
\ . -
X
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5 76

backward edge
(not empty)

t ) 25 +3 =28
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Ford-Fulkerson algorithm demo

Termination. All paths from s to r are blocked by either
« a full forward edge, or

« an empty backward edge.

no more augmenting paths

8/9
Q
N 0/ 4 2, ; 0/ 15 ¢ g
A S Z value of flow = 28
5 /5 8 /8 10 / 10 t) 28
Q
%> %
g 0/4 3/6 0/ 15 @\
/ full forward edge

: 13 /16

capacity of cut = 28 empty backward edge



Maximum flow: poll 2

Which is an augmenting path with respect to the given flow?

A. A-F—->G—-D—>H
B. A—-F—->-B->-G—-C—-D—>H
C. Both A and B.

D. Neither A nor B.

flow  capacity

@ 20 / 20 B 8/ 8 C 4 /10 D
sSource
S 4 %
1/6 /’e 8/ 8 /\/\/ 4 /9 o\ 479

@ 1/1 @ 14 / 16 @ 22 / 25 H

target

23



Maximum flow: poll 3

What is the bottleneck capacity of the augmenting path A - F—->B—>G—>C—>D —>H ?

A. 4
B. 5
C. ©
D. 7/
flow  capacity
@ 20 / 20 B \;/g C 4 | 10 = D
1/6 °“/J<) 8/ 8 7/{{ 479 \° 479

Ny N\ '

target
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Ford-Fulkerson algorithm

Ford-Fulkerson algorithm

Initialize flow f = O.

While there exists an augmenting path:
— find an augmenting path P
— compute bottleneck capacity of P

— update flow f on P by bottleneck capacity

Fundamental questions.

Q1. How to find an augmenting path?
Q2. How many augmenting paths?

Q3. Guaranteed to compute a maxflow?

Q4. How to compute a mincut?

25



6.4 MAXIMUM FLOW

Al gor ithms » maxflow—-mincut theorem

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu


https://algs4.cs.princeton.edu

Relationship between flows and cuts

Def. Given a flow fand a cut (A, B), the net flow across the cut is the sum of flows

on edges from A to B, minus the sum of flows on edges from B to A.

net flow across cut

®
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Relationship between flows and cuts

Def. Given a flow fand a cut (A, B), the net flow across the cut is the sum of flows

on edges from A to B, minus the sum of flows on edges from B to A.

net flow across cut = 10+ 5 + 10 = 25

5/9
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Relationship between flows and cuts

Def. Given a flow fand a cut (A, B), the net flow across the cut is the sum of flows

on edges from A to B, minus the sum of flows on edges from B to A.

net flow across cut = (10 + 10 + 10) - (0 +5 + 0) = 25

value of flow = 25

29



Maximum flow: poll 4 i

Given the flow f below, what is the net flow across the cut { A, E, F, G }?
A. 11 = (20+25-8-11-9-06)
B. 26 =(20+22-8—- 4—4-0)
C. 42 = (20+22)

D. 45 = (20 +25)

flow  capacity

20/20%@/\8/8_’@_4/17@
Nk N

»G— 14/16—>G— 22/25—>
™

target

source
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Relationship between flows and cuts

Flow-value lemma. Let f be any flow and let (A, B) be any cut.

Then, the net flow across cut (A, B) = value of flow /.

Intuition. Conservation of flow.

Corollary. Outflow from s = inflow to r = value of flow.

31



Relationship between flows and cuts

Weak duality. Let f be any flow and let (A, B) be any cut.
Then, the value of flow f < the capacity of cut (A, B).

Pf. Value of flow /' = net flow across cut (A, B) < capacity of cut (A, B).

T T

flow—value lemma flow on each edge from A to B bounded by capacity

Equivalent. Value of maxflow < capacity of mincut.

2 ¢ ]_O
\/Q
5/5 7/ 8 9/ 10 t h 8 9
% 5 o A
s 6 \9\
12 / 16 F ]_6 »

value of flow f=27 capacity of cut (A, B) = 34
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Maxflow-mincut theorem

Maxflow-mincut theorem. Value of maxflow = capacity of mincut.

Augmenting path theorem. A flow fis a maxflow if and only if no augmenting paths.

Pf. For any flow f, the following three conditions are equivalent:
i. Flow fis a maxflow.
ii. There is no augmenting path with respect to flow /.

iii. There exists a cut whose capacity equals the value of flow /.

33



Maxflow-mincut theorem

Maxflow-mincut theorem. Value of maxflow = capacity of mincut.

Augmenting path theorem. A flow fis a maxflow if and only if no augmenting paths.

