A 1 g Or 1 [h 1IMS ROBERT SEDGEWICK | KEVIN WAYNE

4.3 MINIMUM SPANNING TREES

> introduction

> cut property

> edge-weighted graph API
» Kruskal’s algorithm

> Prim’s algorithm

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

4.3 MINIMUM SPANNING TREES

» introduction

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

A motivating example

Install minimum number of paving stones to connect all of the houses.

Spanning tree

Def. A spanning tree of a graph G is a subgraph 7 that is:
* A tree: connected and acyclic.

« Spanning: includes all of the vertices.

graph G

spanning tree T

Spanning tree

Def. A spanning tree of a graph G is a subgraph 7 that is:
* A tree: connected and acyclic.

« Spanning: includes all of the vertices.

hot a connected subgraph

Spanning tree

Def. A spanning tree of a graph G is a subgraph 7 that is:
* A tree: connected and acyclic.

« Spanning: includes all of the vertices.

nhot an acyclic subgraph

Spanning tree

Def. A spanning tree of a graph G is a subgraph 7 that is:
* A tree: connected and acyclic.

« Spanning: includes all of the vertices.

hot a spanning subgraph

Minimum spanning tree problem

Input. Connected, undirected graph G with positive edge weights.

Output. A spanning tree of minimum weight.

/CN edge weight

minimum spanning tree T*

(weight=50=4+6+5+8+9+ 11 + 7)

Brute force. Try all spanning trees?

Minimum spanning trees: quiz |

Let 7" be any spanning tree of a connected graph G with V vertices.

Which of the following properties must hold?

A. Removing any edge from 7 disconnects it.
B. Adding any edge to 7 creates a cycle.
C. T contains exactly V — 1 edges.

D. All of the above.

spanning tree T of graph G

10

Network design

Network. Vertex = network component; edge = potential connection; edge weight = cost.

N\

computer, transportation,
electrical, telecommunication

11

Hierarchical clustering

Microarray graph. Vertex = cancer tissue; edge = all pairs; edge weight = dissimilarity.

%mmfmmﬂﬁmmmﬁ%m|m%m

gene 1
gene n
Skin Liver Lung Breast Tumors Breast Normal Kidney Prostate Brain APL Ovary
Luminal Tumors Breast
Basal
Reference: Botstein & Brown group N gene expressed

B sene not expressed

12

More MST applications

MST dithering

slime mold vs. rgil network®

*

y

phylogeny tree reconstruction

/)Gmbl
Sen2 Col2
A.Br.011/009 | Sen2Co 24/:

190 A.Br.WNA

Carbosap A0174 A0193

141
30
CVI-260187 C< /‘ e /.USA6153
0

Ba4599 2-1

UR- 1.\& \99 10
A.Br.005/006 33 & A.Br.008/011
T3|ankovsk||

IEMVT 89 EVl-un2 ”"2
\ Ba 3154
31
czcs
. Ba 3166

i
C.Br.A1055
a0ss OQ— " ‘% s
e AVO/A27/ T
B.Br.001/002 / l

B.Br.KrugerB

130-" Bal03

129
%6 A02/A

A.Br.lS\ —‘ CVl-unl

% Hodol 3Qonz/m-NL
20 111199
SVAL1 O/ 59 CDC 684 . CVI-131959-5
571 Australia 94 os s ho CVI-132064-1, CVI-13185
A0442_s" (D/ '1 CVI-127491-V08551
O/ CVI-23932 CvI-188678-1 8 cw 56430 Steme CVI-128268

7/{
‘ BF1 % Vollum ‘
Kruger B 24 A0488
C{ 66
00-82 A.Br.Vollum

CNEVA-9066

A.Br.001/002

8903G 52G

A0465
B.Br.CNEVA A.Br.Aust94

13

4.3 MINIMUM SPANNING TREES

> cut property
Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Simplifying assumptions

For simplicity, we assume:
« The graph is connected.

« The edge weights are distinct.

—> MST exists.
—> MST is unique.

Note. Today’s algorithms all work even if edge weights are not distinct.

