A 1 g Or 1 [h 1IMS ROBERT SEDGEWICK | KEVIN WAYNE

4.4 SHORTEST PATHS

> properties

> APls

» Bellman—Ford algorithm
> Dijkstra’s algorithm

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

A motivating example: route planning in a road network

‘&e‘: N ||l'
[§ oy, (/dr‘ %6\\' Riv ﬁg\be ~ mun
& 0”9 %— \-\069‘ \\ \ ’ - / :::
2 L The.B 2 i -
2\ 2 e Bent Spoon o s == X . SN
o 5? \ Ao ' ’ﬁ/ - 3 d§9 e e Knoll | | \'
c‘e‘é} \ Kﬂ" < |2 Q?Q? | \
o % S
Morven Museum 2 ! e
D & Garden :
o :
oo A v
3&’\ Qb / \ A hh ¥ :'.\ 1
§. o .q,x// : \- : Ggpp’hysical Fluid
s 2 _ \‘:\o“ < ' Dynamics Laboratory
: eb‘q‘b d}& 0‘3”4 /4{
o™ % 2
% % O Jamr
. /s, A
p Z—=llelme@
Maryand Parlé;o AN ¥ College / L
7 ¥
~gw o Q)
@ ‘ \I\éé? ?9%;
Aoy Drumthwacket < s Princeton Hospital
Ry Foundation f .
/ 5 CH ecialty Care &
% \ Center, Pfinceton at... &
»
- % ,,83 & f= 10 min E >
l Q gf 3.1 miles o
S SPNAPA Academy o ~ <
- of Bharatanatyam X | ’
‘@\\o* AN
? Colonnade and Gravesite Springdale Golf Club @ vl ' -
; 9 n Canoe Rental Firmenicl
Princeton Institute for 9 o . g”S‘ '
Battlefield Advanced Study o™ e o0
State Park o ~ NSV
.+~ Nassau Swim Club 4 > Beui 9‘06‘:)
‘I’:‘ 5 ,/ o . .‘3 —
Clarke House Museum %, _@«g (=
%, f\ w | Egroce
@ ------- e ¢ L « ‘I‘\’
A N Charles s / ¢
Princeton Friends School g LAY Hwﬁgﬁfers Papa John's Pizza Q & Jennifer X: Lu
I 1',1 - \‘ '\ \)', ‘\ 4’ ﬁ‘e B
GO \ AN Refuge %, & - §
4 \ \ Y > &= 11 min %, @F oy k]
\\\ \\ \\\ ’/’ 1‘ S \\' Q?Q 3-6 ﬂ\iles ‘ Q\ Z
D P fgitic & 4 o' & 1\/\
\‘ Rt . |‘ \ ; &
Woogs Hyatt Regency Princeton @ ~ &

Shortest path in an edge-weighted digraph

Given an edge-weighted digraph, find a shortest path from one vertex s to another vertex .

\

length of path = sum of edge weights

edge-weighted digraph

4->5 0.35
5->4 0.35
4->7 0.37
5->7 0.28
/->5 0.28
5->1 0.32
0->4 0.38
0->2 0.26
/->3 0.39
1->3 0.29
2->7 0.34
6->2 0.40
3->6 0.52
6->0 0.58
6->4 0.93 shortest path from 0 to 6 length of path = 1.51

022736 (0.26 + 0.34 + 0.39 + 0.52)

Shortest path variants

Which vertices?
 Source-destination: from one vertex s to another vertex r.

* Single source: from one vertex s to every other vertex.

* Single destination: from every vertex to one vertex .

» All pairs: from every vertex to every other vertex.

Restrictions on edge weights?

* Non-negative weig htS. «——— we assume this in today’s lecture
(except as noted)

* Euclidean weights.

* Arbitrary weights.

Directed cycles?

e Prohibit. «——— can derive faster algorithms in DAGs

(see next lecture)

L
Allow. ensures that shortest path from s to v exists

(and that E >V —1)

Simplifying assumption. Each vertex is reachable from s.

