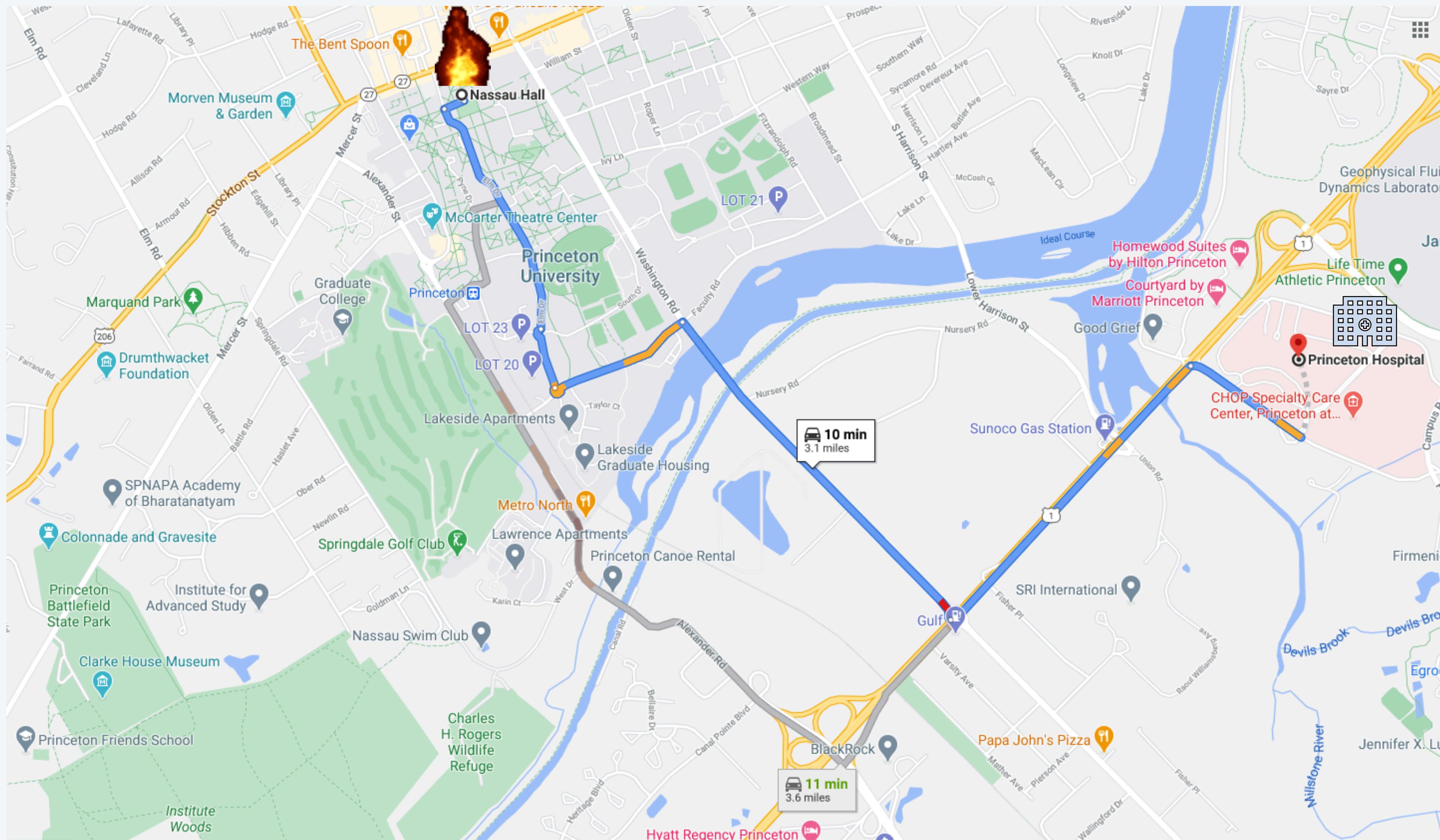


4.4 SHORTEST PATHS

- ▶ *properties*
- ▶ *APIs*
- ▶ *Bellman–Ford algorithm*
- ▶ *Dijkstra's algorithm*

<https://algs4.cs.princeton.edu>

A motivating example: route planning in a road network



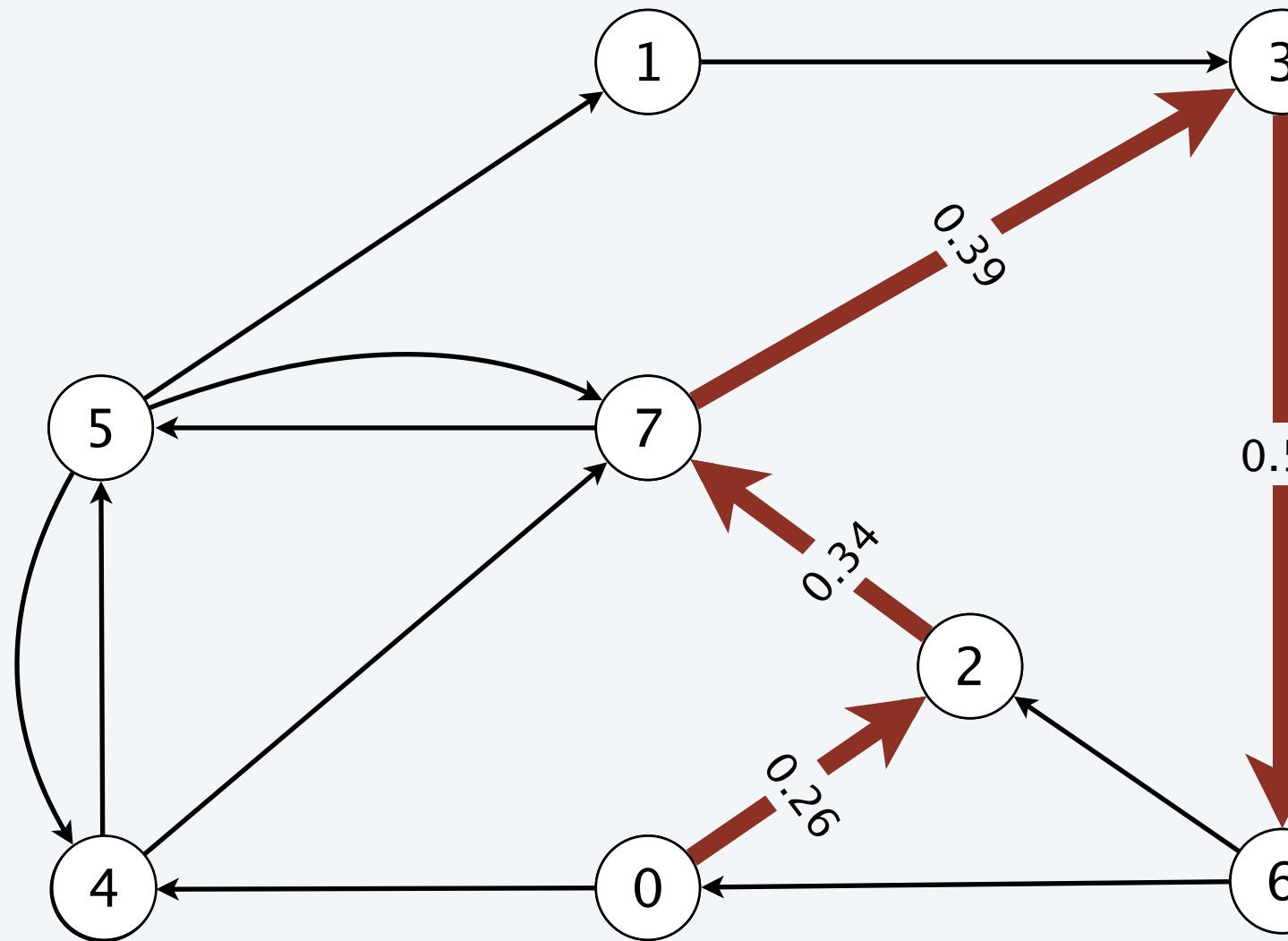
Shortest path in an edge-weighted digraph

Given an edge-weighted digraph, find a **shortest path** from one vertex s to another vertex t .

length of path = sum of edge weights

edge-weighted digraph

4->5	0.35
5->4	0.35
4->7	0.37
5->7	0.28
7->5	0.28
5->1	0.32
0->4	0.38
0->2	0.26
7->3	0.39
1->3	0.29
2->7	0.34
6->2	0.40
3->6	0.52
6->0	0.58
6->4	0.93



shortest path from 0 to 6

$0 \rightarrow 2 \rightarrow 7 \rightarrow 3 \rightarrow 6$

length of path = 1.51

$(0.26 + 0.34 + 0.39 + 0.52)$

Shortest path variants

Which vertices?

- Source-destination: from one vertex s to another vertex t .
- Single source: from one vertex s to every other vertex.
- Single destination: from every vertex to one vertex t .
- All pairs: from every vertex to every other vertex.

Restrictions on edge weights?

- Non-negative weights. \leftarrow *we assume this in today's lecture
(except as noted)*
- Euclidean weights.
- Arbitrary weights.

Directed cycles?

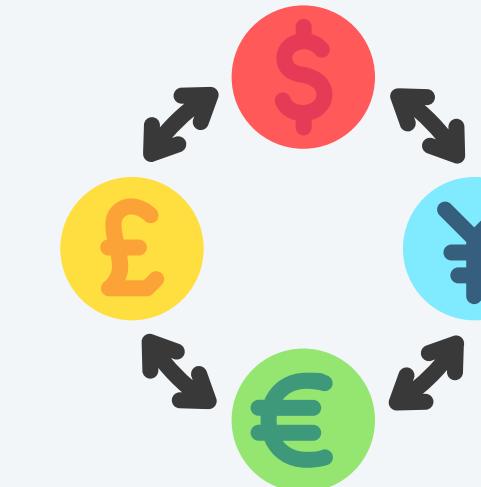
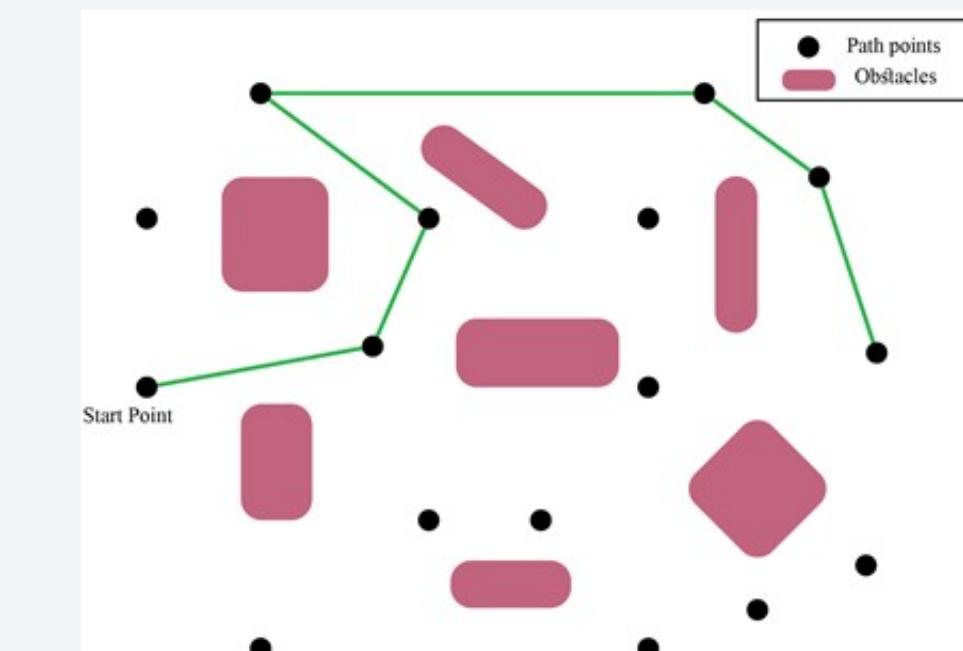
- Prohibit. \leftarrow *can derive faster algorithms in DAGs
(see next lecture)*
- Allow. \leftarrow *ensures that shortest path from s to v exists
(and that $E \geq V - 1$)*

Simplifying assumption. Each vertex is reachable from s .

