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A motivating example:  route planning in a road network
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Shortest path in an edge-weighted digraph

Given an edge-weighted digraph, find a shortest path from one vertex  to another vertex .s t
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An edge-weighted digraph and a shortest path

4->5  0.35 
5->4  0.35 
4->7  0.37 
5->7  0.28 
7->5  0.28 
5->1  0.32 
0->4  0.38
0->2  0.26 
7->3  0.39 
1->3  0.29 
2->7  0.34
6->2  0.40 
3->6  0.52
6->0  0.58
6->4  0.93 

0->2  0.26
2->7  0.34
7->3  0.39
3->6  0.52 

edge-weighted digraph

shortest path from 0 to 6

length of path = 1.51
(0.26 + 0.34 + 0.39 + 0.52)

shortest path from 0 to 6
0 → 2 → 7 → 3 → 6

edge-weighted digraph

0.26

0.39

0.3
4

0.52

length of path = sum of edge weights



Which vertices? 

・Source–destination:	 from one vertex  to another vertex . 

・Single source:	 from one vertex  to every other vertex. 

・Single destination:	 from every vertex to one vertex . 

・All pairs:	 	 from every vertex to every other vertex. 
 
Restrictions on edge weights? 

・Non-negative weights. 

・Euclidean weights. 

・Arbitrary weights. 
 
Directed cycles? 

・Prohibit. 

・Allow. 
 
Simplifying assumption.  Each vertex is reachable from .

s t
s

t

s

Shortest path variants

4

we assume this in today’s lecture
(except as noted)

ensures that shortest path from  to  exists
(and that )

s v
E ≥ V − 1

can derive faster algorithms in DAGs
(see next lecture)



see Assignment 6・Seam carving. 

・Texture mapping. 

・Typesetting in       . 

・Currency exchange. 

・Urban traffic planning. 

・Robot motion planinng.  

・Social network analysis. 

・Telecommunication routing. 

・Project scheduling (PERT/CPM). 

・Optimal pipelining of VLSI chip. 

・Packet routing (OSPF, BGP, RIP, IS–IS).  

・Route planning (Google maps, car navigation, …).

Shortest path applications

5

Reference:  Network Flows:  Theory, Algorithms, and Applications, R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Prentice Hall, 1993.



Shortest paths:  poll 1

Which shortest path variant for route planning by a car navigation system?
Hint:  drivers make wrong turns occasionally.

A. Source–destination:	 from one vertex  to another vertex .  

B. Single source:	 from one vertex  to every vertex.

C. Single destination:	 from every vertex to one vertex . 

D. All pairs:	 	 from every vertex to every other vertex.

s t

s

t

6
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Simple paths.  There exists a shortest  path that has no repeated vertices. 
Pf.  [by contradiction]  

・Let  be a shortest  path with the fewest edges,  
and assume it has a repeated vertex.  

・Remove the cycle  from , yielding a shortest path with fewer edges.   
 
 
 
Optimal substructure.  Let  be a shortest  path. 
Then, any subpath  of  from  to  is a shortest  path. 
Pf.  [by contradiction] 

・Suppose subpath  were not a shortest  path. 

・Let  be a shortest  path. 

・Replace subpath  with  in , yielding a shorter  path.   

s↝v

P* s↝v

C P*

P* s↝v
Pi P* s vi s↝vi

Pi s↝vi

Q s↝vi

Pi Q P* s↝v

s

v

Shortest path properties

8

s 1

2 3

t

4s

v

   edges⟹ ≤ V − 1

s

v

vi

subpath   from  to Pi s vi

a shorter path Q from  to s vi

cycle C



Goal.  Find a shortest path from  to every other vertex.  

Observation 2.  A shortest-paths tree solution exists. Why? 
 
Consequence.  Can represent shortest paths with two parallel arrays: 

・ distTo[v]:  length of a shortest  path. 