Shortest path applications

C‘ Seam Carving_)4— see Assignment 6

* Texture mapping.
» Typesetting in 1EX.

* Currency exchange.
* Urban traffic planning.
 Robot motion planinng.

* Social network analysis.

 Telecommunication routing.

* Project scheduling (PERT/CPM).

* Optimal pipelining of VLSI chip.

» Packet routing (OSPF, BGP, RIP, IS-IS).

« Route planning (Google maps, car navigation, ...).

Shortest paths: poll 1

Which shortest path variant for route planning by a car navigation system?

Hint: drivers make wrong turns occasionally.

A. Source-destination:
B. Single source:
C. Single destination:

D. All pairs:

from one vertex s to another vertex r.
from one vertex s to every vertex.

from every vertex to one vertex f.

from every vertex to every other vertex.

GPs "

-...._____!_/L

viain
Vigatiop Sys. tem

4.4 SHORTEST PATHS

> properties

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Shortest path properties

Simple paths. There exists a shortest s ~ v path that has no repeated vertices. = <V —1 edges

Pf.

+ Let P* be a shortest s~ v path with the fewest edges, cyele ¢
and assume it has a repeated vertex.

« Remove the cycle C from P*, yielding a shortest path with fewer edges. ==

Optimal substructure. Let P* be a shortest s~ v path. subpath P. from s to v

Then, any subpath P, of P* from s to v, is a shortest s ~v. path.
Pf.
» Suppose subpath P. were not a shortest s~ v. path.
* Let O be a shortest s~ v, path. Q
(O

 Replace subpath P; with QO in P*, yielding a shorter s ~v path. =

a shorter path Q from s to v;

Data structures for single-source shortest paths

Goal. Find a shortest path from s to every other vertex.

Observation 2. A shortest-paths tree solution exists. Why?

Consequence. Can represent shortest paths with two parallel arrays:

 distTo[v]: length of a shortest s~ v path.

* edgeTo[v]: last edge on a shortest s ~ v path.

®
&
—_ 5

shortest-paths tree from 0

Y distTol | edgeTol |
0 0.0 -

1 5.0 0—1

2 14.0 5—2

3 17.0 2—3

4 9.0 0—4

5 13.0 4—5

6 25.0 2—6

7 8.0 0—7

parent-link representation

Edge relaxation

Relax edge e = v—w.

distTo
distTo
edgeTo

If edge ¢ yields a shorter s ~w path via v, then update:

distTo
edgeTo

W

W

length of shortest known s~ v path.

ength of shortest known s~ w path.

ast edge on shortest known s~ w path.

context: shortest-path algorithms
maintain champion distances and paths
(updated through edge relaxations)

= distTo[v] + e.weight())

= €

relax edge e = vow
distTolv] = 3.1

K

1.3

/) 4
distTo[w] =72
black edges
are in edgeTo[]

10

Shortest paths: poll 2

What are the values of distTo[v] and distTo[w] immediately after relaxing edge e =v—w ?

A. 10.0 and 15.0
B. 10.0and 17.0
C. 12.0 and 15.0

D. 12.0and 17.0

distTolv] = 10.0

O R
\

distTo[w] = 17.0
black edges

are in edgeTo[] <::>

11

Framework for shortest-paths algorithm

Generic algorithm (to compute a SPT from s)

For each vertex v: distTo[v] = ©.
For each vertex v: edgeTo|[v] = null.
distTo[s] = 0.

Repeat until distTo[v] values converge:

- Relax any edge.

Key properties. Throughout the generic algorithm:

 distTo[v] is either co or the length of a (simple) s ~ v path.

« distTo[v] never increases; it decreases when a shorter s~ v path is found.

 edgeTo[] defines a shortest-paths tree rooted at s.

12

Framework for shortest-paths algorithm

Generic algorithm (to compute a SPT from s)

For each vertex v: distTo[v] = ©.
For each vertex v: edgeTo|[v] = null.
distTo[s] = 0.