Shortest path applications

- Seam carving. *see Assignment 6*

- Texture mapping.
- Typesetting in \TeX .
- Currency exchange.
- Urban traffic planning.
- Robot motion planning.
- Social network analysis.
- Telecommunication routing.
- Project scheduling (PERT/CPM).
- Optimal pipelining of VLSI chip.
- Packet routing (OSPF, BGP, RIP, IS-IS).
- Route planning (Google maps, car navigation, ...).



Reference: Network Flows: Theory, Algorithms, and Applications, R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Prentice Hall, 1993.

Which shortest path variant for route planning by a car navigation system?

Hint: drivers make wrong turns occasionally.

- A. Source-destination: from one vertex s to another vertex t .
- B. Single source: from one vertex s to every vertex.
- C. Single destination: from every vertex to one vertex t .
- D. All pairs: from every vertex to every other vertex.

4.4 SHORTEST PATHS

- ▶ *properties*
- ▶ *APIs*
- ▶ *Bellman–Ford algorithm*
- ▶ *Dijkstra’s algorithm*

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

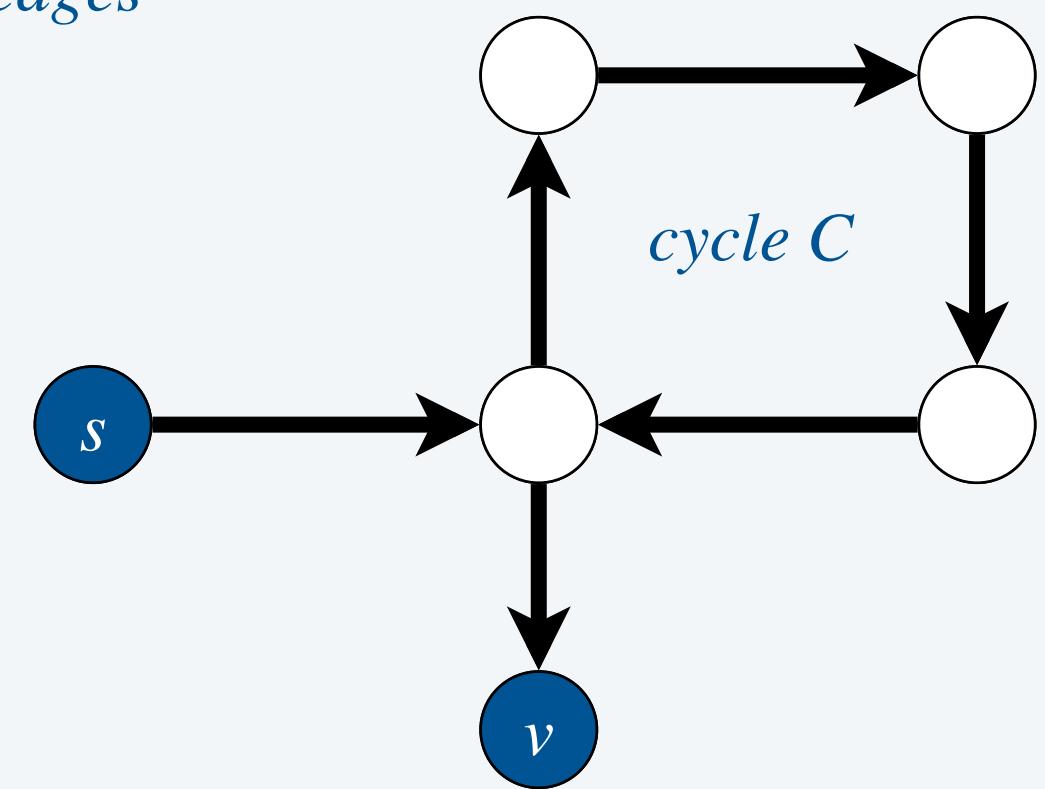
<https://algs4.cs.princeton.edu>

Shortest path properties

Simple paths. There exists a shortest $s \rightsquigarrow v$ path that has no repeated vertices. $\Rightarrow \leq V - 1$ edges

Pf. [by contradiction]

- Let P^* be a shortest $s \rightsquigarrow v$ path with the fewest edges, and assume it has a repeated vertex.
- Remove the cycle C from P^* , yielding a shortest path with fewer edges.

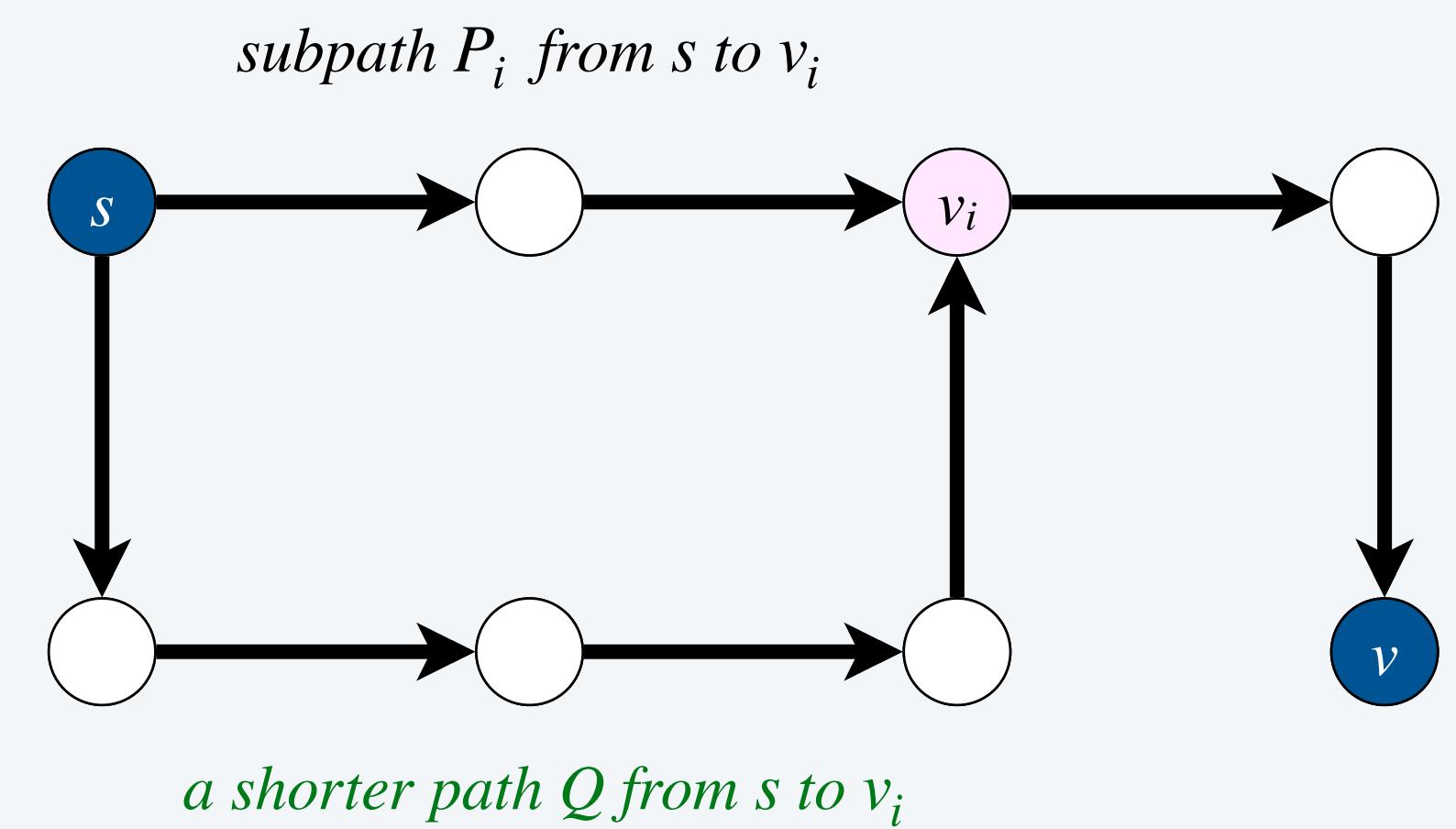


Optimal substructure. Let P^* be a shortest $s \rightsquigarrow v$ path.

Then, any subpath P_i of P^* from s to v_i is a shortest $s \rightsquigarrow v_i$ path.

Pf. [by contradiction]

- Suppose subpath P_i were not a shortest $s \rightsquigarrow v_i$ path.
- Let Q be a shortest $s \rightsquigarrow v_i$ path.
- Replace subpath P_i with Q in P^* , yielding a shorter $s \rightsquigarrow v$ path.



Data structures for single-source shortest paths

Goal. Find a shortest path from s to every other vertex.

Observation 2. A **shortest-paths tree** solution exists. Why?