・ edgeTo[v]:  last edge on a shortest  path.

s

s↝v
s↝v

Data structures for single-source shortest paths

9shortest-paths tree from 0
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parent-link representation

v    distTo[]   edgeTo[] 

0      0.0         - 

1      5.0        0→1  

2     14.0        5→2  

3     17.0        2→3  

4      9.0        0→4  

5     13.0        4→5  

6     25.0        2→6  

7      8.0        0→7 

shortest-paths tree from 0

0

4

7

1

5

2

6

3



Edge relaxation

Relax edge . 

・ distTo[v]:  length of shortest known  path. 

・ distTo[w]:  length of shortest known  path. 

・ edgeTo[w]:  last edge on shortest known  path. 

・ If edge  yields a shorter  path via , then update: 
– distTo[w] = distTo[v] + e.weight() 

– edgeTo[w] = e

e = v→w
s↝v
s↝w

s↝w
e s↝w v

10

black edges
are in edgeTo[]

s

distTo[v] = 3.1

distTo[w] = 7.2

4.4

relax edge e = v→w

1.3

v

w

context: shortest-path algorithms
maintain champion distances and paths

(updated through edge relaxations)



What are the values of distTo[v] and distTo[w] immediately after relaxing edge  ?  

A.  10.0 and 15.0 

B.  10.0 and 17.0 

C.  12.0 and 15.0

D.  12.0 and 17.0

e = v→w

Shortest paths:  poll 2

11

distTo[v] = 10.0

distTo[w] = 17.0

s
5.0

v

w
15.0

distTo[w] = 17.0

black edges
are in edgeTo[]



Framework for shortest-paths algorithm

 
 
 
 
 
 
 
 
 
Key properties.  Throughout the generic algorithm: 

・ distTo[v] is either  or the length of a (simple)  path. 

・ distTo[v] never increases; it decreases when a shorter  path is found. 

・ edgeTo[] defines a shortest-paths tree rooted at .

∞ s↝v
s↝v

s

12

For each vertex v:  distTo[v] = ∞.

For each vertex v:  edgeTo[v] = null.

distTo[s] = 0.

Repeat until distTo[v] values converge: 
    -  Relax any edge.

Generic algorithm (to compute a SPT from s)



Framework for shortest-paths algorithm

 
 
 
 
 
 
 
 
 
Efficient implementations. 

・Which edge to relax next? 

・How many edge relaxations needed to guarantee convergence? 
 
Ex 1.  Bellman–Ford algorithm.  
Ex 2.  Dijkstra’s algorithm.  
Ex 3.  Topological sort algorithm.

13

For each vertex v:  distTo[v] = ∞.

For each vertex v:  edgeTo[v] = null.

distTo[s] = 0.

Repeat until distTo[v] values converge: 
    -  Relax any edge.

Generic algorithm (to compute a SPT from s)

next lecture
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Weighted directed edge API

API.  
 
 
 
 
 
 
 

Ex.  Relax edge .e = v→w

15

private void relax(DirectedEdge e) { 
    int v = e.from(), w = e.to(); 
    if (distTo[w] > distTo[v] + e.weight()) { 
        distTo[w] = distTo[v] + e.weight(); 
        edgeTo[w] = e; 
    } 
}

v w1.3

distTo[w] = 7.2

4.4

distTo[v] = 3.1

public class DirectedEdge

DirectedEdge(int v, int w, double weight) create weighted edge v→w

     int from() tail vertex v

     int to() head vertex w

     double weight() weight of edge v→w

   ⋮   ⋮



Weighted directed edge:  Java implementation

16

public class DirectedEdge { 
   private final int v, w; 
   private final double weight; 

 
 

}

public DirectedEdge(int v, int w, double weight) { 
  this.v = v; 
  this.w = w; 
  this.weight = weight; 
}

public int from() { 
   return v; 
}

public int to() { 
   return w; 
}

public double weight() { 
   return weight; 
}

from() and to() replace 
either() and other()



Edge-weighted digraph API

API.  Same as EdgeWeightedGraph except with DirectedEdge objects.

