
ROBERT SEDGEWICK | KEVIN WAYNE

F O U R T H E D I T I O N

Algorithms

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

Last updated on 11/4/25 6:39  AM

4.3 MINIMUM SPANNING TREES

‣ introduction
‣ cut property
‣ edge-weighted graph API
‣Kruskal’s algorithm
‣ Prim’s algorithm

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

4.3 MINIMUM SPANNING TREES

‣ introduction
‣ cut property
‣ edge-weighted graph API
‣Kruskal’s algorithm
‣ Prim’s algorithmROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

A motivating example

Install minimum number of paving stones to connect all of the houses.

paved, but didnt want to spend more money than necessary because the city also wanted to
build a swimming pool. The mayor therefore specified two conditions: 3

1. Enough streets must be paved so that it is possible for everyone to travel from their
house to anyone elses house only along paved roads, and

2. The paving should cost as little as possible.
Here is the layout of the city. The number of paving stones between each house represents

the cost of paving that route. Find the best route that connects all the houses, but uses as few
counters (paving stones) as possible.

Solution: the graph (for another muddy city) and the paving.

3 Other practical applications

Other practical applications based on minimal spanning trees include: 4

• Taxonomy.

• Cluster analysis: clustering points in the plane, single-linkage clustering, graph-theoretic
clustering, and clustering gene expression data.

3http://computing2school.com/category/computer-science-unplugged-2/part-ii-algorithms/lesson-9-
minimal-spanning-trees

4https://www.quora.com/What-is-a-real-time-practical-application-of-the-Minimum-Spanning-Tree-MST

2

paved, but didnt want to spend more money than necessary because the city also wanted to
build a swimming pool. The mayor therefore specified two conditions: 3

1. Enough streets must be paved so that it is possible for everyone to travel from their
house to anyone elses house only along paved roads, and

2. The paving should cost as little as possible.
Here is the layout of the city. The number of paving stones between each house represents

the cost of paving that route. Find the best route that connects all the houses, but uses as few
counters (paving stones) as possible.

Solution: the graph (for another muddy city) and the paving.

3 Other practical applications

Other practical applications based on minimal spanning trees include: 4

• Taxonomy.

• Cluster analysis: clustering points in the plane, single-linkage clustering, graph-theoretic
clustering, and clustering gene expression data.

3http://computing2school.com/category/computer-science-unplugged-2/part-ii-algorithms/lesson-9-
minimal-spanning-trees

4https://www.quora.com/What-is-a-real-time-practical-application-of-the-Minimum-Spanning-Tree-MST

2

3

Spanning tree

Def. A spanning tree of a graph is a subgraph that is:

・A tree: connected and acyclic.

・Spanning: includes all of the vertices.

G T

4

graph G

spanning tree T

not to be confused with
rooted trees in digraphs

(such as BSTs)

Spanning tree

Def. A spanning tree of a graph is a subgraph that is:

・A tree: connected and acyclic.

・Spanning: includes all of the vertices.

G T

5

not a connected subgraph

Spanning tree

Def. A spanning tree of a graph is a subgraph that is:

・A tree: connected and acyclic.

・Spanning: includes all of the vertices.

G T

6

not an acyclic subgraph

Spanning tree

Def. A spanning tree of a graph is a subgraph that is:

・A tree: connected and acyclic.

・Spanning: includes all of the vertices.

G T

7

not a spanning subgraph

Minimum spanning tree problem

Input. Connected, undirected graph with positive edge weights.
Output. A spanning tree of minimum weight.
 
 
 
 
 
 
 
 
 
 
 
 
 
Brute force. Try all spanning trees?

G

9

minimum spanning tree T*
(weight = 50 = 4 + 6 + 5 + 8 + 9 + 11 + 7)

8 14

21

16

23

edge weight

6 5

9

78

4

11

10

18

24

Minimum spanning trees: quiz 1

Let be any spanning tree of a connected graph with vertices.  
Which of the following properties must hold?

A. Removing any edge from disconnects it.

B. Adding any edge to creates a cycle.

C. contains exactly edges.

D. All of the above.

T G V

T

T

T V − 1

10spanning tree T of graph G

moreover, if you, then, remove
any other edge from that cycle,

you obtain another spanning tree

Network design

Network. Vertex = network component; edge = potential connection; edge weight = cost.

paved, but didnt want to spend more money than necessary because the city also wanted to
build a swimming pool. The mayor therefore specified two conditions: 3

1. Enough streets must be paved so that it is possible for everyone to travel from their
house to anyone elses house only along paved roads, and

2. The paving should cost as little as possible.
Here is the layout of the city. The number of paving stones between each house represents

the cost of paving that route. Find the best route that connects all the houses, but uses as few
counters (paving stones) as possible.

Solution: the graph (for another muddy city) and the paving.

