
ROBERT SEDGEWICK | KEVIN WAYNE

F O U R T H E D I T I O N

Algorithms

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

Last updated on 11/6/25 9:47  AM

4.4 SHORTEST PATHS

‣ properties

‣APIs

‣ Bellman–Ford algorithm

‣Dijkstra’s algorithm

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

A motivating example: route planning in a road network

2

Shortest path in an edge-weighted digraph

Given an edge-weighted digraph, find a shortest path from one vertex to another vertex .s t

3

4

5

1 3

6

7

0

2

4

5

1 3

6

7

0

2

An edge-weighted digraph and a shortest path

4->5 0.35
5->4 0.35
4->7 0.37
5->7 0.28
7->5 0.28
5->1 0.32
0->4 0.38
0->2 0.26
7->3 0.39
1->3 0.29
2->7 0.34
6->2 0.40
3->6 0.52
6->0 0.58
6->4 0.93

0->2 0.26
2->7 0.34
7->3 0.39
3->6 0.52

edge-weighted digraph

shortest path from 0 to 6

length of path = 1.51
(0.26 + 0.34 + 0.39 + 0.52)

shortest path from 0 to 6
0 → 2 → 7 → 3 → 6

edge-weighted digraph

0.26

0.39

0.3
4

0.52

length of path = sum of edge weights

Which vertices?

・Source–destination:	 from one vertex to another vertex .

・Single source:	 from one vertex to every other vertex.

・Single destination:	 from every vertex to one vertex .

・All pairs:	 	 from every vertex to every other vertex.
 
Restrictions on edge weights?

・Non-negative weights.

・Euclidean weights.

・Arbitrary weights.
 
Directed cycles?

・Prohibit.

・Allow.
 
Simplifying assumption. Each vertex is reachable from .

s t
s

t

s

Shortest path variants

4

we assume this in today’s lecture
(except as noted)

ensures that shortest path from to exists
(and that)

s v
E ≥ V − 1

can derive faster algorithms in DAGs
(see next lecture)

see Assignment 6・Seam carving.

・Texture mapping.

・Typesetting in .

・Currency exchange.

・Urban traffic planning.

・Robot motion planinng.

・Social network analysis.

・Telecommunication routing.

・Project scheduling (PERT/CPM).

・Optimal pipelining of VLSI chip.

・Packet routing (OSPF, BGP, RIP, IS–IS).

・Route planning (Google maps, car navigation, …).

Shortest path applications

5

Reference: Network Flows: Theory, Algorithms, and Applications, R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Prentice Hall, 1993.

Shortest paths: poll 1

Which shortest path variant for route planning by a car navigation system?
Hint: drivers make wrong turns occasionally.

A. Source–destination:	 from one vertex to another vertex .

B. Single source:	 from one vertex to every vertex.

C. Single destination:	 from every vertex to one vertex .

D. All pairs:	 	 from every vertex to every other vertex.

s t

s

t

6

4.4 SHORTEST PATHS

‣ properties

‣APIs

‣ Bellman–Ford algorithm

‣Dijkstra’s algorithm
ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Simple paths. There exists a shortest path that has no repeated vertices.
Pf. [by contradiction]

・Let be a shortest path with the fewest edges,  
and assume it has a repeated vertex.

・Remove the cycle from , yielding a shortest path with fewer edges.
 
 
 
Optimal substructure. Let be a shortest path.
Then, any subpath of from to is a shortest path.
Pf. [by contradiction]

・Suppose subpath were not a shortest path.

・Let be a shortest path.

・Replace subpath with in , yielding a shorter path.

s↝v

P* s↝v

C P*

P* s↝v
Pi P* s vi s↝vi

Pi s↝vi

Q s↝vi

Pi Q P* s↝v

s

v

Shortest path properties

8

s 1

2 3

t

4s

v

 edges⟹ ≤ V − 1

s

v

vi

subpath from to Pi s vi

a shorter path Q from to s vi

cycle C

Goal. Find a shortest path from to every other vertex.  

Observation 2. A shortest-paths tree solution exists. Why?
 