17

public class EdgeWeightedDigraph

EdgeWeightedDigraph(int V) edge-weighted digraph with V vertices (and no edges)

void addEdge(DirectedEdge e) add edge e

Iterable<DirectedEdge> adj(int v) edges incident from v

int V() number of vertices

int E() number of edges

 ⋮   ⋮



Edge-weighted digraph:  adjacency-lists implementation in Java

Implementation.  Almost identical to EdgeWeightedGraph.

18

public class EdgeWeightedDigraph { 
   private final int V;  
   private final Queue<DirectedEdge>[] adj; 

}

public EdgeWeightedDigraph(int V) { 
  this.V = V; 
  adj = (Queue<Edge>[]) new Queue[V]; 
  for (int v = 0; v < V; v++) 
     adj[v] = new Queue<>(); 
}

public void addEdge(DirectedEdge e) { 
  int v = e.from(); 
  adj[v].enqueue(e); 
}

public Iterable<DirectedEdge> adj(int v) { 
   return adj[v]; 
}

add edge e = v→w to
only v's adjacency list



Single-source shortest paths API

Goal.  Find the shortest path from  to every other vertex.s

19

public class SP

SP(EdgeWeightedDigraph digraph, int s) shortest paths from s in digraph

double distTo(int v) length of shortest path from s to v

boolean hasPathTo(int v) is there a path from s to v ?

Iterable <DirectedEdge> pathTo(int v) shortest path from s to v
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Bellman–Ford algorithm

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Performance.  Algorithm takes  time and uses  extra space.Θ(E V ) Θ(V )

21

for (int i = 1; i < digraph.V(); i++) 
   for (int v = 0; v < digraph.V(); v++) 
      for (DirectedEdge e : digraph.adj(v)) 
         relax(e);

pass i (relax all E edges)

For each vertex v:  distTo[v] = ∞.

For each vertex v:  edgeTo[v] = null.

distTo[s] = 0.

Repeat V-1 times: 
    – Relax all E edges.

Bellman–Ford algorithm

 passesV − 1

 private void relax(DirectedEdge e) { 
    int v = e.from(), w = e.to(); 
    if (distTo[w] > distTo[v] + e.weight()) { 
        distTo[w] = distTo[v] + e.weight(); 
        edgeTo[w] = e; 
    }        
 }

edge relaxation



Bellman–Ford algorithm demo

Repeat  times:  relax all  edges.V − 1 E

22
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v   distTo[]  edgeTo[] 

0     0.0        - 

1     5.0       0→1  

2    14.0       5→2  

3    17.0       2→3  

4     9.0       0→4  

5    13.0       4→5  

6    25.0       2→6  

7     8.0       0→7 

3

shortest-paths tree from vertex s

s



Bellman–Ford algorithm:  proof of correctness

Notation.   Let P*  =  v0 → v1  → … → vk  be a shortest path of  edges from  to  , and 
                 let  Pi  =  v0 → v1  → … → vi  be the subpath consisting of the first  edges in P*. 
 
 
 
 
 
Proposition.   After pass  of Bellman–Ford, distTo[vi]   . 
Pf.  [ by induction on number of passes i ] 

・Base case:  initially, distTo[v0]  . 

・Inductive hypothesis:  after pass , distTo[vi]    . 