Repeat until distTo[v] values converge:

- Relax any edge.

Efficient implementations.

* Which edge to relax next?

 How many edge relaxations needed to guarantee convergence?

Ex 1.
Ex 2.
Ex 3.

Bellman-Ford algorithm.

Dijkstra’s algorithm.

13

4.4 SHORTEST PATHS

> APlIs
Algorithms

ROBERT SEDGEWIC K | KEVIN WAYNE

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Weighted directed edge API

API.
public class DirectedEdge

DirectedEdge(int v, int w, double weight) create weighted edge v—w

int from() tail vertex v
int to() head vertex w
double weight() weight of edge v—w

Ex. Relax edge e = v—w.

private void relax(DirectedEdge e) {
int v ==e.from(, w = e.to();
1f (distTolw] > distTolv] + e.weight()) {
distTolw] = distTolv] + e.weight();

edgeTolw]| = e; <EZ> 1.3 %::)

4.4
distTo[v] = 3.1 distTo[w]| =72

Weighted directed edge: Java implementation

public class DirectedEdge {
private final int v, w;
private final double weight;

public DirectedEdge(int v, 1nt w, double weight) {
this.v = v;
this.w = w;

this.weight = weight;

public int from() {
return v;

from() and to() replace

either() and other()
public 1nt to() {

return w;

public double weight() {
return weight;

16

Edge-weighted digraph API

API.

Same as EdgeWeightedGraph except with DirectedEdge objects.

public class EdgeWeightedDigraph

EdgeWeightedDigraph(int V) edge-weighted digraph with V vertices (and no edges)

void addEdge (DirectedEdge e) add edge e
Iterable<DirectedEdge> adj(int v) edges incident from v
int VO number of vertices

int EO number of edges

17

Edge-weighted digraph: adjacency-lists implementation in Java

Implementation. Almost identical to EdgeWeightedGraph.

public class EdgeWeightedDigraph {
private final int V;
private final Queue<DirectedEdge>|] adj;

public EdgeWeightedDigraph(int V) {
this.V = V;
adj = (Queue<Edge>[]) new Queue[V];
for (int v = 0; v < V; v++)
adjlv] = new Queue<>();

public void addEdge(DirectedEdge e) {
int v = e.from(); add edge e = v—w to
adj[v].enqueue(e); only v's adjacency list

}

public Iterable<DirectedEdge> adj(int v) {
return adjlv];

18

Single-source shortest paths API

Goal. Find the shortest path from s to every other vertex.

public class SP

SP(EdgeWeightedDigraph digraph, int s)

double distTo(int v)

boolean hasPathTo(int v)

Iterable <DirectedEdge> pathTo(int v)

shortest paths from s in digraph
length of shortest path from s to v
is there a path from s to v !

shortest path from s to v

19

4.4 SHORTEST PATHS

Algorithms » Bellman—Ford algorithm

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Bellman-Ford algorithm

] private void DirectedEdge e

Bellman-Ford algorithm S v e
1f (distTolw distTolv e
For each vertex v: distTo[v] = oo. distTo[w] = distTo[v e
edgeTo|w =
For each vertex v: edgeTo[v] = null. ’
distTo[s] = 0.
Repeat V-1 times:
— Relax all E edges.
/ V — 1 passes
for (int 1 = 1; 1 < digraph.V(); 1++)
for (int v = 0; v < digraph.V(); v++)
for (DirectedEdge e : digraph.adj(v)) < pass i (relax all E edges)
relax(e);

Performance. Algorithm takes ®(E V) time and uses O(V) extra space.

Bellman-Ford algorithm demo

Repeat V-1 times: relax all E edges.