3 Other practical applications

Other practical applications based on minimal spanning trees include: 4

• Taxonomy.

• Cluster analysis: clustering points in the plane, single-linkage clustering, graph-theoretic
clustering, and clustering gene expression data.

3http://computing2school.com/category/computer-science-unplugged-2/part-ii-algorithms/lesson-9-
minimal-spanning-trees

4https://www.quora.com/What-is-a-real-time-practical-application-of-the-Minimum-Spanning-Tree-MST

2

11

computer, transportation,
electrical, telecommunication

Hierarchical clustering

Microarray graph. Vertex = cancer tissue; edge = all pairs; edge weight = dissimilarity.

12

Reference: Botstein & Brown group

gene 1

gene n

gene expressed
gene not expressed

More MST applications

13

 slime mold vs. rail networkMST dithering

Figure 2: A street scene (320 × 240 color image), and the segmentation results pro-

duced by our algorithm (σ = 0.8, k = 300).

Figure 3: A baseball scene (432 × 294 grey image), and the segmentation results

produced by our algorithm (σ = 0.8, k = 300).

Figure 4: An indoor scene (image 320 × 240, color), and the segmentation results

produced by our algorithm (σ = 0.8, k = 300).

17

image segmentation

phylogenetic sub-groups, A01 and A02. The first one contains the
A.Br.Ames lineage (strains Ames Ancestor, Ames, A2012 and
A0248) and three strains isolated in China (A16), Japan (Ba103)
(Kuroda et al., 2010) or Indonesia (A0389). The A01 sub-group (also
termed ‘‘Ames sub-group’’) radiates very shortly after the A01-A02
divergence (1 SNP) into at least three sub-branches (Fig. 1).

The A02 sub-group (also termed ‘‘Sterne sub-group’’) includes
the terminal reference Sterne vaccine strain. The six Dutch
A.Br.001/002 isolates cluster within the A02 sub-group that also
contains French A.Br.001/002 strains (08-8_20) isolated from the
Doubs department in the North East of France (Girault et al.,
2014a). Five of the Dutch A.Br.001/002 isolates are closely related
to each other, differing by a maximum of three chromosomal
SNPs. Similar SNP patterns were found using both virulence plas-
mids data (Fig. 2).These isolates were collected during a series of
anthrax outbreaks on a livestock farm in Winsum (Groningen).
The first case in July 1991 (CVI127491-V08551) involved the death
of a bull. Apparently the possibility of anthrax was not taken into
account and the carcass was opened on the farm, leading to con-
tamination of the premises. Until November 1991 at least four
additional outbreaks occurred among dairy and beef cattle on the
farm: on August 14th (CVI128268), October 19th (CVI131185),
October 28th (CVI131959) and October 30th (CVI-128268)
(Table 2). These ultimately resulted in nine animal casualties.
During this period the herd was vaccinated and animals with ele-
vated body temperature were treated with antiserum produced by

CVI. We identified 63 SNPs that differentiated these isolates from
the sixth Dutch A.Br.001/002 isolate, of which 32 were unique to
the above Dutch sub-cluster and 28 unique to the CVI-un1 strain.
No information is available on the origin of this isolate from 1968.

The A.Br.001/002 group may have originated in China
(Simonson et al., 2009) but is also distributed at higher latitudes
in Western Europe. It accounts for a significant part of the
European B. anthracis distribution in Denmark, Belgium, the
United Kingdom, the Netherlands and was also found in northeast-
ern France (Derzelle and Thierry, 2013; Girault et al., 2014a).

3.4. A.Br.008/009 phylogenetic analysis

The two TransEurasian (TEA) Dutch A.Br.008/009 isolates CVI-
260187 and CVI-un2 were recovered in 1986 (A.Br.011/009) and
1976 (A.B.008/011) respectively. Unfortunately documentation
on their origin is lacking. These isolates were found to be phyloge-
netically related to (i) the Carbosap vaccine and all French strains
(including 99-100) belonging to the third branch of the A.Br.011/
009 sub-groups previously described (Girault et al., 2014a); or to
(ii) heroin-associated strains of the A.Br.008/011 sub-group iso-
lated during the heroin outbreaks occurring among drug users in
Europe from 2000 to 2013 (Price et al., 2012; Hanczaruk et al.,
2014). The TEA group has been found in most European countries.
It is well established in Southern and Eastern Europe and repre-
sents the dominant subgroup in Italy, Bulgaria, Hungary and

