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A motivating example: route planning in a road network
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Shortest path in an edge-weighted digraph

Given an edge-weighted digraph, find a shortest path from one vertex s to another vertex .

\

length of path = sum of edge weights

edge-weighted digraph

4->5 0.35
5->4 0.35
4->7 0.37
5->7 0.28
/->5 0.28
5->1 0.32
0->4 0.38
0->2 0.26
/->3 0.39
1->3 0.29
2->7 0.34
6->2 0.40
3->6 0.52
6->0 0.58
6->4 0.93 shortest path from 0 to 6 length of path = 1.51

022736 (0.26 + 0.34 + 0.39 + 0.52)



Shortest path variants

Which vertices?
 Source-destination: from one vertex s to another vertex r.

* Single source: from one vertex s to every other vertex.

* Single destination: from every vertex to one vertex .

» All pairs: from every vertex to every other vertex.

Restrictions on edge weights?

* Non-negative weig htS. «——— we assume this in today’s lecture
(except as noted)

* Euclidean weights.

* Arbitrary weights.

Directed cycles?

e Prohibit. «——— can derive faster algorithms in DAGs

(see next lecture)

L
Allow. ensures that shortest path from s to v exists

(and that E >V —1)

Simplifying assumption. Each vertex is reachable from s.



Shortest path applications

C‘ Seam Carving_ )4— see Assignment 6

* Texture mapping.
» Typesetting in 1EX.

* Currency exchange.
* Urban traffic planning.
 Robot motion planinng.

* Social network analysis.

 Telecommunication routing.

* Project scheduling (PERT/CPM).

* Optimal pipelining of VLSI chip.

» Packet routing (OSPF, BGP, RIP, IS-IS).

« Route planning (Google maps, car navigation, ...).




Shortest paths: poll 1

Which shortest path variant for route planning by a car navigation system?

Hint: drivers make wrong turns occasionally.

A. Source-destination:
B. Single source:
C. Single destination:

D. All pairs:

from one vertex s to another vertex r.
from one vertex s to every vertex.

from every vertex to one vertex f.

from every vertex to every other vertex.

GPs "

-...._____!\_/L
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Shortest path properties

Simple paths. There exists a shortest s ~ v path that has no repeated vertices. = <V —1 edges

Pf.

+ Let P* be a shortest s~ v path with the fewest edges, cyele ¢
and assume it has a repeated vertex.

« Remove the cycle C from P*, yielding a shortest path with fewer edges. ==

Optimal substructure. Let P* be a shortest s~ v path. subpath P. from s to v

Then, any subpath P, of P* from s to v, is a shortest s ~v. path.
Pf.
» Suppose subpath P. were not a shortest s~ v. path.
* Let O be a shortest s~ v, path. Q
(O

 Replace subpath P; with QO in P*, yielding a shorter s ~v path. =

a shorter path Q from s to v;



Data structures for single-source shortest paths

Goal. Find a shortest path from s to every other vertex.

Observation 2. A shortest-paths tree solution exists. Why?

Consequence. Can represent shortest paths with two parallel arrays:

 distTo[v]: length of a shortest s~ v path.

* edgeTo[v]: last edge on a shortest s ~ v path.

®
&
—_ 5

shortest-paths tree from 0

Y distTol | edgeTol |
0 0.0 -

1 5.0 0—1

2 14.0 5—2

3 17.0 2—3

4 9.0 0—4

5 13.0 4—5

6 25.0 2—6

7 8.0 0—7

parent-link representation



Edge relaxation

Relax edge e = v—w.

distTo
distTo
edgeTo

If edge ¢ yields a shorter s ~w path via v, then update:

distTo
edgeTo

W

W

length of shortest known s~ v path.

ength of shortest known s~ w path.

ast edge on shortest known s~ w path.

context: shortest-path algorithms
maintain champion distances and paths
(updated through edge relaxations)

= distTo[v] + e.weight() )

= €

relax edge e = vow
distTolv] = 3.1

K

1.3

/ ) 4
distTo[w] =72
black edges
are in edgeTo[ ]

10



Shortest paths: poll 2

What are the values of distTo[v] and distTo[w] immediately after relaxing edge e =v—w ?