@

(7

shortest-paths tree from vertex s

v distTo[] edgeTol[]
0 0.0 -

1 5.0 0—1

2 14.0 5—2

3 17.0 2—3

4 9.0 0—4

5 13.0 4—5

6 25.0 2—6

7 8.0 0—7

22

Bellman-Ford algorithm: proof of correctness

Notation. Let P* = vy— v, — ...— v, be a shortest path of k edges from s=y,tov=yv, , and

Proposition. After pass i of Bellman-Ford, distTo[vi] = length(P;). «~———
Pf.

let P, = vo— v, — ...— v, be the subpath consisting of the first i edges in P*.

€3 €L

() ()

) 1%
path Pk (consisting of k edges)

after pass i, have already found
a shortest s ~v; path

Base case: initially, distTo[vy] = 0 = length(P,).
Inductive hypothesis: after pass i, distTo[v;] = length(P;).
Immediately after relaxing edge ¢, in pass i + 1, we have
distTo[vy;] < distTolv;] + weight(e;) <—— edge relaxation
= length(P;) + weight(e;,) < inductive hypothesis
= length(P,,)

Since distTo[v,,] is the length of some s~ v, , path, we must have distTo[v,,;] = length(P;, ;) =

23

Bellman-Ford algorithm: proof of correctness

Notation. Let P* = vy— v, — ...— v, be a shortest path of k edges from s=y,tov=yv, , and

let P, = vo— v, — ...— v, be the subpath consisting of the first i edges in P*.

€3 €L

() ()

) 1%
path Pk (consisting of k edges)

after pass i, have already found

Proposition. After pass i of Bellman-Ford, distTo[vi] = length(P;). «~——— a shortest s~ vi path

Corollary. For each vertex v, Bellman-Ford computes the length of a shortest s ~ v path.
Pf.
* There exists a shortest s ~ v path P* that is simple. So, P* contains £k < V —1 edges.

« From the Proposition, after k passes, distTo[vk] = length(P,). =

24

Bellman-Ford algorithm: practical improvement

Observation. If distTo[v] does not change during pass i, orivate void relax(int v) {

not necessary to relax any edges incident from v in pass i + 1. for (DirectedEdge e : digraph.adj(v))
relax(e);

Queue-based implementation of Bellman-Ford. _
vertex relaxation

 Perform vertex relaxations. «—— relax vertex v = relax all edges incident from v

* Maintain queue of vertices whose distTo[] values changed since it was last relaxed.

N\

must ensure each vertex is on queue at most once
(or exponential blowup!)

N\

L € (§ \

relax vertex v

Impact.
* |n the worst case, the running time is still ®(£'V).

* But much faster in practice on typical inputs.

25

Longest path

Problem. Given a digraph G with positive edge weights and source vertex s,

find a longest simple path from s to every other vertex.

Goal. Design an algorithm that takes O(E£ V) time in the worst case.

TN T
TN

longest simple path from 0 to 4 length of path = 18
0-01-02-+3-4 (1+4+ 7+ 6)

26

Bellman-Ford algorithm: negative weights

Remark. The Bellman-Ford algorithm works even if some edge weights are negative,
provided there are no negative cycles.

Def. A negative cycle is a directed cycle whose total length is negative.
O —Q—1—O—1—C
3 2
e s —

hegative cycle
(length=1+2 +3 + -8 =-2 <0)

Negative cycles and shortest paths. Length of path can be made arbitrarily negative
by using negative cycle.

27

4.4 SHORTEST PATHS

Algorithms
> Dijkstra’s algorithm

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Edsger Dijkstra: select quote

“ object-oriented pt'ograuiug
is an exceptionally bad 14“
which could only have
originated in Californi.. »
-- Edsger Dijkstra

29

Dijkstra’s algorithm

Dijkstra's algorithm

For each vertex v: distTo|[v] = oo.

For each vertex v: edgeTo[v] = null.

T = .

distTo[s] = 0.

Repeat until all vertices are marked:
- Select unmarked vertex v with the smallest distTo[] value.
- Mark v.

- Relax each edge incident from v.

Key difference with Bellman-Ford. Each edge gets relaxed exactly once!