Consequence. Can represent shortest paths with two parallel arrays:

- $\text{distTo}[v]$: length of a shortest $s \rightsquigarrow v$ path.
- $\text{edgeTo}[v]$: last edge on a shortest $s \rightsquigarrow v$ path.



shortest-paths tree from 0

v	distTo[]	edgeTo[]
0	0.0	-
1	5.0	0→1
2	14.0	5→2
3	17.0	2→3
4	9.0	0→4
5	13.0	4→5
6	25.0	2→6
7	8.0	0→7

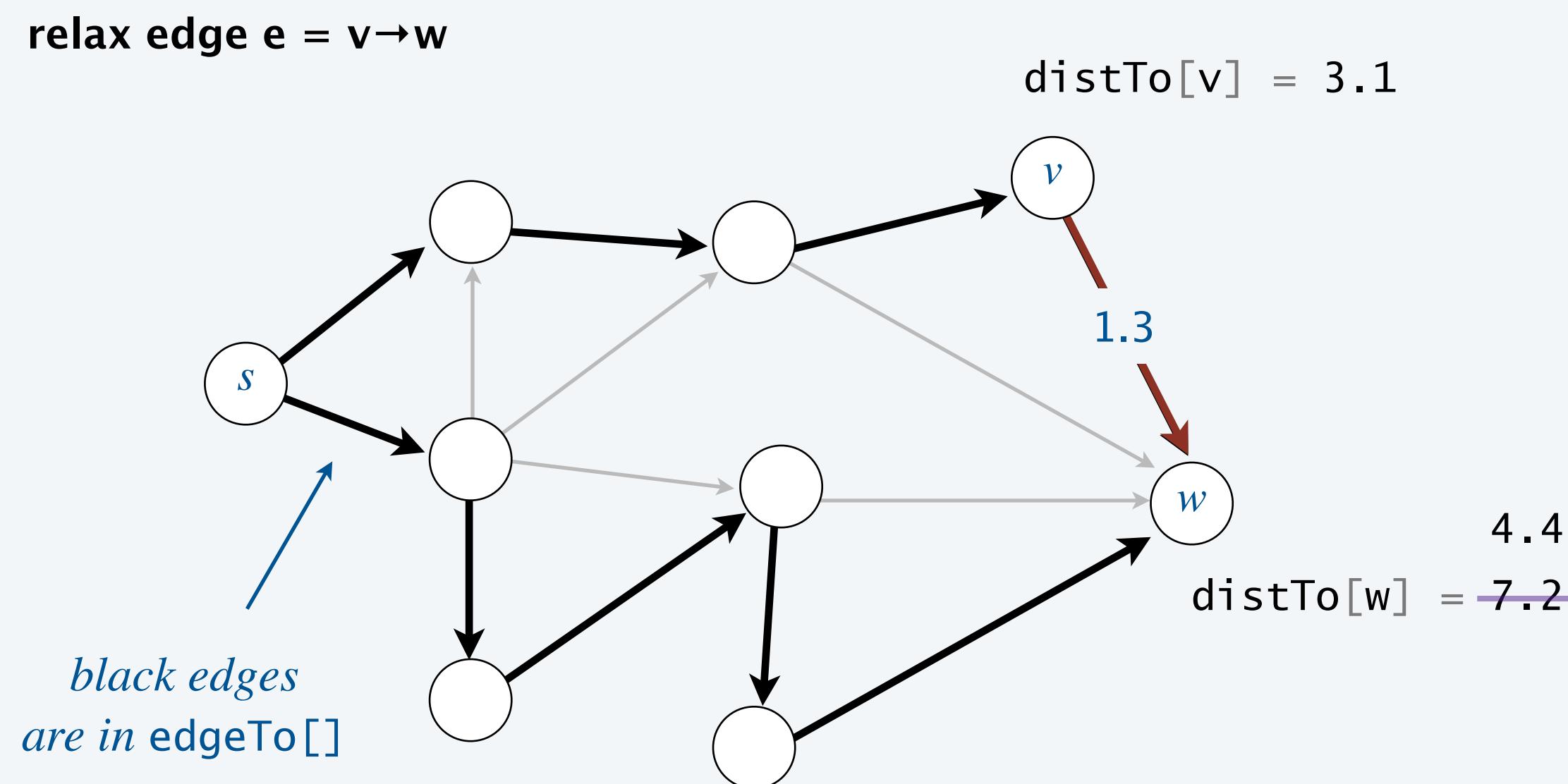
parent-link representation

Edge relaxation

Relax edge $e = v \rightarrow w$.

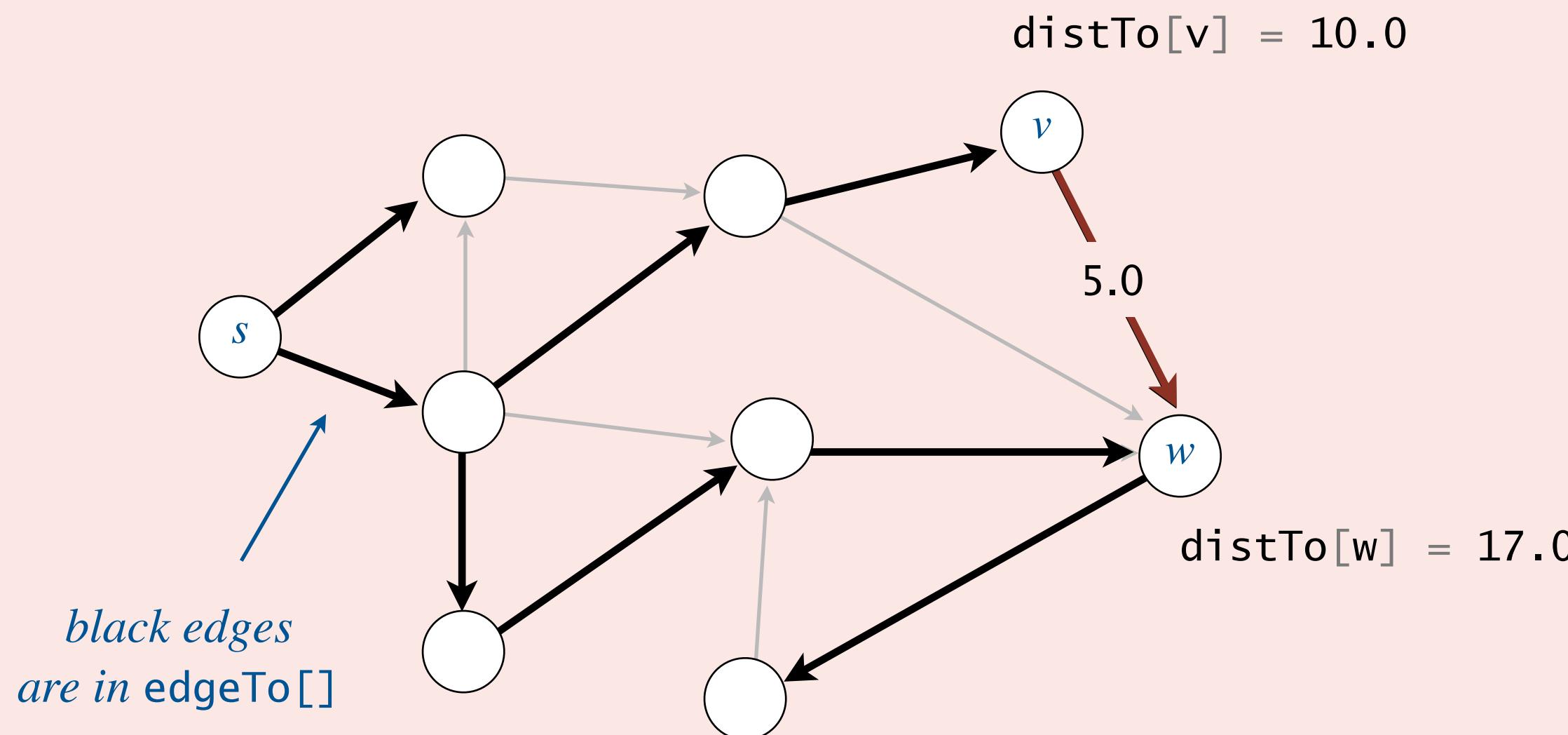
- $\text{distTo}[v]$: length of shortest known $s \rightsquigarrow v$ path.
- $\text{distTo}[w]$: length of shortest known $s \rightsquigarrow w$ path.
- $\text{edgeTo}[w]$: last edge on shortest known $s \rightsquigarrow w$ path.
- If edge e yields a shorter $s \rightsquigarrow w$ path via v , then update:
 - $\text{distTo}[w] = \text{distTo}[v] + e.\text{weight}()$
 - $\text{edgeTo}[w] = e$

context: shortest-path algorithms
maintain champion distances and paths
(updated through edge relaxations)



What are the values of $\text{distTo}[v]$ and $\text{distTo}[w]$ immediately after relaxing edge $e = v \rightarrow w$?

- A. 10.0 and 15.0
- B. 10.0 and 17.0
- C. 12.0 and 15.0
- D. 12.0 and 17.0



Framework for shortest-paths algorithm

Generic algorithm (to compute a SPT from s)

For each vertex v : $\text{distTo}[v] = \infty$.

For each vertex v : $\text{edgeTo}[v] = \text{null}$.

$\text{distTo}[s] = 0$.

Repeat until $\text{distTo}[v]$ values converge:

- Relax any edge.

Key properties. Throughout the generic algorithm:

- $\text{distTo}[v]$ is either ∞ or the length of a (simple) $s \rightsquigarrow v$ path.
- $\text{distTo}[v]$ never increases; it decreases when a shorter $s \rightsquigarrow v$ path is found.
- $\text{edgeTo}[]$ defines a shortest-paths tree rooted at s .

Framework for shortest-paths algorithm

Generic algorithm (to compute a SPT from s)

For each vertex v : $\text{distTo}[v] = \infty$.

For each vertex v : $\text{edgeTo}[v] = \text{null}$.

$\text{distTo}[s] = 0$.

Repeat until $\text{distTo}[v]$ values converge:

- Relax any edge.

Efficient implementations.

- Which edge to relax next?
- How many edge relaxations needed to guarantee convergence?

Ex 1. Bellman-Ford algorithm.

Ex 2. Dijkstra's algorithm.

Ex 3. Topological sort algorithm. \leftarrow *next lecture*

4.4 SHORTEST PATHS

- ▶ *properties*
- ▶ **APIs**
- ▶ *Bellman–Ford algorithm*
- ▶ *Dijkstra’s algorithm*

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

<https://algs4.cs.princeton.edu>

Weighted directed edge API

API.

```
public class DirectedEdge
```

`DirectedEdge(int v, int w, double weight)` *create weighted edge v→w*

int from()

tail vertex ψ

int to()

head vertex v

double weight()

weight of edge $v \rightarrow v'$

•
•
•

Ex. Relax edge $e = v \rightarrow w$.

```
private void relax(DirectedEdge e) {  
    int v = e.from(), w = e.to();  
    if (distTo[w] > distTo[v] + e.weight()) {  
        distTo[w] = distTo[v] + e.weight();  
        edgeTo[w] = e;  
    }  
}
```

4.4
distTo[y] = 3.1 distTo[w] = 7.2

Weighted directed edge: Java implementation

```
public class DirectedEdge {  
    private final int v, w;  
    private final double weight;  
  
    public DirectedEdge(int v, int w, double weight) {  
        this.v = v;  
        this.w = w;  
        this.weight = weight;  
    }  
  
    public int from() {  
        return v;  
    }  
  
    public int to() {  
        return w;  
    }  
  
    public double weight() {  
        return weight;  
    }  
}
```

*from() and to() replace
either() and other()*

Edge-weighted digraph API

API. Same as `EdgeWeightedGraph` except with `DirectedEdge` objects.

```
public class EdgeWeightedDigraph
```