Consequence. Can represent shortest paths with two parallel arrays:

・ distTo[v]: length of a shortest path.

・ edgeTo[v]: last edge on a shortest path.

s

s↝v
s↝v

Data structures for single-source shortest paths

9shortest-paths tree from 0

0

4

7

1

5

2

6

3

parent-link representation

v distTo[] edgeTo[]

0 0.0 -

1 5.0 0→1

2 14.0 5→2

3 17.0 2→3

4 9.0 0→4

5 13.0 4→5

6 25.0 2→6

7 8.0 0→7

shortest-paths tree from 0

0

4

7

1

5

2

6

3

Edge relaxation

Relax edge .

・ distTo[v]: length of shortest known path.

・ distTo[w]: length of shortest known path.

・ edgeTo[w]: last edge on shortest known path.

・ If edge yields a shorter path via , then update:
– distTo[w] = distTo[v] + e.weight()

– edgeTo[w] = e

e = v→w
s↝v
s↝w

s↝w
e s↝w v

10

black edges
are in edgeTo[]

s

distTo[v] = 3.1

distTo[w] = 7.2

4.4

relax edge e = v→w

1.3

v

w

context: shortest-path algorithms
maintain champion distances and paths

(updated through edge relaxations)

What are the values of distTo[v] and distTo[w] immediately after relaxing edge ?  

A. 10.0 and 15.0

B. 10.0 and 17.0

C. 12.0 and 15.0

D. 12.0 and 17.0

e = v→w

Shortest paths: poll 2

11

distTo[v] = 10.0

distTo[w] = 17.0

s
5.0

v

w
15.0

distTo[w] = 17.0

black edges
are in edgeTo[]

Framework for shortest-paths algorithm

 
 
 
 
 
 
 
 
 
Key properties. Throughout the generic algorithm:

・ distTo[v] is either or the length of a (simple) path.

・ distTo[v] never increases; it decreases when a shorter path is found.

・ edgeTo[] defines a shortest-paths tree rooted at .

∞ s↝v
s↝v

s

12

For each vertex v: distTo[v] = ∞.

For each vertex v: edgeTo[v] = null.

distTo[s] = 0.

Repeat until distTo[v] values converge: 
 - Relax any edge.

Generic algorithm (to compute a SPT from s)

Framework for shortest-paths algorithm

 
 
 
 
 
 
 
 
 
Efficient implementations.

・Which edge to relax next?

・How many edge relaxations needed to guarantee convergence?
 
Ex 1. Bellman–Ford algorithm.  
Ex 2. Dijkstra’s algorithm.  
Ex 3. Topological sort algorithm.

13

For each vertex v: distTo[v] = ∞.

For each vertex v: edgeTo[v] = null.

distTo[s] = 0.

Repeat until distTo[v] values converge: 
 - Relax any edge.

Generic algorithm (to compute a SPT from s)

next lecture

4.4 SHORTEST PATHS

‣ properties

‣APIs

‣ Bellman–Ford algorithm

‣Dijkstra’s algorithm
ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Weighted directed edge API

API.  
 
 
 
 
 
 
 

Ex. Relax edge .e = v→w

15

private void relax(DirectedEdge e) {
 int v = e.from(), w = e.to();
 if (distTo[w] > distTo[v] + e.weight()) {
 distTo[w] = distTo[v] + e.weight();
 edgeTo[w] = e;
 }
}

v w1.3

distTo[w] = 7.2

4.4

distTo[v] = 3.1

public class DirectedEdge

DirectedEdge(int v, int w, double weight) create weighted edge v→w

 int from() tail vertex v

 int to() head vertex w

 double weight() weight of edge v→w

 ⋮ ⋮

Weighted directed edge: Java implementation

16

public class DirectedEdge {
 private final int v, w;
 private final double weight;

}

public DirectedEdge(int v, int w, double weight) {
 this.v = v;
 this.w = w;
 this.weight = weight;
}

public int from() {
 return v;
}

public int to() {
 return w;
}

public double weight() {
 return weight;
}

from() and to() replace
either() and other()

Edge-weighted digraph API

API. Same as EdgeWeightedGraph except with DirectedEdge objects.