30

Dijkstra’s algorithm demo

Repeat until all vertices are marked:

e Select unmarked vertex v with the smallest distTo[] value.

« Mark v and relax all edges incident from v.

@

(7

shortest-paths tree from vertex s

(2

v distTo[] edgeTol[]
0 0.0 -

1 5.0 0—1

2 14.0 5—2

3 17.0 2—3

4 9.0 0—4

5 13.0 4—5

6 25.0 2—6

7 8.0 0—7

31

Dijkstra’s algorithm: proof of correctness

Invariant. For each marked vertex v: distTo[v] = d"(v).

Pf.

[by induction on number of marked vertices]
Let v be next vertex marked.
Let P be the s~ v path of length distTo[v].

Consider any other s ~v path P

N

notation for length of shortest s ~ v path

Let x— y be first edge in P’ with x marked and y unmarked.

P’ is already as long as P by the time it reaches y:

ght(x,y)
@wezgtxy@

>d"(x)

marked vertices

length(P)

Dijkstra chose
v instead of y

—

vertex x 1s marked
(so it was relaxed)

—

induction ——>

P'is a path from s to x,
followed by edge x—y,
followed by non-negative edges

IA

IA

IA

by definition

distTo[Vv]

distToly]

distTo[x] + weight(x,y)
d*(x) + weight(x,y)

length(P')

32

Dijkstra’s algorithm: proof of correctness

Invariant. For each marked vertex v: distTo[v] = d"(v).

N

notation for length of shortest s ~ v path

Corollary 1. Dijkstra’s algorithm computes shortest path distances.

Corollary 2. Dijkstra’s algorithm relaxes vertices in increasing order of distance from s.

\

generalizes both
level-order traversal in a tree
and breadth-first search in a graph

33

Dijkstra’s algorithm: Java implementation

public class DijkstraSP {

private DirectedEdge|] edgeTo;

private double[] distTo;

private IndexMinPQ<Double> pq; <

public DijkstraSP(EdgeWeightedDigraph digraph, int s) {

edgeTo = new DirectedEdge|digraph.V()];
distTo = new doubleldigraph.V();

pq = new IndexMinPQ<Double>(digraph.V());

for (int v = 0; v < digraph.V(); v++)
distTo|/v] = Double.POSITIVE INFINITY:

distTo[s]| = 0.0;

pq.1nsert(s, 0.0);

while (!pq.isEmpty()) {
int v = pq.delMin();

for (DirectedEdge e :

relax(e):

digraph.adj(v))

PO that supports
decreasing the key
(stay tuned)

PO contains the
unmarked vertices
with finite distTo[] values

relax vertices in increasing order
of distance from s

34

Dijkstra’s algorithm: Java implementation

When relaxing an edge e = v—w, also update PQ:
 Found first s~w path: add vertex w to PQ.

 Found better s ~w path: decrease priority associated with vertex w in PQ.

private void relax(DirectedEdge e) {
int v ==e.from(), w = e.to();
1f (distTolw] > distTolv] + e.weight()) {
distTolw]| = distTolv] + e.weight();

edgeTolw]| = e;
1f (!'pg.contains(w)) pq.insert(w, distTo[w]);
_ < update PQ
else pq.decreaseKey(w, distTo[w]);
}]
1 index priority

Q. How to efficiently implement DECREASE-KEY operation in a priority queue?

35

Indexed priority queue (Section 2.4)

Associate an index between 0 and n — 1 with each key in a priority queue.

* |nsert a key associated with a given index. \

* Delete a minimum key and return associated index. for Dijkstra’s algorithm:
n=y,

* Decrease the key associated with a given index. Tl =

key = distance from s

public class IndexMi1nPQ<Key extends Comparable<Key>>

IndexM1nPQ(int n) create PO with indices 0,1, ... ,n— 1
void insert(int 1, Key key) associate key with index i
int delMin() remove min key and return associated index
void decreaseKey(int 1, Key key) decrease the key associated with index i
boolean contains(int 1) does the priority queue contain index i ?

boolean 1sEmpty() is the priority queue empty ?