A. 10.0 and 15.0
B. 10.0and 17.0
C. 12.0 and 15.0

D. 12.0and 17.0

distTolv] = 10.0

O R
\

distTo[w] = 17.0
black edges

are in edgeTo[ ] <::>

11



Framework for shortest-paths algorithm

Generic algorithm (to compute a SPT from s)

For each vertex v: distTo[v] = ©.
For each vertex v: edgeTo|[v] = null.
distTo[s] = 0.

Repeat until distTo[v] values converge:

- Relax any edge.

Key properties. Throughout the generic algorithm:

 distTo[v] is either co or the length of a (simple) s ~ v path.

« distTo[v] never increases; it decreases when a shorter s~ v path is found.

 edgeTo[] defines a shortest-paths tree rooted at s.

12



Framework for shortest-paths algorithm

Generic algorithm (to compute a SPT from s)

For each vertex v: distTo[v] = ©.
For each vertex v: edgeTo|[v] = null.
distTo[s] = 0.

Repeat until distTo[v] values converge:

- Relax any edge.

Efficient implementations.

* Which edge to relax next?

 How many edge relaxations needed to guarantee convergence?

Ex 1.
Ex 2.
Ex 3.

Bellman-Ford algorithm.

Dijkstra’s algorithm.

13
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Weighted directed edge API

API.
public class DirectedEdge

DirectedEdge(int v, int w, double weight) create weighted edge v—w

int from() tail vertex v
int to() head vertex w
double weight() weight of edge v—w

Ex. Relax edge e = v—w.

private void relax(DirectedEdge e) {
int v ==e.from(, w = e.to();
1f (distTolw] > distTolv] + e.weight()) {
distTolw] = distTolv] + e.weight();

edgeTolw]| = e; <EZ> 1.3 %::)

4.4
distTo[v] = 3.1 distTo[w]| =72




Weighted directed edge: Java implementation

public class DirectedEdge {
private final int v, w;
private final double weight;

public DirectedEdge(int v, 1nt w, double weight) {
this.v = v;
this.w = w;

this.weight = weight;

public int from() {
return v;

from() and to() replace

either() and other()
public 1nt to() {

return w;

public double weight() {
return weight;

16



Edge-weighted digraph API

API.

Same as EdgeWeightedGraph except with DirectedEdge objects.

public class EdgeWeightedDigraph

EdgeWeightedDigraph(int V)  edge-weighted digraph with V vertices (and no edges)

void addEdge (DirectedEdge e) add edge e
Iterable<DirectedEdge> adj(int v) edges incident from v
int VO number of vertices

int EO number of edges

17



Edge-weighted digraph: adjacency-lists implementation in Java

Implementation. Almost identical to EdgeWeightedGraph.

public class EdgeWeightedDigraph {
private final int V;
private final Queue<DirectedEdge>|] adj;

public EdgeWeightedDigraph(int V) {
this.V = V;
adj = (Queue<Edge>[]) new Queue[V];
for (int v = 0; v < V; v++)
adjlv] = new Queue<>();

public void addEdge(DirectedEdge e) {
int v = e.from(); add edge e = v—w to
adj[v].enqueue(e); only v's adjacency list

}

public Iterable<DirectedEdge> adj(int v) {
return adjlv];

18



Single-source shortest paths API

Goal. Find the shortest path from s to every other vertex.

public class SP

SP(EdgeWeightedDigraph digraph, int s)

double distTo(int v)

boolean hasPathTo(int v)

Iterable <DirectedEdge> pathTo(int v)

shortest paths from s in digraph
length of shortest path from s to v
is there a path from s to v !