	<code>EdgeWeightedDigraph(int V)</code>	<i>edge-weighted digraph with V vertices (and no edges)</i>
<code>void</code>	<code>addEdge(DirectedEdge e)</code>	<i>add edge e</i>
<code>Iterable<DirectedEdge></code>	<code>adj(int v)</code>	<i>edges incident from v</i>
<code>int</code>	<code>V()</code>	<i>number of vertices</i>
<code>int</code>	<code>E()</code>	<i>number of edges</i>
	<code>:</code>	<code>:</code>

Edge-weighted digraph: adjacency-lists implementation in Java

Implementation. Almost identical to EdgeWeightedGraph.

```
public class EdgeWeightedDigraph {
    private final int V;
    private final Queue<DirectedEdge>[] adj;

    public EdgeWeightedDigraph(int V) {
        this.V = V;
        adj = (Queue<Edge>[]) new Queue[V];
        for (int v = 0; v < V; v++)
            adj[v] = new Queue<>();
    }

    public void addEdge(DirectedEdge e) {
        int v = e.from();
        adj[v].enqueue(e);
    }

    public Iterable<DirectedEdge> adj(int v) {
        return adj[v];
    }
}
```


*add edge $e = v \rightarrow w$ to
only v 's adjacency list*

Single-source shortest paths API

Goal. Find the shortest path from s to every other vertex.

```
public class SP
```

SP(EdgeWeightedDigraph digraph, **int** s) *shortest paths from s in digraph*

double **distTo**(**int** v) *length of shortest path from s to v*

boolean **hasPathTo**(**int** v) *is there a path from s to v ?*

Iterable <DirectedEdge> **pathTo**(**int** v) *shortest path from s to v*

4.4 SHORTEST PATHS

- ▶ *properties*
- ▶ *APIs*
- ▶ ***Bellman–Ford algorithm***
- ▶ *Dijkstra's algorithm*

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

<https://algs4.cs.princeton.edu>

Bellman-Ford algorithm

Bellman-Ford algorithm

For each vertex v : $\text{distTo}[v] = \infty$.

For each vertex v : $\text{edgeTo}[v] = \text{null}$.

$\text{distTo}[s] = 0$.

Repeat $V-1$ times:

– Relax all E edges.

```
for (int i = 1; i < digraph.V(); i++)
    for (int v = 0; v < digraph.V(); v++)
        for (DirectedEdge e : digraph.adj(v))
            relax(e);
```

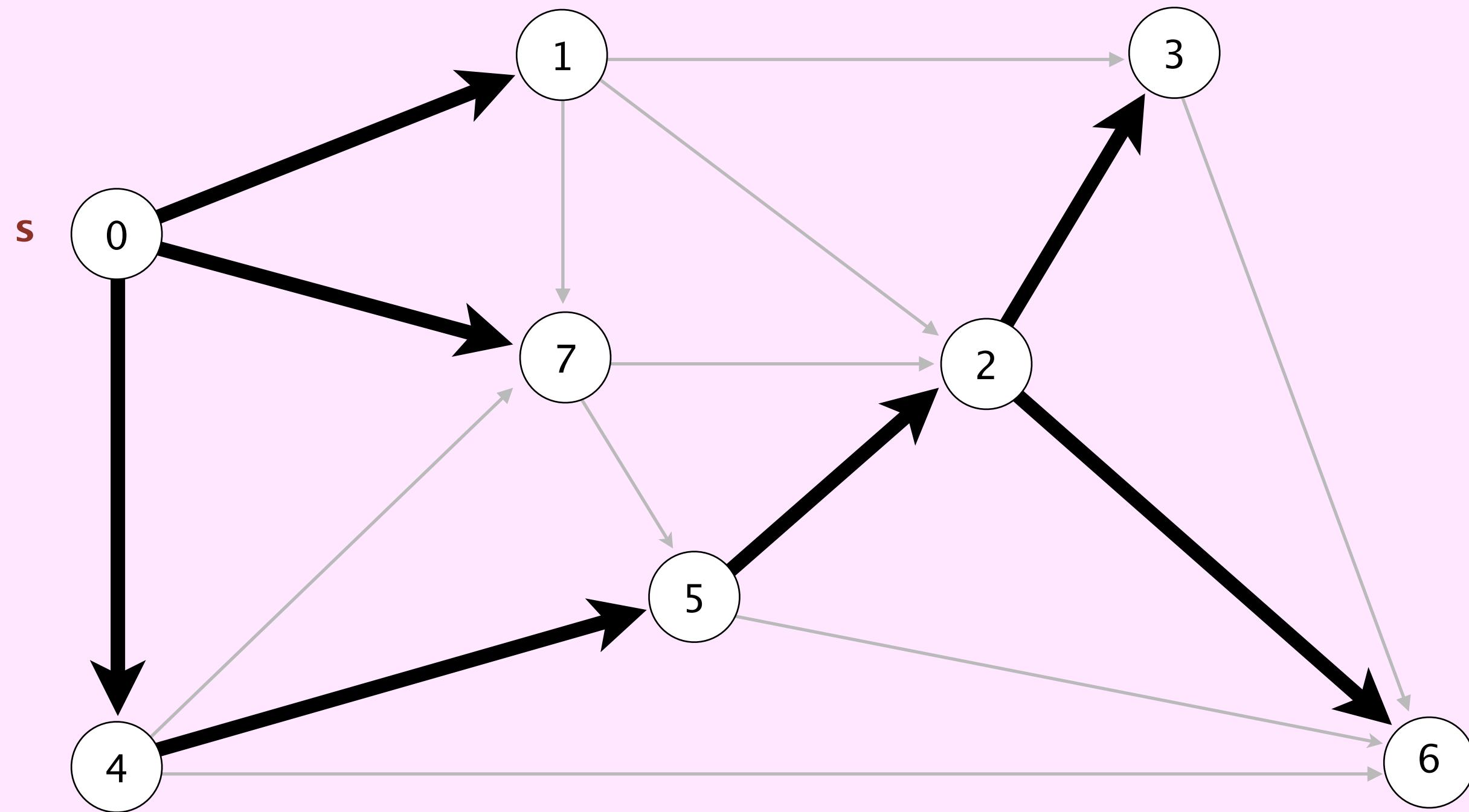
$V-1$ passes

pass i (relax all E edges)

Performance. Algorithm takes $\Theta(EV)$ time and uses $\Theta(V)$ extra space.

Bellman-Ford algorithm demo

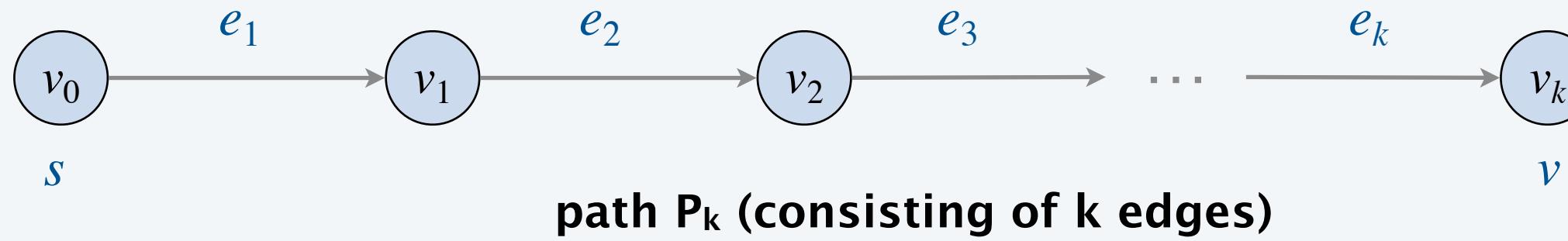
Repeat $V - 1$ times: relax all E edges.



v	distTo[]	edgeTo[]
0	0.0	-
1	5.0	0→1
2	14.0	5→2
3	17.0	2→3
4	9.0	0→4
5	13.0	4→5
6	25.0	2→6
7	8.0	0→7

Bellman-Ford algorithm: proof of correctness

Notation. Let $P^* = v_0 \rightarrow v_1 \rightarrow \dots \rightarrow v_k$ be a shortest path of k edges from $s = v_0$ to $v = v_k$, and let $P_i = v_0 \rightarrow v_1 \rightarrow \dots \rightarrow v_i$ be the subpath consisting of the first i edges in P^* .



Proposition. After pass i of Bellman-Ford, $\text{distTo}[v_i] = \text{length}(P_i)$. \leftarrow after pass i , have already found a shortest $s \rightsquigarrow v_i$ path

Pf. [by induction on number of passes i]

- Base case: initially, $\text{distTo}[v_0] = 0 = \text{length}(P_0)$.
- Inductive hypothesis: after pass i , $\text{distTo}[v_i] = \text{length}(P_i)$.
- Immediately after relaxing edge e_{i+1} in pass $i+1$, we have

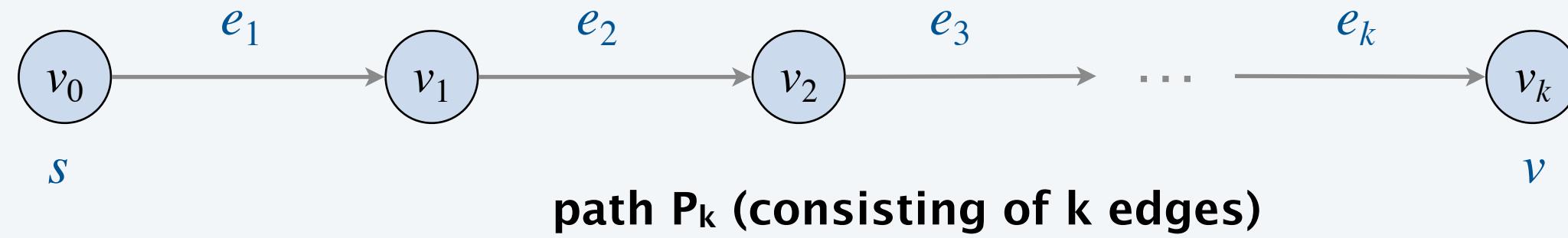
$$\begin{aligned}
 \text{distTo}[v_{i+1}] &\leq \text{distTo}[v_i] + \text{weight}(e_{i+1}) \leftarrow \text{edge relaxation} \\
 &= \text{length}(P_i) + \text{weight}(e_{i+1}) \leftarrow \text{inductive hypothesis} \\
 &= \text{length}(P_{i+1})
 \end{aligned}$$

and remains that way
for the rest of algorithm

- Since $\text{distTo}[v_{i+1}]$ is the length of some $s \rightsquigarrow v_{i+1}$ path, we must have $\text{distTo}[v_{i+1}] = \text{length}(P_{i+1})$ ■

Bellman-Ford algorithm: proof of correctness

Notation. Let $P^* = v_0 \rightarrow v_1 \rightarrow \dots \rightarrow v_k$ be a shortest path of k edges from $s = v_0$ to $v = v_k$, and let $P_i = v_0 \rightarrow v_1 \rightarrow \dots \rightarrow v_i$ be the subpath consisting of the first i edges in P^* .