17

public class EdgeWeightedDigraph

EdgeWeightedDigraph(int V) edge-weighted digraph with V vertices (and no edges)

void addEdge(DirectedEdge e) add edge e

Iterable<DirectedEdge> adj(int v) edges incident from v

int V() number of vertices

int E() number of edges

 ⋮ ⋮

Edge-weighted digraph: adjacency-lists implementation in Java

Implementation. Almost identical to EdgeWeightedGraph.

18

public class EdgeWeightedDigraph {
 private final int V;
 private final Queue<DirectedEdge>[] adj;

}

public EdgeWeightedDigraph(int V) {
 this.V = V;
 adj = (Queue<Edge>[]) new Queue[V];
 for (int v = 0; v < V; v++)
 adj[v] = new Queue<>();
}

public void addEdge(DirectedEdge e) {
 int v = e.from();
 adj[v].enqueue(e);
}

public Iterable<DirectedEdge> adj(int v) {
 return adj[v];
}

add edge e = v→w to
only v's adjacency list

Single-source shortest paths API

Goal. Find the shortest path from to every other vertex.s

19

public class SP

SP(EdgeWeightedDigraph digraph, int s) shortest paths from s in digraph

double distTo(int v) length of shortest path from s to v

boolean hasPathTo(int v) is there a path from s to v ?

Iterable <DirectedEdge> pathTo(int v) shortest path from s to v

4.4 SHORTEST PATHS

‣ properties

‣APIs

‣ Bellman–Ford algorithm

‣Dijkstra’s algorithm
ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Bellman–Ford algorithm

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Performance. Algorithm takes time and uses extra space.Θ(E V) Θ(V)

21

for (int i = 1; i < digraph.V(); i++)
 for (int v = 0; v < digraph.V(); v++)
 for (DirectedEdge e : digraph.adj(v))
 relax(e);

pass i (relax all E edges)

For each vertex v: distTo[v] = ∞.

For each vertex v: edgeTo[v] = null.

distTo[s] = 0.

Repeat V-1 times: 
 – Relax all E edges.

Bellman–Ford algorithm

 passesV − 1

 private void relax(DirectedEdge e) {
 int v = e.from(), w = e.to();
 if (distTo[w] > distTo[v] + e.weight()) {
 distTo[w] = distTo[v] + e.weight();
 edgeTo[w] = e;
 }
 }

edge relaxation

Bellman–Ford algorithm demo

Repeat times: relax all edges.V − 1 E

22

0

4

7

1

5

2

6

v distTo[] edgeTo[]

0 0.0 -

1 5.0 0→1

2 14.0 5→2

3 17.0 2→3

4 9.0 0→4

5 13.0 4→5

6 25.0 2→6

7 8.0 0→7

3

shortest-paths tree from vertex s

s

Bellman–Ford algorithm: proof of correctness

Notation. Let P* = v0 → v1 → … → vk be a shortest path of edges from to , and
 let Pi = v0 → v1 → … → vi be the subpath consisting of the first edges in P*.
 
 
 
 
 
Proposition. After pass of Bellman–Ford, distTo[vi] .
Pf. [by induction on number of passes i]

・Base case: initially, distTo[v0] .

・Inductive hypothesis: after pass , distTo[vi] .

・Immediately after relaxing edge in pass , we have  
 distTo[vi+1] distTo[vi] +

 +

・Since distTo[vi+1] is the length of some path, we must have distTo[vi+1] 

k s = v0 v = vk

i

i = length(Pi)

= 0 = length(P0)
i = length(Pi)
ei+1 i + 1

≤ weight(ei+1)
= length(Pi) weight(ei+1)
= length(Pi+1)

s↝vi+1 = length(Pi+1)
23

v0 v1 vk…
s v

e1 e2 ek
v2

e3

edge relaxation

inductive hypothesis

path Pk (consisting of k edges)

after pass i, have already found
a shortest i paths↝v

and remains that way
for the rest of algorithm

Bellman–Ford algorithm: proof of correctness

Notation. Let P* = v0 → v1 → … → vk be a shortest path of edges from to , and
 let Pi = v0 → v1 → … → vi be the subpath consisting of the first edges in P*.
 