Pf. For any flow f, the following three conditions are equivalent:
i. Flow fis a maxflow.
ii. There is no augmenting path with respect to flow /.

iii. There exists a cut whose capacity equals the value of flow /.

34



Maxflow-mincut theorem

Maxflow-mincut theorem. Value of maxflow = capacity of mincut.

Augmenting path theorem. A flow fis a maxflow if and only if no augmenting paths.

Pf. For any flow f, the following three conditions are equivalent:
i. Flow fis a maxflow.
ii. There is no augmenting path with respect to flow /.

iii. There exists a cut whose capacity equals the value of flow /.

« Suppose that there is an augmenting path with respect to flow /.
« Can improve f by updating flow along this path.

* Thus, fis not a maxflow. =

35



Maxflow-mincut theorem

Maxflow-mincut theorem. Value of maxflow = capacity of mincut.

Augmenting path theorem. A flow fis a maxflow if and only if no augmenting paths.

Pf. For any flow f, the following three conditions are equivalent:
i. Flow fis a maxflow.
ii. There is no augmenting path with respect to flow /.

iii. There exists a cut whose capacity equals the value of flow /.

* Let (A, B) be a cut whose capacity equals the value of flow /.
* Then, the value of any flow f’ < capacity of (A, B) = value of /.

* Thus, fis a maxflow. = T T

weak duality by assumption

36



Maxflow-mincut theorem

[ TR ] backward edge from B to A is empty
* Let f be a flow with no augmenting paths. (flow on edge =0)
A

G
 Let A = vertices reachable from s along a path of /
B

forward edges (not full) or backward edges (not empty).

» By construction of cut (4, B), sisinA and tis in B. -
« Capacity of cut (A, B) = net flow across cut (A, B) ‘/
/= value of flow f. = V

by construction of cut: \ S

all forward edges are full,
all backward edges are empty

forward edge from A to B is full
(flow on edge = capacity)

flow—value
lemma

37



Computing a mincut from a maxflow

Q. Given a maxflow f, how to compute a mincut (A, B) ?
* Augmenting path theorem =— no augmenting paths with respect to f.
« Use BFS/DFS to compute A = vertices reachable from s along a path of

forward edges (not full) or backward edges (not empty).

« As just proved, capacity of cut (A, B) = value of flow f = (A, B) is a mincut.

8/9

v

0/ 15 2

A 10 / 10 !
Q
N
0/ 15 \
/ O \
/ o W\ full forward edge
orward edge
(not full) empty backward edge

backward edge
(not empty)
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Maximum flow: poll 5

Given the following maxflow, which vertices define a mincut?
A. {AF}.
B. {A,B,C,F.
C. {ABC,E,F}.

D. None of the above.

flow  capacity

@ 20 / 20 B 8/9 C 8/ 8 D
Source S
4 &
2 /2 4 4 /8 0/9 © 8/8
/ ‘., / Y / o\ /
@ 2 /2 @ 17 / 17 @ 25 / 26 H

AN

target t
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Ford-Fulkerson algorithm analysis (with integer capacities)

Important special case. Edge capacities are integers between 1 and U.

Invariant. The flow is integral throughout Ford-Fulkerson.
Pf. Bottleneck capacity is an integer.

Flow on an edge increases/decreases by bottleneck capacity. =

Proposition. Number of augmentations < value of maxflow < EU.

Pf. Each augmentation increases the value of the flow by at least one. =

Integrality theorem. There exists an integral maxflow.
Pf.
« Proposition = Ford-Fulkerson terminates.
« Augmenting path theorem — terminates with a maxflow.

« Invariant =— maxflow is integral. =

41



Bad case for Ford-Fulkerson

Bad news. Number of augmenting paths can be very large.

\

exponential in input size
(V,E,log U)

initialize with 0 flow

Q Q ,/ 0 < ﬂOW
00 -

capacity

42



How to choose augmenting paths?

Bad news. Some choices lead to exponential-time algorithms.

Good news. Clever choices lead to polynomial-time algorithms. «—— polynomial in input size
(V,E,log U)

augmenting path number of iterations implementation

DFS path <EU stack

random path <EU randomized queue

shortest path

1
(fewest edges) < WEYV queue

fattest path

(max bottleneck capacity) <EIn(E£ V) priority queue

flow network with V vertices, E edges, and integer capacities between 1 and U

43



6.4 MAXIMUM FLOW

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

» applications


https://algs4.cs.princeton.edu

Maxflow and mincut applications

Maxflow/mincut is a widely applicable problem-solving model.
 Data mining.
 Open-pit mining.

[- Bipartite matching. )
« Network reliability.

e Baseball elimination.