Proposition. After pass i of Bellman-Ford, $\text{distTo}[v_i] = \text{length}(P_i)$. \leftarrow *after pass i , have already found a shortest $s \rightsquigarrow v_i$ path*

Corollary. For each vertex v , Bellman-Ford computes the length of a shortest $s \rightsquigarrow v$ path.

Pf.

- There exists a shortest $s \rightsquigarrow v$ path P^* that is simple. So, P^* contains $k \leq V - 1$ edges.
- From the Proposition, after k passes, $\text{distTo}[v_k] = \text{length}(P_k)$. ■

$$\begin{array}{ccc} & \uparrow & \uparrow \\ v = v_k & & P^* = P_k \end{array}$$

Bellman-Ford algorithm: practical improvement

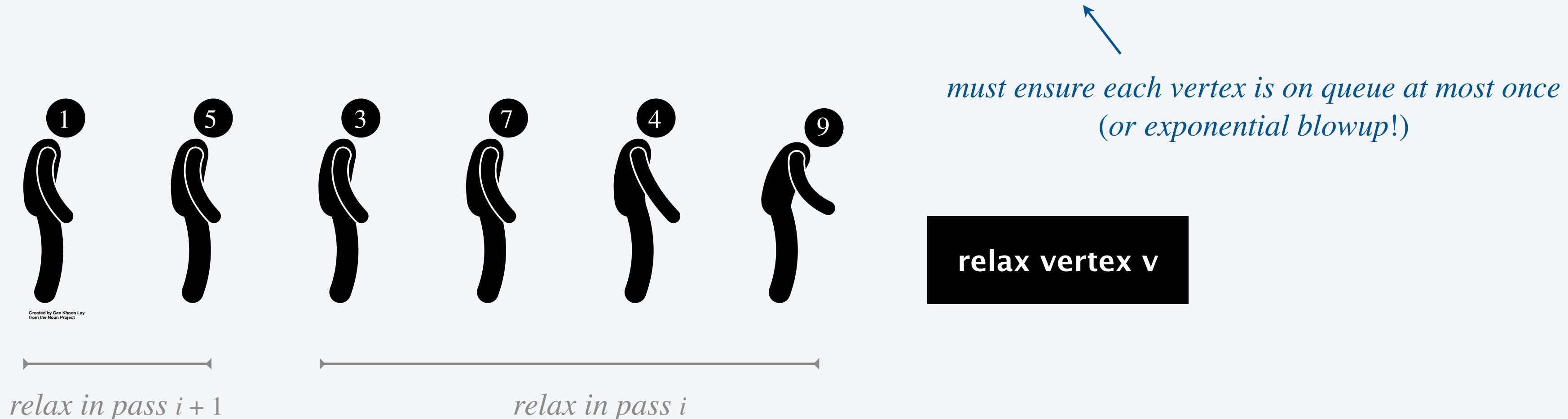
Observation. If $\text{distTo}[v]$ does not change during pass i ,
not necessary to relax any edges incident from v in pass $i + 1$.

```
private void relax(int v) {  
    for (DirectedEdge e : digraph.adj(v))  
        relax(e);  
}
```

vertex relaxation

Queue-based implementation of Bellman-Ford.

- Perform **vertex** relaxations. \leftarrow *relax vertex v = relax all edges incident from v*
- Maintain **queue** of vertices whose $\text{distTo}[]$ values changed since it was last relaxed.



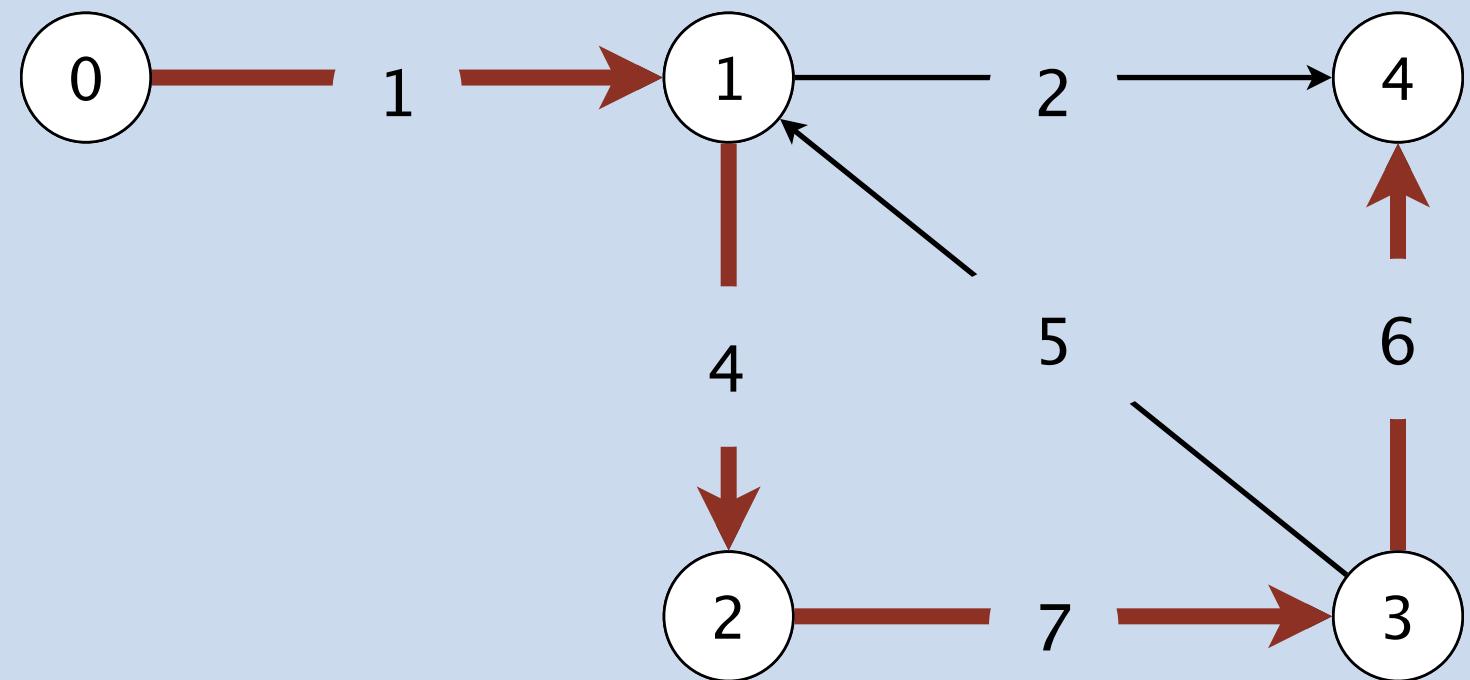
Impact.

- In the worst case, the running time is still $\Theta(EV)$.
- But much faster in practice on typical inputs.

Longest path

Problem. Given a digraph G with positive edge weights and source vertex s , find a **longest simple path** from s to every other vertex.

Goal. Design an algorithm that takes $O(EV)$ time in the worst case.



longest simple path from 0 to 4

$0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4$

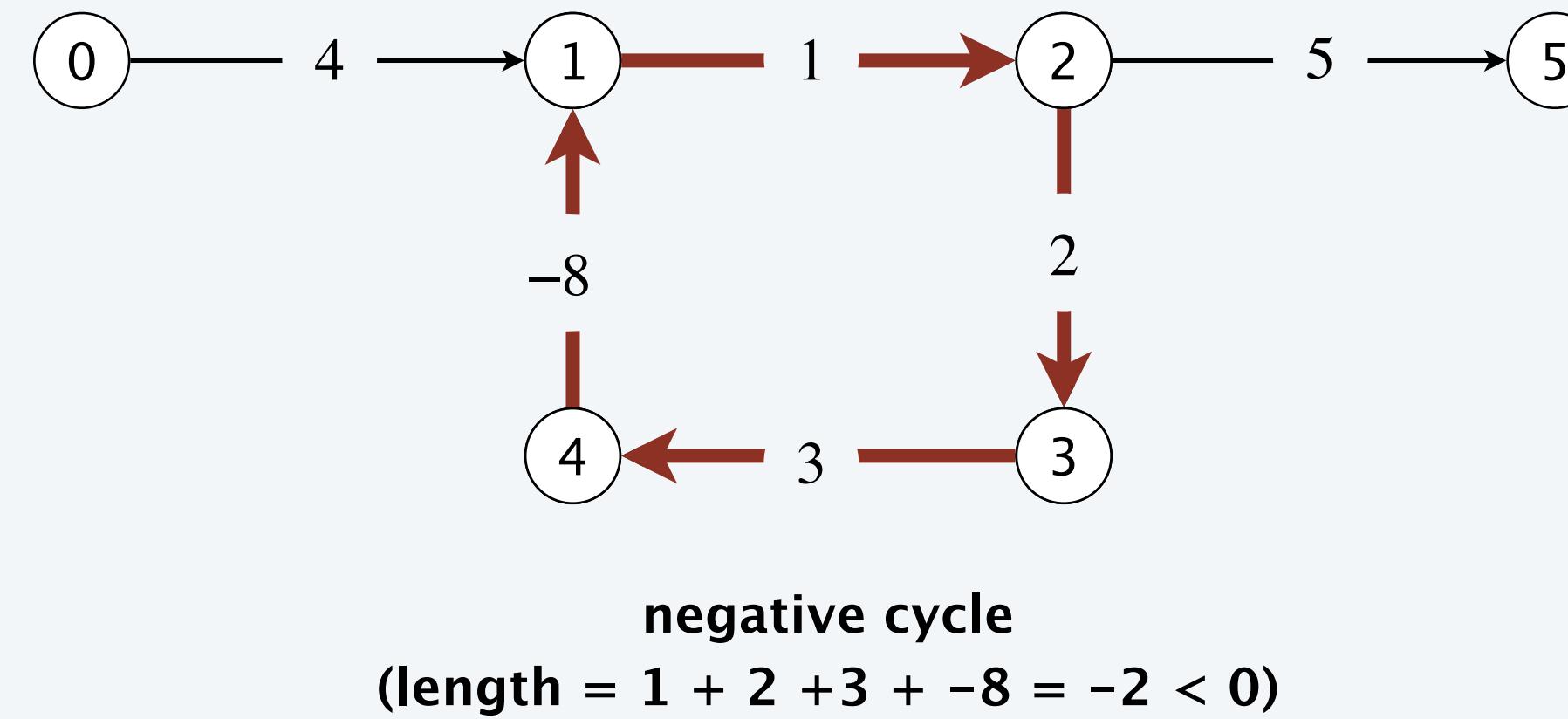
length of path = 18

$(1 + 4 + 7 + 6)$

Bellman-Ford algorithm: negative weights

Remark. The Bellman-Ford algorithm works even if some edge weights are negative, provided there are no **negative cycles**.

Def. A **negative cycle** is a directed cycle whose total length is negative.