shortest path from s to v

19
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Bellman-Ford algorithm

] private void DirectedEdge e

Bellman-Ford algorithm S v e
1f (distTolw distTolv e
For each vertex v: distTo[v] = oo. distTo[w] = distTo[v e
edgeTo|w =
For each vertex v: edgeTo[v] = null. ’
distTo[s] = 0.
Repeat V-1 times:
— Relax all E edges.
/ V — 1 passes
for (int 1 = 1; 1 < digraph.V(); 1++)
for (int v = 0; v < digraph.V(); v++)
for (DirectedEdge e : digraph.adj(v)) < pass i (relax all E edges)
relax(e);

Performance. Algorithm takes ®(E V) time and uses O(V) extra space.



Bellman-Ford algorithm demo

Repeat V-1 times: relax all E edges.

@

(7

shortest-paths tree from vertex s

v distTo[] edgeTol[]
0 0.0 -

1 5.0 0—1

2 14.0 5—2

3 17.0 2—3

4 9.0 0—4

5 13.0 4—5

6 25.0 2—6

7 8.0 0—7

22



Bellman-Ford algorithm: proof of correctness

Notation. Let P* = vy— v, — ...— v, be a shortest path of k edges from s=y,tov=yv, , and

Proposition. After pass i of Bellman-Ford, distTo[vi] = length(P;). «~———
Pf.

let P, = vo— v, — ...— v, be the subpath consisting of the first i edges in P*.

€3 €L

() ()

) 1%
path Pk (consisting of k edges)

after pass i, have already found
a shortest s ~v; path

Base case: initially, distTo[vy] = 0 = length(P,).
Inductive hypothesis: after pass i, distTo[v;] = length(P;).
Immediately after relaxing edge ¢, in pass i + 1, we have
distTo[vy;] < distTolv;] + weight(e; ) <—— edge relaxation
= length(P;) + weight(e;, ) < inductive hypothesis
= length(P,, )

Since distTo[v,,] is the length of some s~ v, , path, we must have distTo[v,,;] = length(P;, ;) =

23



Bellman-Ford algorithm: proof of correctness

Notation. Let P* = vy— v, — ...— v, be a shortest path of k edges from s=y,tov=yv, , and

let P, = vo— v, — ...— v, be the subpath consisting of the first i edges in P*.

€3 €L

() ()

) 1%
path Pk (consisting of k edges)

after pass i, have already found

Proposition. After pass i of Bellman-Ford, distTo[vi] = length(P;). «~——— a shortest s~ vi path

Corollary. For each vertex v, Bellman-Ford computes the length of a shortest s ~ v path.
Pf.
* There exists a shortest s ~ v path P* that is simple. So, P* contains £k < V —1 edges.

« From the Proposition, after k passes, distTo[vk] = length(P,). =

24



Bellman-Ford algorithm: practical improvement

Observation. If distTo[v] does not change during pass i, orivate void relax(int v) {

not necessary to relax any edges incident from v in pass i + 1. for (DirectedEdge e : digraph.adj(v))
relax(e);

Queue-based implementation of Bellman-Ford. _
vertex relaxation

 Perform vertex relaxations. «—— relax vertex v = relax all edges incident from v

* Maintain queue of vertices whose distTo[] values changed since it was last relaxed.

N\

must ensure each vertex is on queue at most once
(or exponential blowup!)

N\

L € ( § \

relax vertex v

Impact.
* |n the worst case, the running time is still ®(£'V).

* But much faster in practice on typical inputs.

25



Longest path

Problem. Given a digraph G with positive edge weights and source vertex s,

find a longest simple path from s to every other vertex.

Goal. Design an algorithm that takes O(E£ V) time in the worst case.

TN T
TN

longest simple path from 0 to 4 length of path = 18
0-01-02-+3-4 (1+4+ 7+ 6)

26



Bellman-Ford algorithm: negative weights

Remark. The Bellman-Ford algorithm works even if some edge weights are negative,
provided there are no negative cycles.