* Image segmentation.

« Network connectivity.
. Distributed computing. liver and hepatic vascularization segmentation
« Security of statistical data.

- Egalitarian stable matching.

« Multi-camera scene reconstruction.

« Sensor placement for homeland security.

 Many, many, more.

45



Bipartite matching problem

Problem. Given n people and n tasks, assign the tasks to people so that:
« Every task is assigned to a qualified person.

* Every person is assigned to exactly one task.

To Do List

yl
v
)
v
v
©
o
i
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Bipartite matching problem

Problem. Given a bipartite graph, find a perfect matching (if one exists).

bipartite graph perfect matching

1-D
2-A
3-C
4-E
5-B

D @ @ = &

n tasks h people

o

person E is qualified
to perform tasks 4 and 5 47



Maxflow formulation of bipartite matching

« Create source s, target 7, one vertex ; for each task, and one vertex p for each person.
« Add edge from s to each task i of capacity 1.
« Add edge from each person p to r of capacity 1.

« Add edge from task i to qualified person p of capacity 1.

flow network

1

()
OBNORBORRONNO
OENOBOBIONNCO

n tasks h people

o

interpretation: flow on edge 4—E = 1 means assign task 4 to person E

48



Maxflow formulation of bipartite matching

1-1 correspondence between perfect matchings in bipartite graph

and integral flows of value » in flow network.

Integrality theorem + 1-1 correspondence — maxflow formulation is correct.

flow network

0/1

n tasks

49



Maximum flow: poll 6

In the worst case, how many iterations (augmenting paths) does the Ford-Fulkerson

algorithm perform to find a perfect matching in a bipartite graph with »n vertices per side?

A. O)
B. O1?)
C. O’

D. On%

50



Maximum flow algorithms: theory highlights

1955

1970

1974

1983

1988

1998

2013

2014

2016

2022

20xx

augmenting paths O(E* U) Ford—Fulkerson
shortest augmenting paths O(E*V), O(EV? Edmonds—Karp, Dinitz
blocking flows oV?) Karzanov
dynamic trees O(E Vlog V) Sleator—Tarjan
push—relabel O(E Vlog (V*/E)) Goldberg—Tarjan
binary blocking flows O(E>* log (V*/ E) log U) Goldberg-Rao
compact networks OE V) Orlin
interior-point methods O(EV Y2 log U) Lee—Sidford
electrical flows OE"T Ul Madry
min ratio cycles O(E'*® log U) CKLPGS
2799

max-flow algorithms with E edges, V vertices, and integer capacities between 1 and U
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Maximum flow algorithms: practice

Warning. Worst-case running time is generally not useful for predicting (or comparing)

the performance of maxflow algorithms in practice.

Often best in practice. Push-relabel method with gap relabeling.

Computer vision. Specialized algorithms for problems with special structure.

On Implementing Push-Relabel Method
for the Maximum Flow Problem

EUROPEAN
JOURNAL
OF OPERATIONAL
Boris V. Cherkassky! and Andrew V. Goldberg? RESEARCH
g T tor E 4 Math European Journal of Operational Research 97 (1997) 509-542
entral Institute for Economics an athematics,
Krasikova St. 32, 117418, Moscow, Russia
cher@cemi.msk.su
2 Computer Science Department, Stanford University Theory and Methodology
Stanford, CA 94305, USA . . . . . .
goldberg@cs. stanford. edu Computational investigations of maximum flow algorithms

Ravindra K. Ahuja *, Murali Kodialam °, Ajay K. Mishra ©, James B. Orlin *"

Abstract. We study efficient implementations of the push-relabel method * Department of Industrial anc£ Muanagement Enginecring, Indian Institute of Technology. Kanpur, 208 016, India
for the maximum flow problem. The resulting codes are faster than the AT &T Bell Laboratories. Holmdel, NJ 07733, USA

previous codes, and much faster on some problem families. The speedup
s due to the combination of heuristics used in our implementations. We
also exhibit a family of problems for which the running time of all known
methods seem to have a roughly quadratic growth rate.

¢ KATZ Graduate School of Business, University of Pittshurgh, Pittsburgh, PA 15260, USA
¢ Sloan School of Management, Massachusetts Institute of Technology. Cambridge. MA 02139, USA

Received 30 August 1995; accepted 27 June 1996
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Summary

Mincut problem. Find a cut of minimum capacity.
Maxflow problem. Find a flow of maximum value.

Duality. Value of maxflow = capacity of mincut.

Proven successful approaches.

« Ford-Fulkerson (various augmenting-path strategies).

* Preflow-push (various versions).
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