Negative cycles and shortest paths. Length of path can be made arbitrarily negative by using negative cycle.

$$0 \rightarrow 1 \rightarrow \underbrace{2 \rightarrow 3 \rightarrow 4 \rightarrow 1}_{\text{negative cycle}} \rightarrow \dots \rightarrow \underbrace{2 \rightarrow 3 \rightarrow 4 \rightarrow 1}_{\text{negative cycle}} \rightarrow 2 \rightarrow 5$$

4.4 SHORTEST PATHS

- ▶ *properties*
- ▶ *APIs*
- ▶ *Bellman–Ford algorithm*
- ▶ *Dijkstra's algorithm*

Edsger Dijkstra: select quote

Dijkstra's algorithm

Dijkstra's algorithm

For each vertex v : $distTo[v] = \infty$.

For each vertex v : $edgeTo[v] = \text{null}$.

$T = \emptyset$.

$distTo[s] = 0$.

Repeat until all vertices are marked:

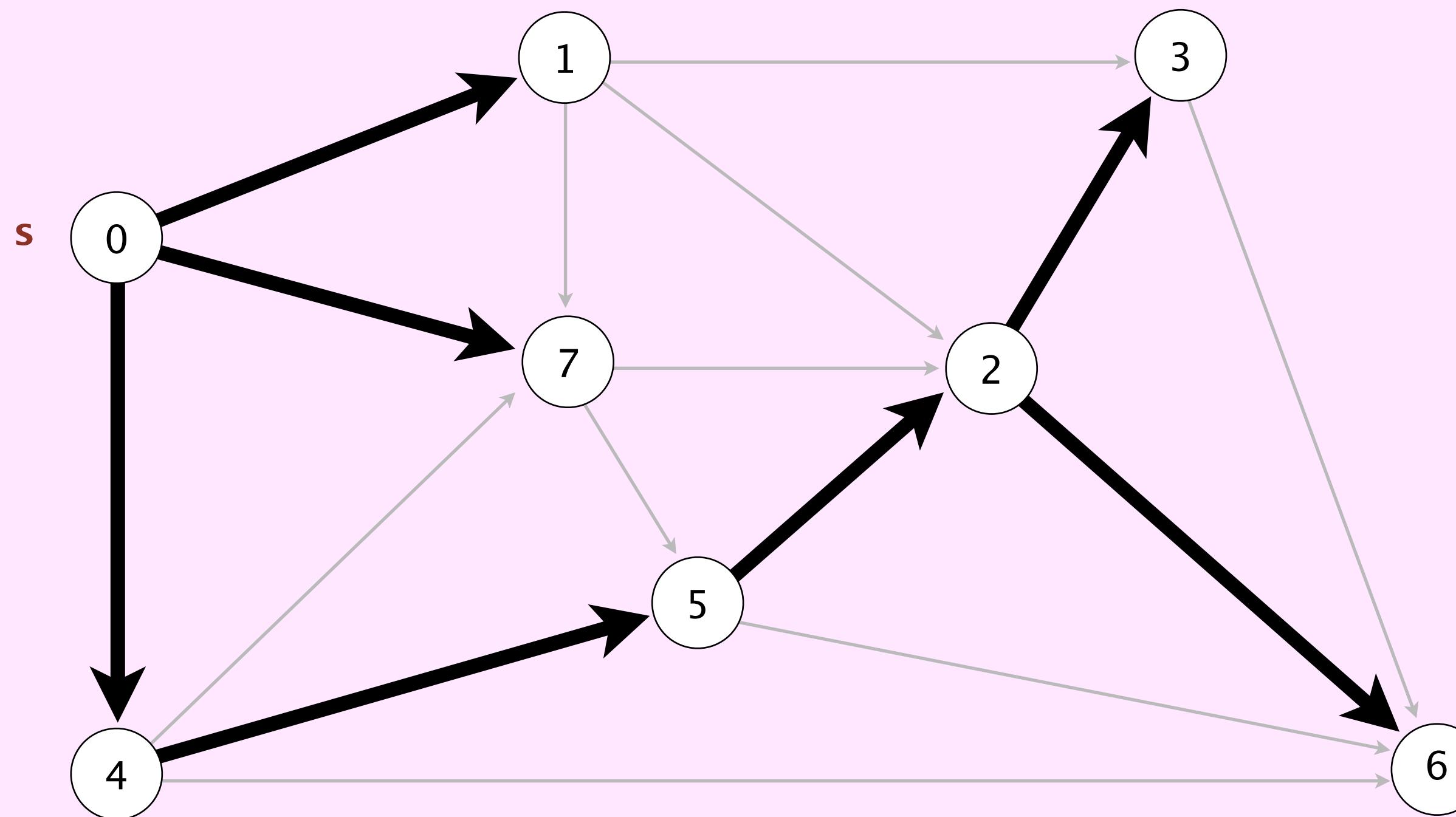
- Select unmarked vertex v with the smallest $distTo[]$ value.
- Mark v .
- Relax each edge incident from v .

Key difference with Bellman-Ford. Each edge gets relaxed exactly once!

Dijkstra's algorithm demo

Repeat until all vertices are marked:

- Select unmarked vertex v with the smallest `distTo[]` value.
- Mark v and relax all edges incident from v .



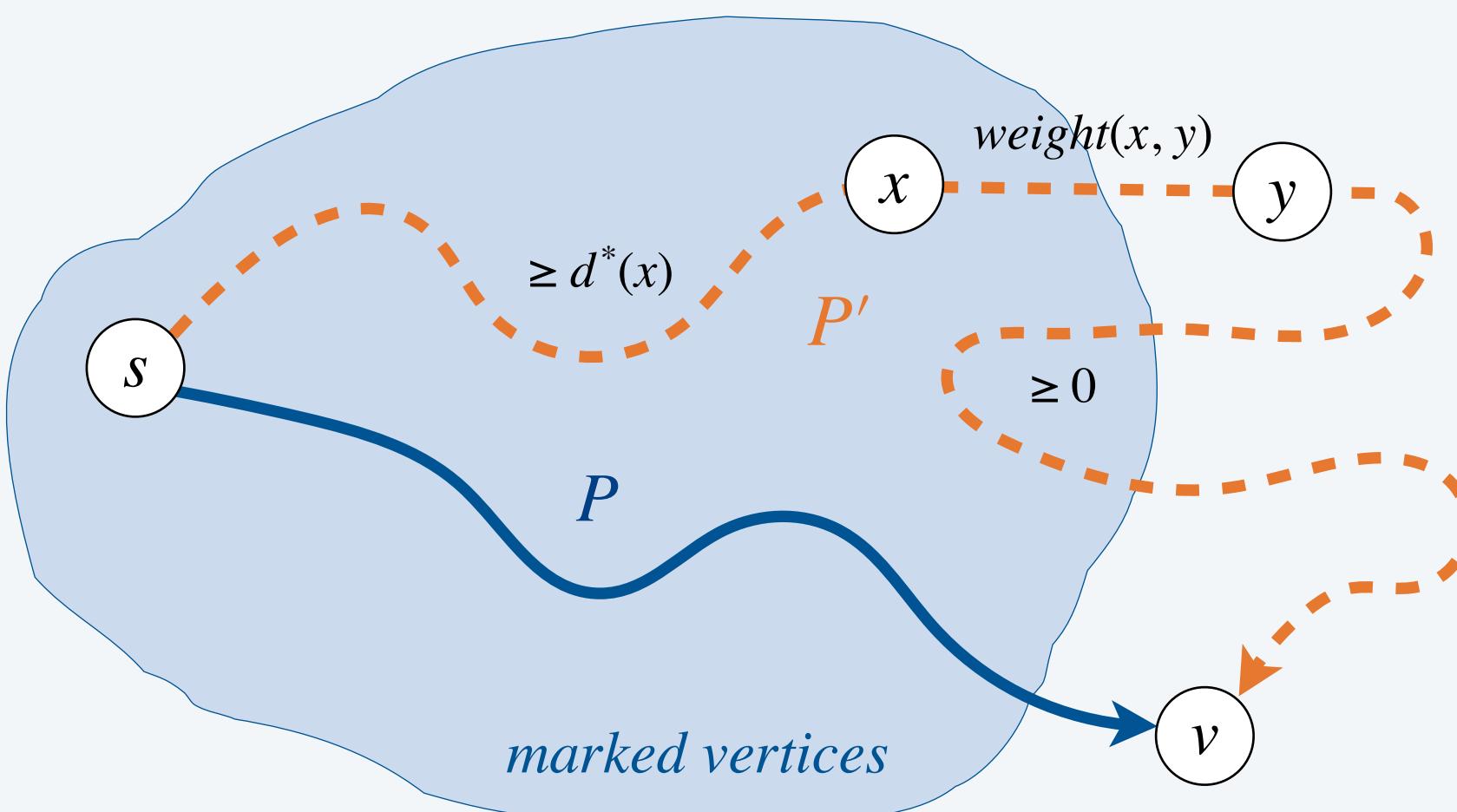
v	distTo[]	edgeTo[]
0	0.0	-
1	5.0	0→1
2	14.0	5→2
3	17.0	2→3
4	9.0	0→4
5	13.0	4→5
6	25.0	2→6
7	8.0	0→7

Dijkstra's algorithm: proof of correctness

Invariant. For each marked vertex v : $\text{distTo}[v] = d^*(v)$.

Pf. [by induction on number of marked vertices]

- Let v be next vertex marked.
- Let P be the $s \rightsquigarrow v$ path of length $\text{distTo}[v]$.
- Consider any other $s \rightsquigarrow v$ path P' .
- Let $x \rightarrow y$ be first edge in P' with x marked and y unmarked.
- P' is already as long as P by the time it reaches y :



notation for length of shortest $s \rightsquigarrow v$ path

$$\text{length}(P) = \text{distTo}[v]$$

by definition

$$\text{Dijkstra chose } v \text{ instead of } y \rightarrow \leq \text{distTo}[y]$$

$$\text{vertex } x \text{ is marked (so it was relaxed)} \rightarrow \leq \text{distTo}[x] + \text{weight}(x, y)$$

$$\text{induction} \rightarrow = d^*(x) + \text{weight}(x, y)$$

P' is a path from s to x , $\rightarrow \leq \text{length}(P')$ •
 followed by edge $x \rightarrow y$,
 followed by non-negative edges

Dijkstra's algorithm: proof of correctness

Invariant. For each marked vertex v : $\text{distTo}[v] = d^*(v)$.

notation for length of shortest $s \rightsquigarrow v$ path

Corollary 1. Dijkstra's algorithm computes shortest path distances.

Corollary 2. Dijkstra's algorithm relaxes vertices in increasing order of distance from s .