36

Decreasing the key in a binary heap

Goal. Implement DECREASE-KEY operation in a min-oriented binary heap.

Pq — V3 Vs V7 Vo Vg Ve V1 2
@Q] ;

decrease key of vertex v,

37

Decreasing the key in a binary heap

Goal. Implement DECREASE-KEY operation in a min-oriented binary heap.

Solution.
* Find vertex in binary heap. How?

* Change priority of vertex and call swim() to restore heap invariant.

Extra data structure. Maintain an inverse array qp[] that maps from the vertex

to the binary heap node index.

Pq — V3 Vs V7 Vo Vg Ve V1 2
ap 5 8 @ 1 6 2 4 3 —
4 5

keys 1.0 2.0 0.0 6.0 8.0 4.0 2.0 —

vertex 2 has priority 3.0
and is at heap index 4

decrease key of vertex v,

38

Dijkstra’s algorithm: which priority queue?

Number of PQ operations: V INSERT, V DELETE-MIN, < £ DECREASE-KEY.

PQ implementation INSERT DELETE-MIN DECREASE-KEY “

unordered array

binary heap log V log V log V ElogV
d-way heap log, V dlog,V log, V Elogg,vV
Fibonacci heap 17 log V"’ 17 E+VlogV

v amortized

Bottom line.
* Array implementation optimal for complete digraphs.
* Binary heap much faster for sparse digraphs.
* 4-way heap worth the trouble in performance-critical situations.

* Fibonacci heap best in theory, but probably not worth implementing.

39

Priority-first search

Observation. Prim and Dijkstra are essentially the same algorithm.
* Prim: Choose next vertex that is closest to any vertex in the tree (via an undirected edge).

* Dijkstra: Choose next vertex that is closest to the source vertex (via a directed path).

Prim’s algorithm Dijkstra’s algorithm

40

Algorithms for shortest paths

Variations on a theme: vertex relaxations.
« Bellman-Ford: relax all vertices; repeat V — 1 times.

« Dijkstra: relax vertices in order of distance from s.

 Topological sort: relax vertices in topological order. <

worst-case
running time

hegative weights t

Bellman-Ford OE V) v

Dijkstra O(E log V)

see Section 4 4
and next lecture

directed
cycles

T no negative cycles

41

Which shortest paths algorithm to use?

Select algorithm based on properties of edge-weighted digraph.
* Non-negative weights: Dijkstra.
* Negative weights (but no “negative cycles”): Bellman-Ford.

 DAG: topological sort.

worst-case : : directed
. . hegative weights t
running time cycles

Bellman-Ford OEYV) v v

Dijkstra O(E log V) v

T no negative cycles

42

Credits

image source license
Map of Princeton, N.J. Google Maps
Broadway Tower Wikimedia CCBY?25
Car GPS Adobe Stock education license
Queue for Registration Noun Project CCBY 3.0
Dijkstra T-shirt Zazzle
Edsger Dijkstra Wikimedia CCBY-SA3.0

Lecture Slides © Copyright 2025 Robert Sedgewick and Kevin Wayne

https://www.google.com/maps
https://commons.wikimedia.org/wiki/File:Broadway_tower.jpg
https://creativecommons.org/licenses/by/2.5/deed.en
https://stock.adobe.com/images/navigation-system-gps-3d/35938601
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://thenounproject.com/term/queue-for-registration/886294/
https://creativecommons.org/licenses/by/3.0/deed.en
http://www.zazzle.com/dijkstra_on_object_oriented_programming_and_cali_tshirt-235725459155842241
https://commons.wikimedia.org/wiki/File:Edsger_Wybe_Dijkstra.jpg
https://creativecommons.org/licenses/by-sa/3.0/deed.en

A final thought

“ Do only what only you can do. ”

— Edsger W. Dijkstra

A final thought