12

14

20

10

11

16

13

no two edge
weights are equal

15

Cut property

Def. A cut in an undirected graph is a partition of its vertices into two nonempty sets.

Def. A crossing edge of a cut is an edge that has one endpoint in each set.

Cut property. For any cut, its min-weight crossing edge ¢ is in the MST.

a crossing edge has one gray endpoint

/ and one white endpoint

5 \

O ’
O— . O

—~
o
Q—zo —

min-weight crossing edge
must be in the MST

16

Cut property

Def. A cut in an undirected graph is a partition of its vertices into two nonempty sets.

Def. A crossing edge of a cut is an edge that has one endpoint in each set.
Cut property. For any cut, its min-weight crossing edge ¢ is in the MST.

Note. A cut may have multiple crossing edges in the MST.

Q ; Q another crossing edge
P . .

o | —— isinthe MST

I \Q -

Q’/\\

min-weight crossing edge
must be in the MST

|
.

17

Minimum spanning trees: quiz 2

Which is the min-weight crossing edge for the cut { 2, 3,5 } ?

A. 0-1 (1)
B. 1-2 (6)
C. 2-4 (5)
D. 2-5 (4)

2 3 5 4

AN
|

18

Cut property: correctness proof

Def. A cut in an undirected graph is a partition of its vertices into two nonempty sets.

Def. A crossing edge of a cut is an edge that has one endpoint in each set.

Cut property. For any cut, its min-weight crossing edge ¢ is in the MST T*.
Pf.

Suppose ¢ is not in the MST T%.

Adding e to T* creates a unique cycle.

Some other edge fin cycle must also be a crossing edge.
Replacing fwith e in T* yields a different spanning tree 7",
Since weight(e) < weight(f), we have weight(T ") < weight(T™).

Contradiction.

/

the MST T* does
not contain e

adding e to MST T*
creates a unique cycle

19

Framework for minimum spanning tree algorithms

Generic algorithm (to compute MST in G)

T = @.
Repeat until T is a spanning tree: «—— V-1 edges
- Find a cut in G.

- e — min-weight crossing edge.

- T—Tu{el.

Efficient implementations.

* Which cut? - 2V=2 distinct cuts

 How to compute min-weight crossing edge?

Ex 1. Kruskal's algorithm.
Ex 2. Prim’s algorithm.

Ex 3. Boruvka’s algorithm.

20

4.3 MINIMUM SPANNING TREES

Algorithms > edge-weighted graph API

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Weighted edge API

API.

Edge abstraction for weighted edges.

public class Edge implements Comparable<Edge>

1nt

int

Edge(int v, 1nt w, double weight)

either()

other(int v)

double weight()

int

compareTo(Edge that)

weight

0)

edge e = v-w

create a weighted edge v—w
either endpoint

the endpoint that’s not v
weight of edge

compare edges by weight

int v = e.either();
int w = e.other(v);
double weight = e.weight();

idiom for processing an edge e

22

Weighted edge: Java implementation

public class Edge 1implements Comparable<Edge> {
private final int v, w;
private final double weight;

public Edge(int v, 1nt w, double weight) {

this.v = v;

this.w = w; «~—— constructor
this.weight = weight;

public 1int either() {
return v; <« cither endpoint

public 1nt other(int vertex) {

if (vertex == v) return w; < other endpoint
else return v;

public 1nt compareTo(Edge that) {
return Double.compare(this.weight, that.weight); = compare edges by weight

Edge-weighted graph API

API.