 
 
 
 
Proposition. After pass of Bellman–Ford, distTo[vi] .

Corollary. For each vertex , Bellman–Ford computes the length of a shortest path.
Pf.

・There exists a shortest path that is simple. So, contains edges.

・From the Proposition, after passes, distTo[vk] . 

k s = v0 v = vk

i

i = length(Pi)

v s↝v

s↝v P* P* k ≤ V − 1
k = length(Pk)

24

v0 v1 vk…
s v

e1 e2 ek
v2

e3

path Pk (consisting of k edges)

after pass i, have already found
a shortest i paths↝v

v = vk P* = Pk

Bellman–Ford algorithm: practical improvement

Observation. If distTo[v] does not change during pass ,  
not necessary to relax any edges incident from in pass .
 
Queue-based implementation of Bellman–Ford.

・Perform vertex relaxations.

・Maintain queue of vertices whose distTo[] values changed since it was last relaxed.
 
 
 
 
 
 
 
Impact.

・In the worst case, the running time is still .

・But much faster in practice on typical inputs.

i

v i + 1

Θ(E V)

25

relax in pass irelax in pass i + 1

Created by Gan Khoon Lay
from the Noun Project

relax vertex v

1 47 935
must ensure each vertex is on queue at most once

(or exponential blowup!)

relax vertex v = relax all edges incident from v

 private void relax(int v) {
 for (DirectedEdge e : digraph.adj(v))
 relax(e);
 }

vertex relaxation

Longest path

Problem. Given a digraph with positive edge weights and source vertex ,  
find a longest simple path from to every other vertex.
 
Goal. Design an algorithm that takes time in the worst case.

G s
s

O(E V)

40 1

2 3

40 1

2 3

26

2

6

7

4

1

5

NP-com
ple te

length of path = 18
(1 + 4 + 7 + 6)

longest simple path from 0 to 4
0 → 1 → 2 → 3 → 4

Bellman–Ford algorithm: negative weights

Remark. The Bellman–Ford algorithm works even if some edge weights are negative,  
provided there are no negative cycles.
 
Def. A negative cycle is a directed cycle whose total length is negative.
 
 
 
 
 
 
 
 
Negative cycles and shortest paths. Length of path can be made arbitrarily negative  
by using negative cycle.

27

0→ 1→ 2→ 3→ 4→ 1→ ⋯ → 2→ 3→ 4→ 1→ 2→ 5

negative cycle
(length = 1 + 2 +3 + -8 = -2 < 0)

20 1

4

5

3

21

4 3

1

2

3

4 5

−8

4.4 SHORTEST PATHS

‣ properties

‣APIs

‣ Bellman–Ford algorithm

‣Dijkstra’s algorithm
ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Edsger Dijkstra: select quote

29

Dijkstra’s algorithm

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Key difference with Bellman–Ford. Each edge gets relaxed exactly once!

30

For each vertex v: distTo[v] = ∞.
For each vertex v: edgeTo[v] = null.

T = ∅.
distTo[s] = 0.
Repeat until all vertices are marked:
 - Select unmarked vertex v with the smallest distTo[] value.
 - Mark v.
 - Relax each edge incident from v.

Dijkstra's algorithm

Dijkstra’s algorithm demo

Repeat until all vertices are marked:

・Select unmarked vertex with the smallest distTo[] value.

・Mark v and relax all edges incident from .
v

v

31

0

4

7

1

5

2

6

v distTo[] edgeTo[]

0 0.0 -

1 5.0 0→1

2 14.0 5→2

3 17.0 2→3

4 9.0 0→4

5 13.0 4→5

6 25.0 2→6

7 8.0 0→7

3

shortest-paths tree from vertex s

s

Dijkstra’s algorithm: proof of correctness

Invariant. For each marked vertex : distTo[v] = d*(v).
 