*generalizes both
level-order traversal in a tree
and breadth-first search in a graph*

Dijkstra's algorithm: Java implementation

```
public class DijkstraSP {  
    private DirectedEdge[] edgeTo;  
    private double[] distTo;  
    private IndexMinPQ<Double> pq;  
  
    public DijkstraSP(EdgeWeightedDigraph digraph, int s) {  
        edgeTo = new DirectedEdge[digraph.V()];  
        distTo = new double[digraph.V()];  
        pq = new IndexMinPQ<Double>(digraph.V());  
  
        for (int v = 0; v < digraph.V(); v++)  
            distTo[v] = Double.POSITIVE_INFINITY;  
        distTo[s] = 0.0;  
  
        pq.insert(s, 0.0);  
        while (!pq.isEmpty()) {  
            int v = pq.delMin();  
            for (DirectedEdge e : digraph.adj(v))  
                relax(e);  
        }  
    }  
}
```

PQ that supports decreasing the key (stay tuned)

PQ contains the unmarked vertices with finite distTo[] values

relax vertices in increasing order of distance from s

Dijkstra's algorithm: Java implementation

When relaxing an edge $e = v \rightarrow w$, also update PQ:

- Found first $s \rightsquigarrow w$ path: add vertex w to PQ.
- Found better $s \rightsquigarrow w$ path: decrease priority associated with vertex w in PQ.

```
private void relax(DirectedEdge e) {  
    int v = e.from(), w = e.to();  
    if (distTo[w] > distTo[v] + e.weight()) {  
        distTo[w] = distTo[v] + e.weight();  
        edgeTo[w] = e;  
        if (!pq.contains(w)) pq.insert(w, distTo[w]);  
        else pq.decreaseKey(w, distTo[w]);  
    }  
}
```

index *priority*

update PQ

Q. How to efficiently implement **DECREASE-KEY** operation in a priority queue?

Indexed priority queue (Section 2.4)

Associate an index between 0 and $n - 1$ with each key in a priority queue.

- Insert a key associated with a given index.
- Delete a minimum key and return associated index.
- Decrease the key associated with a given index.

for Dijkstra's algorithm:
 $n = V$,
 $index = vertex$,
 $key = distance from s$

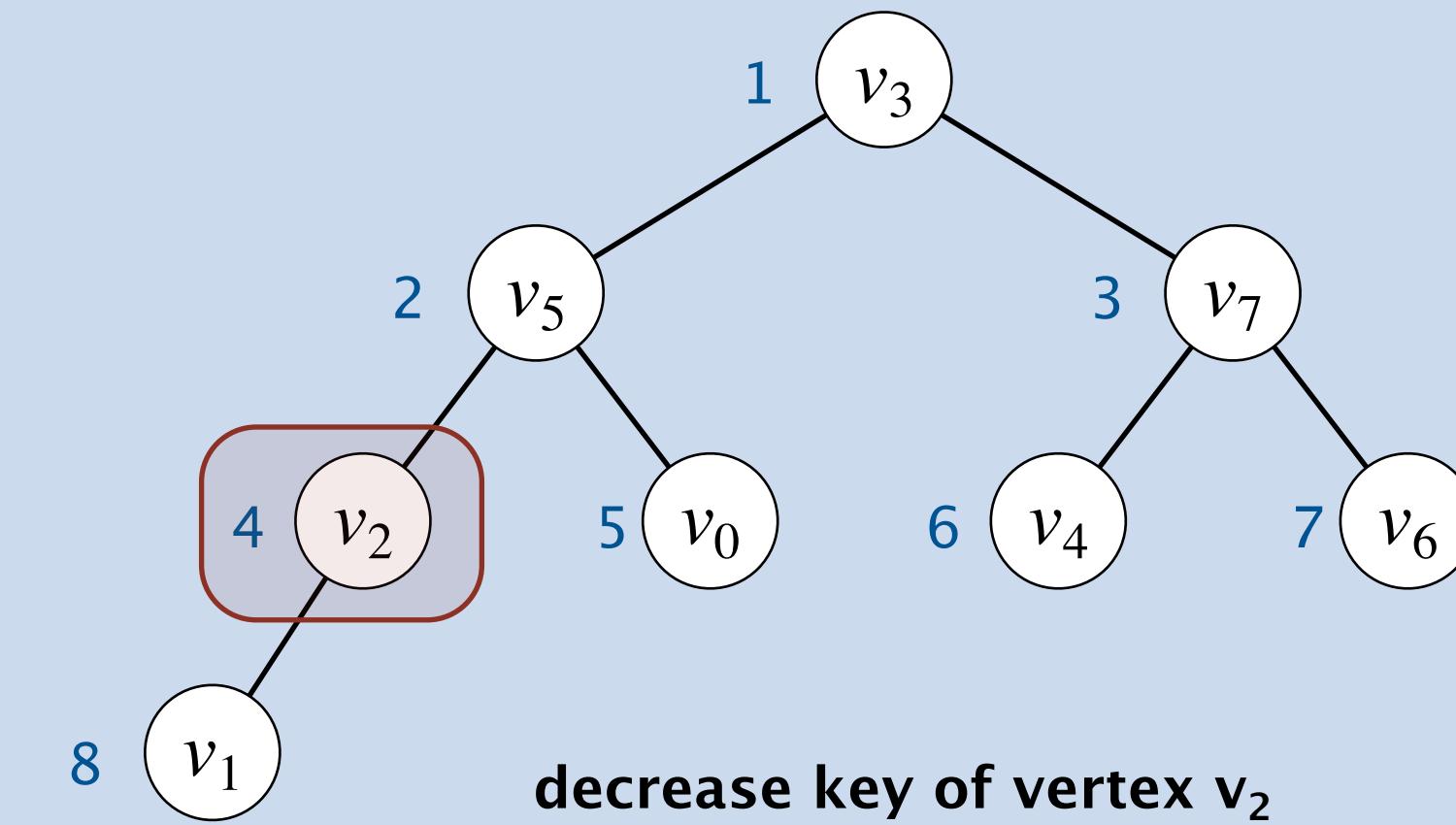
```
public class IndexMinPQ<Key extends Comparable<Key>>
```

IndexMinPQ(int n)	<i>create PQ with indices $0, 1, \dots, n - 1$</i>
void insert(int i, Key key)	<i>associate key with index i</i>
int delMin()	<i>remove min key and return associated index</i>
void decreaseKey(int i, Key key)	<i>decrease the key associated with index i</i>
boolean contains(int i)	<i>does the priority queue contain index i ?</i>
boolean isEmpty()	<i>is the priority queue empty ?</i>
:	:

Decreasing the key in a binary heap

Goal. Implement DECREASE-KEY operation in a min-oriented binary heap.

0	1	2	3	4	5	6	7	8
—	v_3	v_5	v_7	v_2	v_0	v_4	v_6	v_1



Decreasing the key in a binary heap

Goal. Implement DECREASE-KEY operation in a min-oriented binary heap.

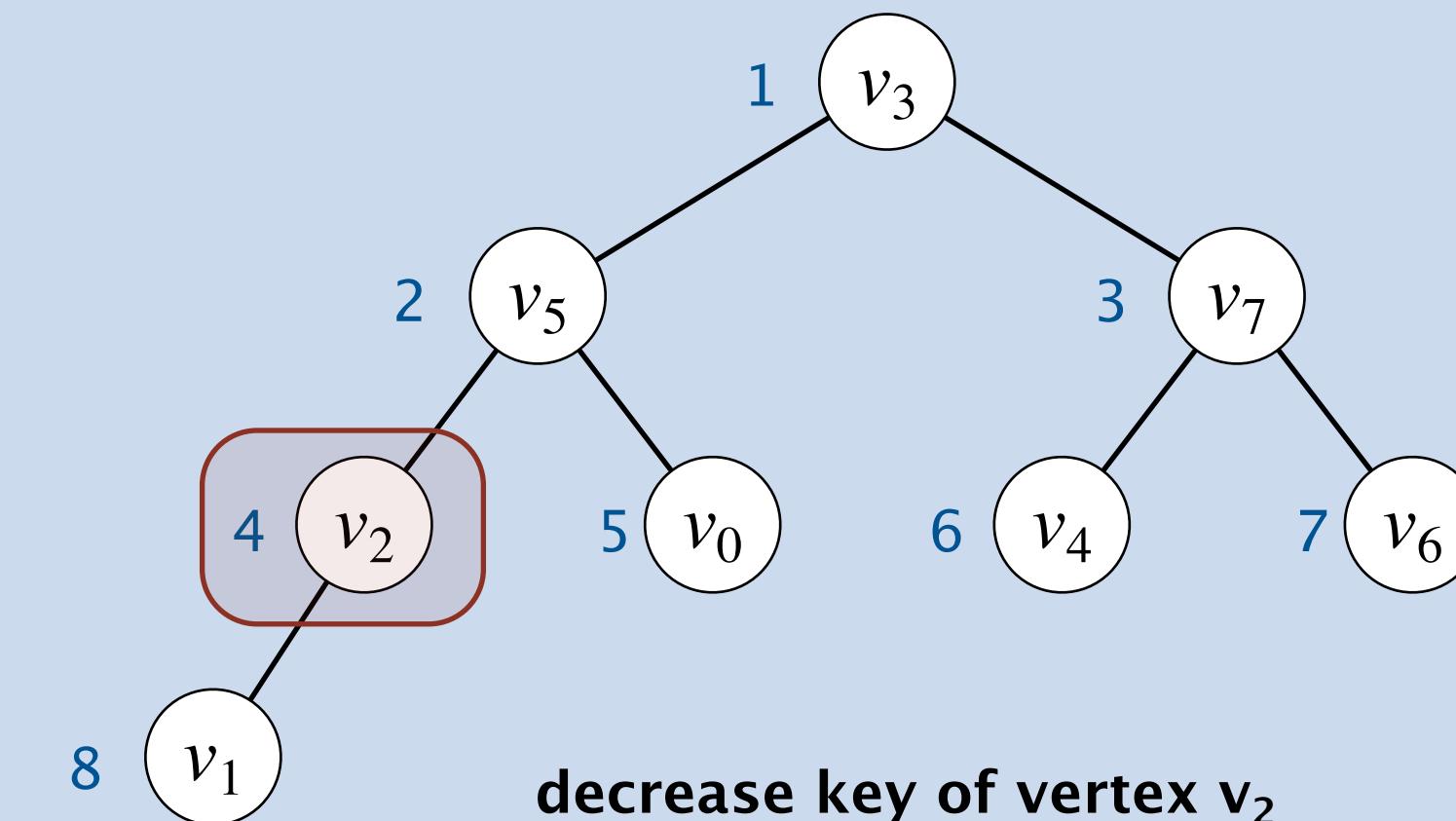
Solution.

- Find vertex in binary heap. How?
- Change priority of vertex and call `swim()` to restore heap invariant.

Extra data structure. Maintain an inverse array `qp[]` that maps from the vertex to the binary heap node index.

	0	1	2	3	4	5	6	7	8
<code>pq[]</code>	—	v_3	v_5	v_7	v_2	v_0	v_4	v_6	v_1
<code>qp[]</code>	5	8	4	1	6	2	4	3	—
<code>keys[]</code>	1.0	2.0	3.0	0.0	6.0	8.0	4.0	2.0	—

*vertex 2 has priority 3.0
and is at heap index 4*



Dijkstra's algorithm: which priority queue?

Number of PQ operations: V INSERT, V DELETE-MIN, $\leq E$ DECREASE-KEY.