Same as Graph and Digraph, except with explicit Edge objects.

public class EdgeWeightedGraph

EdgeWeightedGraph(int V) edge-weighted graph with V vertices (and no edges)

void addbdge (Edge e) add the weighted edge e
Iterable<Edge> adj(int v) edges incident with vertex v
int V(O number of vertices

int ECQ number of edges

24

Edge-weighted graph: adjacency-lists representation

Maintain vertex-indexed array of lists: adj[v] contains edges incident with vertex v.

adj[/\l 3(.29—{1|2(.36—{1|7|.19—1|5].32

(1) ?\6240—»2734—>12.36—>0226—»2317

i | ™3|6[.52—{1|3|.29—{2]|3]|.17

i | ~[e6[4a].03{04a].38{4]7].37]4]5].35

3 s\lssz—»s 7].281—~4]5].35|k \gf;jgeggg;‘;g]’?;t
\\64.93—»60.58—»36.52—»62.40

>2171.3d—{1|7|.19~{0|7|.16 —|5|7|.28—14|7]|.37

Edge-weighted graph: adjacency-lists implementation

public class EdgeWeightedGraph {
private final int V;

private final Queue<Edge>|[] adj; < same as Graph (but adjacency lists of Edge objects)

public EdgeWeightedGraph(int V) {
this.V = V;
adj = (Queue<Edge>[]) new Queuel[V];
for (Aint v =0; v < V; v++)
adjlv] = new Queue<>();

public void addEdge(Edge e) {
int v = e.either(), w = e.other(v);
adjlv].enqueue(e);
adj[w].enqueue(e);

< add same Edge object to both adjacency lists

public Iterable<Edge> adj(int v) {
return adj[v];

26

Minimum spanning tree API

Q. How to represent the MST?
A. Technically, an MST is an edge-weighted graph.
But, for convenience, we represent it as a set of edges.

public class MST

MST (EdgeWeightedGraph G) constructor

Iterable<Edge> edges() edges in MST

double weight() weight of MST

27

4.3 MINIMUM SPANNING TREES

Algorithms
» Kruskal’s algorithm

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Kruskal’s algorithm demo

Consider edges in ascending order by weight:

« Add next edge to 7 unless doing so would create a cycle.

edges (sorted by weight)

0-7 0.16

2-3 0.1/

@ 1-7 0.19

@ 0-2 0.26

@ 5-7 0.28

&) ©
@ 4-5 0.35
o o

an edge-weighted graph 6-2 0.40

Minimum spanning trees: quiz 3

In which order does Kruskal’s algorithm select edges in MST?

A. 1,2,4,5, 6
B. 1,2,4,5,8
C. 1,2,5,4,8
D. 8,2,1,5, 4

N
:

. (E 6
2 3 5
\5/ e

30

Kruskal’s algorithm: correctness proof

Proposition. Kruskal’s algorithm computes the MST.

Pf. Kruskal’s algorithm adds edge e to T if and only if e is in the MST.

Kruskal’s algorithm adds edge e = v—w to T.

« Vertices v and w are in different connected components of 7.
« Cut = set of vertices connected to vin 7.
« By definition of cut, e is a crossing edge; moreover,

- no crossing edge is currently in T

- no crossing edge was considered by Kruskal before ¢
 Thus, e is a min-weight crossing edge.
 Cut property — e is in the MST. = \

Kruskal considers edges
in ascending order by weight

add edge to tree

31

Kruskal’s algorithm: correctness proof

Proposition. Kruskal’s algorithm computes the MST.

Pf. Kruskal’s algorithm adds edge e to T if and only if e is in the MST.

adding edge to tree

. . ld creat l
Kruskal’s algorithm discards edge ¢ = v—w. would create a cycie

 From Case 1, all edges currently in 7" are in the MST.

 The MST can’t contain a cycle, so it can’t also contain e¢. =

Kruskal’s algorithm: implementation challenge

Challenge. Would adding edge v—w to 7 create a cycle? If not, add it.
Efficient solution. Use the union-find data structure.
« Maintain a set for each connected component in 7, with each vertex in its own set initially.

« If vand w are in same set, then adding edge v—w to 7 would create a cycle.