Pf. [by induction on number of marked vertices]

・Let be next vertex marked.

・Let be the path of length distTo[v].

・Consider any other path .

・Let be first edge in with marked and unmarked.

・ is already as long as by the time it reaches :

v

v
P s↝v

s↝v P′￼

x→y P′￼ x y
P′￼ P y

32

P′￼

marked vertices

P

length(P) distTo[v]=

 distTo[y]≤

 distTo[x] + weight(x, y)≤

 length(P ′)≤

Dijkstra chose
v instead of yyx

v

s

notation for length of shortest paths↝v

 d *(x) + weight(x, y)=

by definition

vertex x is marked
(so it was relaxed)

induction

followed by non-negative edges

▪

≥ d *(x)

weight(x, y)

≥ 0

P ′ is a path from s to x,
followed by edge x→y,

Dijkstra’s algorithm: proof of correctness

Invariant. For each marked vertex : distTo[v] = d*(v).
 
 
 
Corollary 1. Dijkstra’s algorithm computes shortest path distances.
Corollary 2. Dijkstra’s algorithm relaxes vertices in increasing order of distance from .

v

s

33

generalizes both
level-order traversal in a tree

and breadth-first search in a graph

notation for length of shortest paths↝v

Dijkstra’s algorithm: Java implementation

34

public class DijkstraSP {
 private DirectedEdge[] edgeTo;
 private double[] distTo;

 public DijkstraSP(EdgeWeightedDigraph digraph, int s) {
 edgeTo = new DirectedEdge[digraph.V()];
 distTo = new double[digraph.V()];

 for (int v = 0; v < digraph.V(); v++)
 distTo[v] = Double.POSITIVE_INFINITY;
 distTo[s] = 0.0;

 }
}

private IndexMinPQ<Double> pq;

pq = new IndexMinPQ<Double>(digraph.V());

pq.insert(s, 0.0);
while (!pq.isEmpty()) {
 int v = pq.delMin();
 for (DirectedEdge e : digraph.adj(v))
 relax(e);
}

relax vertices in increasing order
of distance from s

PQ that supports
decreasing the key

(stay tuned)

PQ contains the
unmarked vertices

with finite distTo[] values

Dijkstra’s algorithm: Java implementation

When relaxing an edge , also update PQ:

・Found first path :	 add vertex to PQ.

・Found better path:	 decrease priority associated with vertex in PQ.
 
 
 
 
 
 
 
 
 
 
 
 
Q. How to efficiently implement DECREASE-KEY operation in a priority queue?

e = v→w
s↝w w
s↝w w

35

private void relax(DirectedEdge e) {
 int v = e.from(), w = e.to();
 if (distTo[w] > distTo[v] + e.weight()) {
 distTo[w] = distTo[v] + e.weight();
 edgeTo[w] = e;

 }
}

if (!pq.contains(w)) pq.insert(w, distTo[w]);
else pq.decreaseKey(w, distTo[w]);

update PQ

index priority

Indexed priority queue (Section 2.4)

Associate an index between and with each key in a priority queue.

・Insert a key associated with a given index.

・Delete a minimum key and return associated index.

・Decrease the key associated with a given index.

0 n − 1

36

for Dijkstra’s algorithm:
n = V,

index = vertex,
key = distance from s

public class IndexMinPQ<Key extends Comparable<Key>>

IndexMinPQ(int n) create PQ with indices 0, 1, … , n − 1

void insert(int i, Key key) associate key with index i

int delMin() remove min key and return associated index

void decreaseKey(int i, Key key) decrease the key associated with index i

boolean contains(int i) does the priority queue contain index i ?

boolean isEmpty() is the priority queue empty ?

 ⋮ ⋮

Decreasing the key in a binary heap

Goal. Implement DECREASE-KEY operation in a min-oriented binary heap.

0 1 2 3 4 5 6 7 8

 pq[] – v3 v5 v7 v2 v0 v4 v6 v1

37

decrease key of vertex v2

v7

v0 v4 v6v2

v1

v5

v31

2 3

4 5 6 7

8

Decreasing the key in a binary heap

Goal. Implement DECREASE-KEY operation in a min-oriented binary heap.
 