Def. A negative cycle is a directed cycle whose total length is negative.
O —Q—1—O—1—C
3 2
e s —

hegative cycle
(length=1+2 +3 + -8 =-2 <0)

Negative cycles and shortest paths. Length of path can be made arbitrarily negative
by using negative cycle.

27
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Edsger Dijkstra: select quote

“ object-oriented pt'ograuiug
is an exceptionally bad 14“
which could only have
originated in Californi.. »
-- Edsger Dijkstra

29



Dijkstra’s algorithm

Dijkstra's algorithm

For each vertex v: distTo|[v] = oo.

For each vertex v: edgeTo[v] = null.

T = .

distTo[s] = 0.

Repeat until all vertices are marked:
- Select unmarked vertex v with the smallest distTo[] value.
- Mark v.

- Relax each edge incident from v.

Key difference with Bellman-Ford. Each edge gets relaxed exactly once!

30



Dijkstra’s algorithm demo

Repeat until all vertices are marked:

e Select unmarked vertex v with the smallest distTo[] value.

« Mark v and relax all edges incident from v.

@

(7

shortest-paths tree from vertex s

(2

v distTo[] edgeTol[]
0 0.0 -

1 5.0 0—1

2 14.0 5—2

3 17.0 2—3

4 9.0 0—4

5 13.0 4—5

6 25.0 2—6

7 8.0 0—7

31



Dijkstra’s algorithm: proof of correctness

Invariant. For each marked vertex v: distTo[v] = d"(v).

Pf.

[ by induction on number of marked vertices ]
Let v be next vertex marked.
Let P be the s~ v path of length distTo[v].

Consider any other s ~v path P

N

notation for length of shortest s ~ v path

Let x— y be first edge in P’ with x marked and y unmarked.

P’ is already as long as P by the time it reaches y:

ght(x,y)
@wezgtxy@

>d"(x)

marked vertices

length(P)

Dijkstra chose
v instead of y

—

vertex x 1s marked
(so it was relaxed)

—

induction ——>

P'is a path from s to x,
followed by edge x—y,
followed by non-negative edges

IA

IA

IA

by definition

distTo[Vv]

distToly]

distTo[x] + weight(x,y)
d*(x) + weight(x,y)

length(P')

32



Dijkstra’s algorithm: proof of correctness

Invariant. For each marked vertex v: distTo[v] = d"(v).

N

notation for length of shortest s ~ v path

Corollary 1. Dijkstra’s algorithm computes shortest path distances.

Corollary 2. Dijkstra’s algorithm relaxes vertices in increasing order of distance from s.

\

generalizes both
level-order traversal in a tree
and breadth-first search in a graph

33



Dijkstra’s algorithm: Java implementation

public class DijkstraSP {

private DirectedEdge| ] edgeTo;

private double[] distTo;

private IndexMinPQ<Double> pq; <

public DijkstraSP(EdgeWeightedDigraph digraph, int s) {

edgeTo = new DirectedEdge|digraph.V()];
distTo = new doubleldigraph.V();

pq = new IndexMinPQ<Double>(digraph.V());

for (int v = 0; v < digraph.V(); v++)
distTo|/v] = Double.POSITIVE INFINITY:

distTo[s]| = 0.0;

pq.1nsert(s, 0.0);

while (!pq.isEmpty()) {
int v = pq.delMin();

for (DirectedEdge e :

relax(e):

digraph.adj(v))

PO that supports
decreasing the key
(stay tuned)

PO contains the
unmarked vertices
with finite distTo[] values

relax vertices in increasing order
of distance from s

34



Dijkstra’s algorithm: Java implementation

When relaxing an edge e = v—w, also update PQ:
 Found first s~w path: add vertex w to PQ.