« Otherwise, add edge v—w to 7"and merge sets containing v and w.

connected components

a9

Case 2: adding v-w creates a cycle Case 1: add v-w to T and merge sets containing v and w

33

Kruskal’s algorithm: Java implementation

public class KruskalMST {
private Queue<Edge> mst = new Queue<>();

public KruskalMST(EdgeWeightedGraph graph) {
Edge|[| edges = graph.edges();
Arrays.sort(edges) ;
UF uf = new UF(graph.V());

for (int 1 = 0; 1 < graph.EQ); 1++) {

Edge e = edges|[1];
int v = e.either(), w = e.other(v);
1t (uf.find(v) != uf.find(w)) {
mst.enqueue(e) ;
uf.union(v, w):

public Iterable<Edge> edges() {
return mst;

}

edges in the MST

sort edges by weight
maintain connected components

optimization: stop as soon as V-1 edges in T

greedily add edges to MST

edge v—w does not create cycle
add edge e to MST

merge connected components

34

Kruskal’s algorithm: running time

Proposition. In the worst case, Kruskal’s algorithm computes the MST
in an edge-weighted graph in O(E log E) time and O(FE) extra space.

Pf.

» Bottlenecks are sorting and union-find operations.

SORT 1 O(E log E)
UNION V-1 Oog V) *
FIND 2 FE O(og V) |

T using weighted quick union

« Total. ®(VlogV) + OFlogV) + O(ElogkE).

N/

dominated by ©O(E log E)
since graph is connected

35

Minimum spanning trees: quiz 4

Given a graph with positive edge weights, how to find a spanning tree

that minimizes the sum of the squares of the edge weights?

A. Run Kruskal’s algorithm using the original edge weights.
B. Run Kruskal’s algorithm using the squares of the edge weights.
C. Run Kruskal’s algorithm using the square roots of the edge weights.

D. All of the above.

4

!

sum of squares = 4% + 62 + 5% + 10% + 112 + 7% = 347

36

Maximum spanning tree

Problem. Given an undirected graph G with positive edge weights,

find a spanning tree that maximizes the sum of the edge weights.

Goal. Design algorithm that takes O(E log E) time in the worst case.

SN
—%47%¥
o

maximum spanning tree T* (weight = 104)

37

4.3 MINIMUM SPANNING TREES

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE > Primls algorifhm

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Prim’s algorithm demo

 Start with vertex 0 and grow tree 7.
« Repeat until 7' contains V — 1 edges:

- add to 7 the min-weight edge with exactly one endpoint in T

an edge-weighted graph

0-7
2-3
1-7
0-2
5-7
1-3
1-5
2-7
4-5
1-2
4-7
0-4
6-2
3-6
6-0
6-4

©O O O O O O O O O O O O O O o o

.16
.17
.19
.26
.28
.29
.32
.34
.35
.36
.37
.38
.40
.52
.58
.93

39

Minimum spanning trees: quiz 5

In which order does Prim’s algorithm select edges in the MST?

Assume it starts from vertex s.

A. 8,2,1,4,5
B. 8,2,1,5,4
C. 8,2,1,5,6

D. 8,2,3,4,5

N
!

5
/ 6

¢ —

8

C

40

Prim’s algorithm: proof of correctness

Proposition.

Prim’s algorithm computes the MST.
Pf. Let e = min-weight edge with exactly one endpoint in 7.

e Cut = set of vertices in 7.

« Cut property — edge ¢ is in the MST. =

Challenge. How to efficiently find min-weight edge with exactly one endpoint in 7'?

edge e = 7-5 added to tree
|

OO
(7}

>0
@ (®

O«

41

Prim’s algorithm demo: lazy implementation

 Start with vertex 0 and grow tree 7.
« Repeat until 7' contains V — 1 edges:

- add to 7 the min-weight edge with exactly one endpoint in T

ah edge-weighted graph

0-7
2-3
1-7
0-2
5-7
1-3
1-5
2-7
4-5
1-2
4-7
0-4
6-2
3-6
6-0
6-4

©O O O O O O O O O O O O O O o o

.16
.17
.19
.26
.28
.29
.32
.34
.35
.36
.37
.38
.40
.52
.58
.93

42

Prim’s algorithm: lazy implementation

Challenge. How to efficiently find min-weight edge with exactly one endpoint in 7'?