Solution.

・Find vertex in binary heap. How?

・Change priority of vertex and call swim() to restore heap invariant.
 
Extra data structure. Maintain an inverse array qp[] that maps from the vertex  
to the binary heap node index.

0 1 2 3 4 5 6 7 8

 pq[] – v3 v5 v7 v2 v0 v4 v6 v1

 qp[] 5 8 4 1 6 2 4 3 –

 keys[] 1.0 2.0 3.0 0.0 6.0 8.0 4.0 2.0 –

38

decrease key of vertex v2

v7

v0 v4 v6v2

v1

v5

v31

2 3

4 5 6 7

8
vertex 2 has priority 3.0
and is at heap index 4

Dijkstra’s algorithm: which priority queue?

Number of PQ operations: INSERT, DELETE-MIN, DECREASE-KEY.
 
 
 
 
 
 
 
 
 
 
Bottom line.

・Array implementation optimal for complete digraphs.

・Binary heap much faster for sparse digraphs.

・4-way heap worth the trouble in performance-critical situations.

・Fibonacci heap best in theory, but probably not worth implementing.

V V ≤ E

39

† amortized

PQ implementation INSERT DELETE-MIN DECREASE-KEY total

unordered array 1 V 1 V 2

binary heap log V log V log V E log V

d-way heap logd V d logd V logd V E logE / V V

Fibonacci heap 1 † log V † 1 † E + V log V

Priority-first search

Observation. Prim and Dijkstra are essentially the same algorithm.

・Prim:	 Choose next vertex that is closest to any vertex in the tree (via an undirected edge).

・Dijkstra:	 Choose next vertex that is closest to the source vertex (via a directed path).

40

Prim’s algorithm Dijkstra’s algorithm

Algorithms for shortest paths

Variations on a theme: vertex relaxations.

・Bellman–Ford:	 relax all vertices; repeat times.

・Dijkstra:	 	 relax vertices in order of distance from .

・Topological sort:	 relax vertices in topological order.

V − 1
s

41

algorithm worst-case
running time negative weights † directed 

cycles

Bellman–Ford Θ(E V) ✔ ✔

Dijkstra Θ(E log V) ✔

topological sort E ✔

† no negative cycles

see Section 4.4
and next lecture

Which shortest paths algorithm to use?

Select algorithm based on properties of edge-weighted digraph.

・Non-negative weights: Dijkstra.

・Negative weights (but no “negative cycles”): Bellman–Ford.

・DAG: topological sort.

42

algorithm worst-case
running time negative weights † directed 

cycles

Bellman–Ford Θ(E V) ✔ ✔

Dijkstra Θ(E log V) ✔

topological sort E ✔

† no negative cycles

Lecture Slides © Copyright 2025 Robert Sedgewick and Kevin Wayne

Credits

43

image source license

Map of Princeton, N.J. Google Maps

Broadway Tower Wikimedia CC BY 2.5

Car GPS Adobe Stock education license

Queue for Registration Noun Project CC BY 3.0

Dijkstra T-shirt Zazzle

Edsger Dijkstra Wikimedia CC BY-SA 3.0

https://www.google.com/maps
https://commons.wikimedia.org/wiki/File:Broadway_tower.jpg
https://creativecommons.org/licenses/by/2.5/deed.en
https://stock.adobe.com/images/navigation-system-gps-3d/35938601
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://thenounproject.com/term/queue-for-registration/886294/
https://creativecommons.org/licenses/by/3.0/deed.en
http://www.zazzle.com/dijkstra_on_object_oriented_programming_and_cali_tshirt-235725459155842241
https://commons.wikimedia.org/wiki/File:Edsger_Wybe_Dijkstra.jpg
https://creativecommons.org/licenses/by-sa/3.0/deed.en

A final thought

44

 “ Do only what only you can do. ”

 — Edsger W. Dijkstra

A final thought

45