 Found better s ~w path: decrease priority associated with vertex w in PQ.

private void relax(DirectedEdge e) {
int v ==e.from(), w = e.to();
1f (distTolw] > distTolv] + e.weight()) {
distTolw]| = distTolv] + e.weight();

edgeTolw]| = e;
1f (!'pg.contains(w)) pq.insert(w, distTo[w]);
_ < update PQ
else pq.decreaseKey(w, distTo[w]);
} ]
1 index priority

Q. How to efficiently implement DECREASE-KEY operation in a priority queue?

35



Indexed priority queue (Section 2.4)

Associate an index between 0 and n — 1 with each key in a priority queue.

* |nsert a key associated with a given index. \

* Delete a minimum key and return associated index. for Dijkstra’s algorithm:
n=y,

* Decrease the key associated with a given index. Tl =

key = distance from s

public class IndexMi1nPQ<Key extends Comparable<Key>>

IndexM1nPQ(int n) create PO with indices 0,1, ... ,n— 1
void insert(int 1, Key key) associate key with index i
int delMin() remove min key and return associated index
void decreaseKey(int 1, Key key) decrease the key associated with index i
boolean contains(int 1) does the priority queue contain index i ?

boolean 1sEmpty() is the priority queue empty ?

36



Decreasing the key in a binary heap

Goal. Implement DECREASE-KEY operation in a min-oriented binary heap.

Pq — V3 Vs V7 Vo Vg Ve V1 2
@Q] ;

decrease key of vertex v,

37



Decreasing the key in a binary heap

Goal. Implement DECREASE-KEY operation in a min-oriented binary heap.

Solution.
* Find vertex in binary heap. How?

* Change priority of vertex and call swim() to restore heap invariant.

Extra data structure. Maintain an inverse array qp[ ] that maps from the vertex

to the binary heap node index.

Pq — V3 Vs V7 Vo Vg Ve V1 2
ap 5 8 @ 1 6 2 4 3 —
4 5

keys 1.0 2.0 0.0 6.0 8.0 4.0 2.0 —

vertex 2 has priority 3.0
and is at heap index 4

decrease key of vertex v,

38



Dijkstra’s algorithm: which priority queue?

Number of PQ operations: V INSERT, V DELETE-MIN, < £ DECREASE-KEY.

PQ implementation INSERT DELETE-MIN DECREASE-KEY “

unordered array

binary heap log V log V log V ElogV
d-way heap log, V dlog,V log, V Elogg,vV
Fibonacci heap 17 log V"’ 17 E+VlogV

v amortized

Bottom line.
* Array implementation optimal for complete digraphs.
* Binary heap much faster for sparse digraphs.
* 4-way heap worth the trouble in performance-critical situations.

* Fibonacci heap best in theory, but probably not worth implementing.

39



Priority-first search

Observation. Prim and Dijkstra are essentially the same algorithm.
* Prim: Choose next vertex that is closest to any vertex in the tree (via an undirected edge).

* Dijkstra: Choose next vertex that is closest to the source vertex (via a directed path).

Prim’s algorithm Dijkstra’s algorithm

40



Algorithms for shortest paths

Variations on a theme: vertex relaxations.
« Bellman-Ford: relax all vertices; repeat V — 1 times.

« Dijkstra: relax vertices in order of distance from s.

 Topological sort: relax vertices in topological order. <

worst-case
running time

hegative weights t

Bellman-Ford OE V) v

Dijkstra O(E log V)

see Section 4 4
and next lecture

directed
cycles

T no negative cycles

41



Which shortest paths algorithm to use?

Select algorithm based on properties of edge-weighted digraph.
* Non-negative weights: Dijkstra.
* Negative weights (but no “negative cycles”): Bellman-Ford.

 DAG: topological sort.

worst-case : : directed
. . hegative weights t
running time cycles

Bellman-Ford OEYV) v v

Dijkstra O(E log V) v

T no negative cycles

42
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A final thought

“ Do only what only you can do. ”

— Edsger W. Dijkstra




A final thought