PQ implementation	INSERT	DELETE-MIN	DECREASE-KEY	total
unordered array	1	V	1	V^2
binary heap	$\log V$	$\log V$	$\log V$	$E \log V$
d-way heap	$\log_d V$	$d \log_d V$	$\log_d V$	$E \log_{E/V} V$
Fibonacci heap	1^\dagger	$\log V^\dagger$	1^\dagger	$E + V \log V$

\dagger amortized

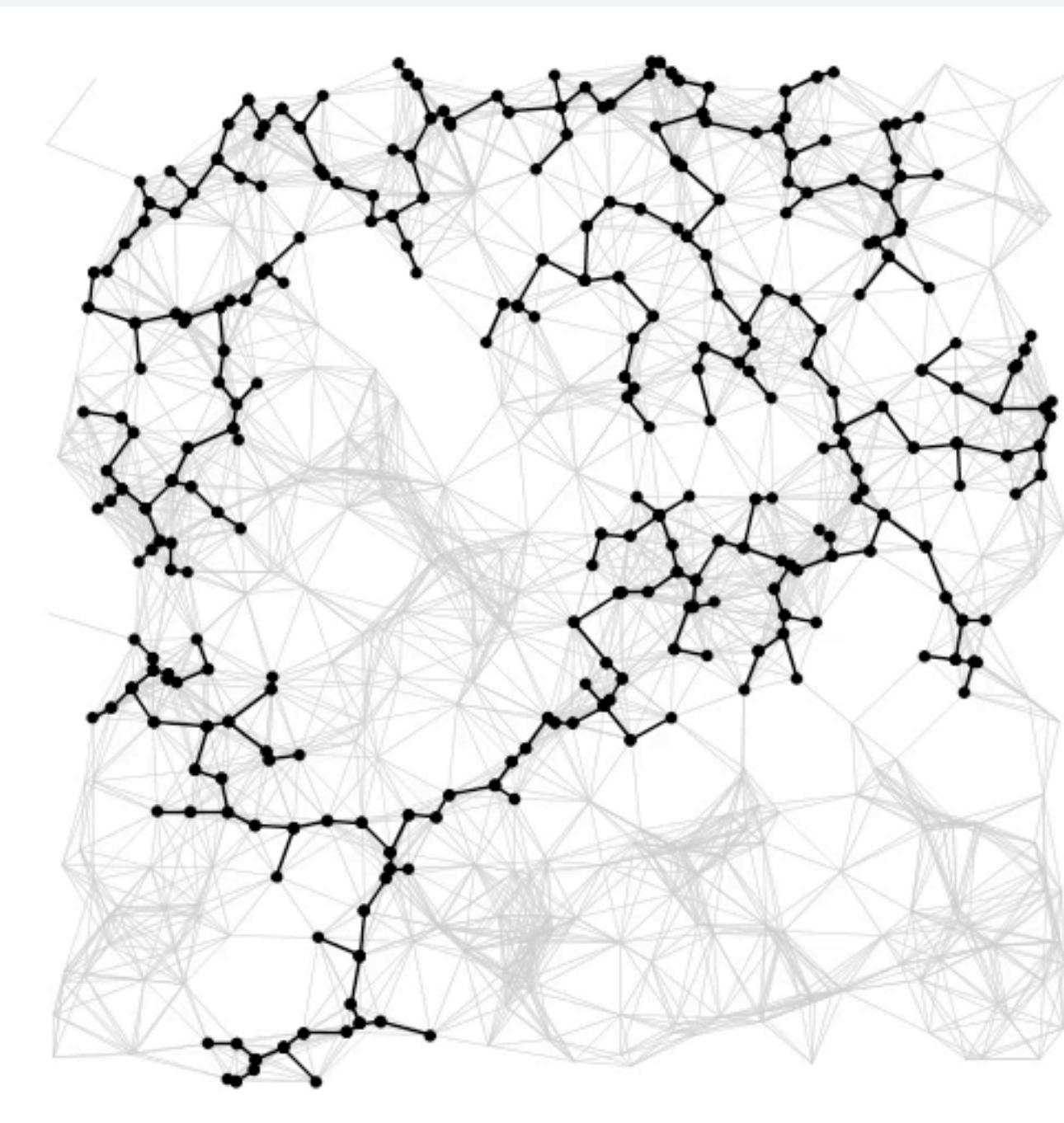
Bottom line.

- Array implementation optimal for complete digraphs.
- Binary heap much faster for sparse digraphs.
- 4-way heap worth the trouble in performance-critical situations.
- Fibonacci heap best in theory, but probably not worth implementing.

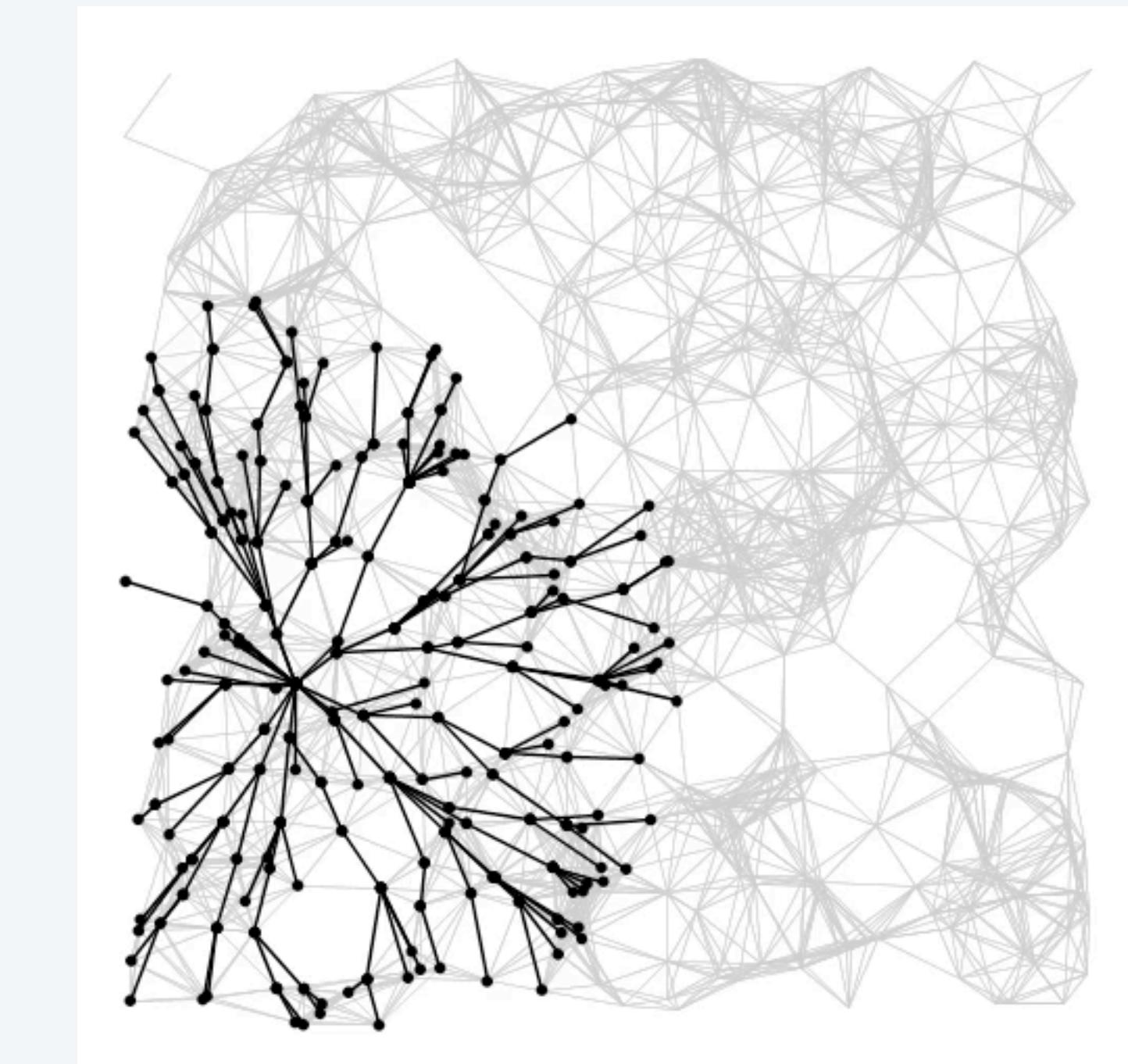
Priority-first search

Observation. Prim and Dijkstra are essentially the same algorithm.

- Prim: Choose next vertex that is closest to **any vertex in the tree** (via an undirected edge).
- Dijkstra: Choose next vertex that is closest to the **source vertex** (via a directed path).



Prim's algorithm



Dijkstra's algorithm

Algorithms for shortest paths

Variations on a theme: vertex relaxations.

- Bellman-Ford: relax all vertices; repeat $V - 1$ times.
- Dijkstra: relax vertices in order of distance from s .
- Topological sort: relax vertices in topological order. \leftarrow

see Section 4.4
and next lecture

algorithm	worst-case running time	negative weights [†]	directed cycles
Bellman-Ford	$\Theta(EV)$	✓	✓
Dijkstra	$\Theta(E \log V)$		✓
topological sort	E	✓	

[†] no negative cycles

Which shortest paths algorithm to use?

Select algorithm based on properties of edge-weighted digraph.

- Non-negative weights: Dijkstra.
- Negative weights (but no “negative cycles”): Bellman-Ford.
- DAG: topological sort.

algorithm	worst-case running time	negative weights [†]	directed cycles
Bellman-Ford	$\Theta(E V)$	✓	✓
Dijkstra	$\Theta(E \log V)$		✓
topological sort	E	✓	

[†] no negative cycles

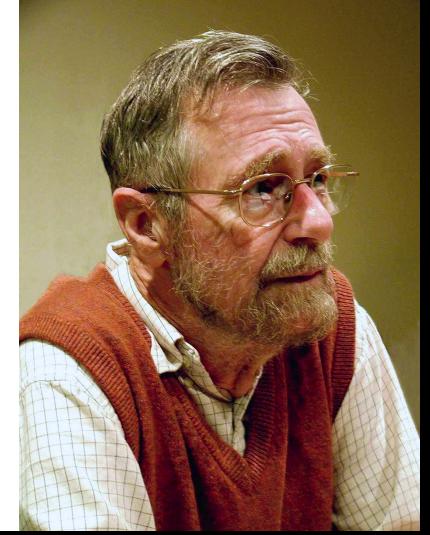
Credits

image	source	license
<i>Map of Princeton, N.J.</i>	Google Maps	
<i>Broadway Tower</i>	Wikimedia	CC BY 2.5
<i>Car GPS</i>	Adobe Stock	education license
<i>Queue for Registration</i>	Noun Project	CC BY 3.0
<i>Dijkstra T-shirt</i>	Zazzle	
<i>Edsger Dijkstra</i>	Wikimedia	CC BY-SA 3.0

A final thought

“ Do only what only you can do. ”

— Edsger W. Dijkstra



A final thought