・Immediately after relaxing edge  in pass , we have  
          distTo[vi+1]    distTo[vi] +  

                                       +   
                                      

・Since distTo[vi+1] is the length of some  path, we must have distTo[vi+1]      

k s = v0 v = vk

i

i = length(Pi )

= 0 = length(P0)
i = length(Pi )
ei+1 i + 1

≤ weight(ei+1)
= length(Pi ) weight(ei+1)
= length(Pi+1 )

s↝vi+1 = length(Pi+1 )
23

v0 v1 vk…
s v

e1 e2 ek
v2

e3

edge relaxation

inductive hypothesis

path Pk (consisting of k edges)

after pass i, have already found
a shortest i paths↝v

and remains that way
for the rest of algorithm



Bellman–Ford algorithm:  proof of correctness

Notation.   Let P*  =  v0 → v1  → … → vk  be a shortest path of  edges from  to  , and 
                 let  Pi  =  v0 → v1  → … → vi  be the subpath consisting of the first  edges in P*. 
 
 
 
 
 
Proposition.   After pass  of Bellman–Ford, distTo[vi]   . 
 

Corollary.  For each vertex , Bellman–Ford computes the length of a shortest  path. 
Pf. 

・There exists a shortest  path  that is simple. So,  contains  edges.  

・From the Proposition, after  passes, distTo[vk]   .   

k s = v0 v = vk

i

i = length(Pi )

v s↝v

s↝v P* P* k ≤ V − 1
k = length(Pk)

24

v0 v1 vk…
s v

e1 e2 ek
v2

e3

path Pk (consisting of k edges)

after pass i, have already found
a shortest i paths↝v

v = vk P* = Pk



Bellman–Ford algorithm:  practical improvement

Observation.  If distTo[v] does not change during pass ,  
not necessary to relax any edges incident from  in pass . 
 
Queue-based implementation of Bellman–Ford. 

・Perform vertex relaxations. 

・Maintain queue of vertices whose distTo[] values changed since it was last relaxed. 
 
 
 
 
 
 
 
Impact.   

・In the worst case, the running time is still . 

・But much faster in practice on typical inputs.

i

v i + 1

Θ(E V )

25

relax in pass irelax in pass i + 1

Created by Gan Khoon Lay
from the Noun Project

relax vertex v

1 47 935
must ensure each vertex is on queue at most once

(or exponential blowup!)

relax vertex v = relax all edges incident from v

 private void relax(int v) { 
    for (DirectedEdge e : digraph.adj(v)) 
       relax(e);        
 }

vertex relaxation



Longest path

Problem.  Given a digraph  with positive edge weights and source vertex ,  
find a longest simple path from  to every other vertex. 
 
Goal.  Design an algorithm that takes  time in the worst case.

G s
s

O(E V )

40 1

2 3

40 1

2 3

26

2

6

7

4

1

5

NP-com
ple te

length of path = 18
(1 + 4 + 7 + 6)

longest simple path from 0 to 4
0 → 1 → 2 → 3 → 4



Bellman–Ford algorithm:  negative weights

Remark.  The Bellman–Ford algorithm works even if some edge weights are negative,  
provided there are no negative cycles. 
 
Def.  A negative cycle is a directed cycle whose total length is negative. 
 
 
 
 
 
 
 
 
Negative cycles and shortest paths.  Length of path can be made arbitrarily negative  
by using negative cycle.

27

0→ 1→ 2→ 3→ 4→ 1→  ⋯  → 2→ 3→ 4→ 1→ 2→ 5

negative cycle
(length = 1 + 2 +3 + -8 = -2 < 0)

20 1

4

5

3

21

4 3

1

2

3

4 5

−8
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Edsger Dijkstra:  select quote

29



Dijkstra’s algorithm

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Key difference with Bellman–Ford.  Each edge gets relaxed exactly once!

30

For each vertex v:  distTo[v] = ∞.
For each vertex v:  edgeTo[v] = null.

T = ∅.
distTo[s] = 0.
Repeat until all vertices are marked:
   - Select unmarked vertex v with the smallest distTo[] value.
   - Mark v.
   - Relax each edge incident from v.

Dijkstra's algorithm



Dijkstra’s algorithm demo

Repeat until all vertices are marked: 

・Select unmarked vertex  with the smallest distTo[] value. 