Lazy solution. Maintain a PQ of edges with (at least) one endpoint in 7.
« Key = edge; priority = weight of edge.
* DELETE-MIN to determine next edge ¢ = v—w to add to 7.
 If both endpoints v and w are marked (both in 7'), disregard.
 Otherwise, let w be the unmarked vertex (not in 7'):
- add eto 7"and mark w

- add to PQ any edge incident with w «—— but dontbotherif other

endpoint is already in T

1-7 is min weight edge with
exactly one endpoint in T

priority queue
\of crossing edges
1-7 0.19

.20
.28
. 34
.37
.38
.58

O O O O OO0

Prim’s algorithm: lazy implementation

public class LazyPrimMST {
private boolean| | marked; // MST vertices
private Queue<Edge> mst; // MST edges
private MinPQ<Edge> pq; // PQ of edges

public LazyPrimMST(EdgeWeightedGraph graph) {
pg = new MinPQ<>();
mst = new Queue<>();
marked = new boolean|[graph.V()|;

visit(G, 0); «—— assume graph G is connected

while (mst.size() < graph.V() - 1) {
Edge e = pqg.delMin();
int v = e.either(), w = e.other(v);
1t (marked|[v] && marked|[w]) continue;
mst.enqueue(e) ;
it (Imarked[v]) visit(G, v);
it (Imarked[w]) visit(G, w);:

<

private void visit(EdgeWeightedGraph graph, int v) {

marked[v] = true; <

add v to tree T

for (Edge e : graph.adj(v))
it (Imarked[e.other(v)])

pg.insert(e);

public Iterable<Edge> mst() {

return mst;

repeatedly delete the min-weight
edge e = v—w from PQ

ignore if both endpoints in tree T

add edge e to tree T

add either v or w to tree T

for each edge e = v—w:
add e to PQ if w not already in T

44

Lazy Prim’s algorithm: running time

Proposition. In the worst case, lazy Prim’s algorithm computes the MST
in O(E log E) time and O(FE) extra space.

Pf.

» Bottlenecks are PQ operations.

* Each edge is added to PQ at most once.

» Each edge is deleted from PQ at most once.

INSERT E OUogE) *

DELETE-MIN E OogE) |

T using binary heap

45

Prim’s algorithm: eager implementation

Challenge. Find min-weight edge with exactly one endpoint in 7.
Observation. For each vertex v, need only min-weight edge connecting v to 7.
 MST includes at most one edge connecting v to 7. Why?

* |If MST includes such an edge, it must take lightest such edge. Why?

Impact. PQ of vertices; O(V) extra space; O(E log V) running time in worst case.

46

MST: algorithms of the day

algorithm visualization

X A & ;
Kruskal }{\;Ji;? 173 Ij:”
/%'A,.:‘f Z.f’/% f‘};\
W AR X
Ay*‘ }::vagt“i
Prim

bottleneck

sorting

union—find

priority queue

running time

O(E log E)

O(E log V)

47

Credits

media

source

license

Muddy City Problem
Microarrays and Clustering
Image Segmentation
Phylogeny Tree
MST Dithering
Slime Mold vs. Rail Network

Mona Singh

CS Unplugged

Botstein and Brown

Felzenszwalb and Huttenlocher

Derzelle et al.

Mario Klingemann

Harvard Magazine

Princeton University

CCBY-NC-SA 4.0

by author

CCBY-NC20

Lecture Slides © Copyright 2025 Robert Sedgewick and Kevin Wayne

https://classic.csunplugged.org/documents/activities/minimal-spanning-trees/unplugged-09-minimal_spanning_trees.pdf
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://link.springer.com/article/10.1023/B:VISI.0000022288.19776.77
https://www.sciencedirect.com/science/article/pii/S156713481500115X
http://www.flickr.com/photos/quasimondo/2695389651
https://creativecommons.org/licenses/by-nc/2.0/
https://www.youtube.com/watch?v=GwKuFREOgmo
https://www.cs.princeton.edu/people/profile/mona

A final thought

“ The algorithms we write are only as good

as the questions we ask. And the best

questions come from creative thinking and

%29

collaboration. — Mona Singh