・Mark v and relax all edges incident from .
v

v

31
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6

v   distTo[]  edgeTo[] 

0     0.0        - 

1     5.0       0→1  

2    14.0       5→2  

3    17.0       2→3  

4     9.0       0→4  

5    13.0       4→5  

6    25.0       2→6  

7     8.0       0→7 

3

shortest-paths tree from vertex s

s



Dijkstra’s algorithm:  proof of correctness

Invariant.  For each marked vertex  :  distTo[v] = d*(v). 
 
Pf.  [ by induction on number of marked vertices ] 

・Let  be next vertex marked. 

・Let  be the  path of length distTo[v]. 

・Consider any other  path . 

・Let  be first edge in  with  marked and  unmarked. 

・  is already as long as  by the time it reaches  :

v

v
P s↝v

s↝v P′￼

x→y P′￼ x y
P′￼ P y

32

P′￼

marked vertices

P

length(P)    distTo[v]=

   distTo[y]≤

   distTo[x]  +  weight(x, y)≤

   length(P ′)≤

Dijkstra chose 
v instead of yyx

v

s

notation for length of shortest  paths↝v

   d *(x)  +  weight(x, y)=

by definition

vertex x is marked 
(so it was relaxed)

induction

followed by non-negative edges

▪

≥ d *(x)

weight(x, y)

≥ 0

P ′ is a path from s to x,
followed by edge x→y,



Dijkstra’s algorithm:  proof of correctness

Invariant.  For each marked vertex  :  distTo[v] = d*(v). 
 
 
 
Corollary 1.  Dijkstra’s algorithm computes shortest path distances. 
Corollary 2.  Dijkstra’s algorithm relaxes vertices in increasing order of distance from .

v

s

33

generalizes both
level-order traversal in a tree

and breadth-first search in a graph

notation for length of shortest  paths↝v



Dijkstra’s algorithm:  Java implementation

34

public class DijkstraSP { 
   private DirectedEdge[] edgeTo; 
   private double[] distTo; 
 

   public DijkstraSP(EdgeWeightedDigraph digraph, int s) { 
      edgeTo = new DirectedEdge[digraph.V()]; 
      distTo = new double[digraph.V()]; 

 
      for (int v = 0; v < digraph.V(); v++)  
         distTo[v] = Double.POSITIVE_INFINITY; 
      distTo[s] = 0.0; 
 
 
 
 
 
 
 
   } 
}

private IndexMinPQ<Double> pq;

pq = new IndexMinPQ<Double>(digraph.V());

pq.insert(s, 0.0); 
while (!pq.isEmpty()) { 
   int v = pq.delMin(); 
   for (DirectedEdge e : digraph.adj(v)) 
      relax(e); 
}

relax vertices in increasing order 
of distance from s

PQ that supports
decreasing the key

(stay tuned)

PQ contains the
unmarked vertices

with finite distTo[] values



Dijkstra’s algorithm:  Java implementation

When relaxing an edge , also update PQ: 

・Found    first  path :	 add vertex  to PQ. 

・Found better  path:	 decrease priority associated with vertex  in PQ. 
 
 
 
 
 
 
 
 
 
 
 
 
Q.  How to efficiently implement DECREASE-KEY operation in a priority queue?

e = v→w
s↝w w
s↝w w

35

private void relax(DirectedEdge e) { 
   int v = e.from(), w = e.to(); 
   if (distTo[w] > distTo[v] + e.weight()) { 
       distTo[w] = distTo[v] + e.weight(); 
       edgeTo[w] = e; 
 
 

   }        
}

if (!pq.contains(w)) pq.insert(w, distTo[w]);  
else                 pq.decreaseKey(w, distTo[w]);

update PQ

index priority



Indexed priority queue (Section 2.4)

Associate an index between  and  with each key in a priority queue. 

・Insert a key associated with a given index. 

・Delete a minimum key and return associated index. 

・Decrease the key associated with a given index.

0 n − 1

36

for Dijkstra’s algorithm:
n = V,

index = vertex,
key = distance from s

public class IndexMinPQ<Key extends Comparable<Key>>

IndexMinPQ(int n) create PQ with indices 0, 1, … , n − 1

void insert(int i, Key key) associate key with index i

int delMin() remove min key and return associated index

void decreaseKey(int i, Key key) decrease the key associated with index i

boolean contains(int i) does the priority queue contain index i ?

boolean isEmpty() is the priority queue empty ?

   ⋮   ⋮



Decreasing the key in a binary heap

Goal.  Implement DECREASE-KEY operation in a min-oriented binary heap.

0 1 2 3 4 5 6 7 8

   pq[] – v3 v5 v7 v2 v0 v4 v6 v1

37

decrease key of vertex v2

v7

v0 v4 v6v2

v1

v5

v31

2 3

4 5 6 7

8



Decreasing the key in a binary heap

Goal.  Implement DECREASE-KEY operation in a min-oriented binary heap. 
 
Solution. 

・Find vertex in binary heap. How? 

・Change priority of vertex and call swim() to restore heap invariant. 
 
Extra data structure.  Maintain an inverse array qp[] that maps from the vertex  
to the binary heap node index.

0 1 2 3 4 5 6 7 8

   pq[] – v3 v5 v7 v2 v0 v4 v6 v1

   qp[] 5 8 4 1 6 2 4 3 –

 keys[] 1.0 2.0 3.0 0.0 6.0 8.0 4.0 2.0 –

38

decrease key of vertex v2

v7

v0 v4 v6v2

v1

v5

v31

2 3

4 5 6 7

8
vertex 2 has priority 3.0
and is at heap index 4



Dijkstra’s algorithm:  which priority queue?

Number of PQ operations:   INSERT,  DELETE-MIN,  DECREASE-KEY. 
 
 
 
 
 
 
 
 
 
 
Bottom line. 

・Array implementation optimal for complete digraphs. 

・Binary heap much faster for sparse digraphs. 

・4-way heap worth the trouble in performance-critical situations. 

・Fibonacci heap best in theory, but probably not worth implementing.

V V ≤ E

39

† amortized

PQ implementation INSERT DELETE-MIN DECREASE-KEY total

unordered array 1 V 1 V 2

binary heap log V log V log V E log V

d-way heap logd V d logd V logd V E logE / V V

Fibonacci heap 1 † log V † 1 † E + V log V



Priority-first search

Observation.  Prim and Dijkstra are essentially the same algorithm. 

・Prim:	 Choose next vertex that is closest to any vertex in the tree (via an undirected edge). 

・Dijkstra:	 Choose next vertex that is closest to the source vertex (via a directed path).

40

Prim’s algorithm Dijkstra’s algorithm



Algorithms for shortest paths

Variations on a theme:  vertex relaxations. 

・Bellman–Ford:	 relax all vertices; repeat  times. 

・Dijkstra:	 	 relax vertices in order of distance from . 

・Topological sort:	 relax vertices in topological order.

V − 1
s

41

algorithm worst-case
running time negative weights † directed 

cycles

Bellman–Ford Θ(E V) ✔ ✔

Dijkstra Θ(E log V) ✔

topological sort E ✔

†  no negative cycles

see Section 4.4 
and next lecture



Which shortest paths algorithm to use?

Select algorithm based on properties of edge-weighted digraph. 

・Non-negative weights:  Dijkstra. 

・Negative weights (but no “negative cycles”):  Bellman–Ford. 

・DAG:  topological sort.

42

algorithm worst-case
running time negative weights † directed 

cycles

Bellman–Ford Θ(E V) ✔ ✔

Dijkstra Θ(E log V) ✔

topological sort E ✔

†  no negative cycles
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 “  Do only what only you can do.  ”

                  — Edsger W. Dijkstra
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