Fig. 1. Position of the eleven Dutch strains on the B. anthracis phylogenetic tree based on whole-genome SNP analysis. Minimum spanning tree based on 6316 chromosomal
SNPs. The 13 different canSNP groups are color-coded: C.Br.A1055 in white, B.Br.CNEVA in yellow, B.Br.001/002 and B.Br.Kruger in orange, A.Br.011/009 in light blue, A.Br.008/
011 in blue, A.Br.WNA in dark blue, A.Br.005/006 in pink, A.Br003/004 in red, A.Br001/002 in green, A.Br.WNA in dark green, A.Br.Aust94 in brown and A.Br.Vollum in purple.
The position of the 11 newly sequenced isolates from the Netherlands (bold and underlined), the African IEMVT89 strain and 40 available whole genome-sequenced strains is
marked. The length of each branch is proportional (logarithmic scale) to the number of SNPs identified between strains. Indicated in red is the position of some new or
published SNPs specific to various canSNP sub-groups: A.Br.13, A.Br.14, A.Br.15, A.Br.26 and A.Br.27 (A.Br.Aust94); SNP 111199 and AVO/A2a0 (A.Br.Vollum); A02/A and A02/
B1-NL (A.Br.001/002 subgroup A02); A08/D (A.Br.008/011) and A11/3 (A.Br.011/009 Branch 3). Total tree size is 6457, i.e. it contains approximately 2.2% of homoplasia. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

S. Derzelle et al. / Infection, Genetics and Evolution 32 (2015) 370–376 373

phylogeny tree reconstruction

4.3 MINIMUM SPANNING TREES

‣ introduction
‣ cut property
‣ edge-weighted graph API
‣Kruskal’s algorithm
‣ Prim’s algorithmROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Simplifying assumptions

For simplicity, we assume:

・The graph is connected. MST exists.

・The edge weights are distinct. MST is unique.
 
Note. Today’s algorithms all work even if edge weights are not distinct.

⟹
⟹

15

6

1

2
4

7
10

5

9

12

14

20

16

8

13

no two edge
weights are equal

11

3

see Exercise 4.3.3
(solution on booksite)

assumption simplifies
the analysis and exposition

Cut property

Def. A cut in an undirected graph is a partition of its vertices into two nonempty sets.
Def. A crossing edge of a cut is an edge that has one endpoint in each set.
 
Cut property. For any cut, its min-weight crossing edge is in the MST.e

16

a crossing edge has one gray endpoint
and one white endpoint

min-weight crossing edge
must be in the MST

10

5

20

16

11

3

Cut property

Def. A cut in an undirected graph is a partition of its vertices into two nonempty sets.
Def. A crossing edge of a cut is an edge that has one endpoint in each set.
 
Cut property. For any cut, its min-weight crossing edge is in the MST.
 
Note. A cut may have multiple crossing edges in the MST.

e

17

6

1

2
4

9
8

another crossing edge
is in the MST

3

min-weight crossing edge
must be in the MST

Minimum spanning trees: quiz 2

Which is the min-weight crossing edge for the cut ?

A. 0–1 (1)

B. 1–2 (6)

C. 2–4 (5)

D. 2–5 (4)

{ 2, 3, 5 }

18

both vertices gray

crossing edge (but not min-weight)

both vertices white

3 4

0

58

1 21 6

42

7

9 3 5

Cut property: correctness proof

Def. A cut in an undirected graph is a partition of its vertices into two nonempty sets.  
Def. A crossing edge of a cut is an edge that has one endpoint in each set.

Cut property. For any cut, its min-weight crossing edge is in the MST .
Pf. [by contradiction]

・Suppose is not in the MST .

・Adding to creates a unique cycle.

・Some other edge in cycle must also be a crossing edge.

・Replacing with in yields a different spanning tree .

・Since , we have .

・Contradiction.

e T*

e T*
e T*

f
f e T* T ′

weight(e) < weight(f) weight(T ′) < weight(T*)

19

the MST does
not contain

T*
e

adding to MST
creates a unique cycle

e T*

f

e

Framework for minimum spanning tree algorithms

 
 
 
 
 
 
 
 
 
Efficient implementations.

・Which cut?

・How to compute min-weight crossing edge?
 
Ex 1. Kruskal’s algorithm.
Ex 2. Prim’s algorithm.
Ex 3. Borüvka’s algorithm.

20

T = ∅.
Repeat until T is a spanning tree:

 - Find a cut in G.

 - e ← min-weight crossing edge.

 - T ← T { e }.∪

Generic algorithm (to compute MST in G)

 edgesV − 1

 distinct cuts2V−2

4.3 MINIMUM SPANNING TREES

‣ introduction
‣ cut property
‣ edge-weighted graph API
‣Kruskal’s algorithm
‣ Prim’s algorithmROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

API. Edge abstraction for weighted edges.

public class Edge

Edge(int v, int w, double weight) create a weighted edge v–w

 int either() either endpoint

 int other(int v) the endpoint that’s not v

 double weight() weight of edge

 int compareTo(Edge that) compare edges by weight

 ⋮ ⋮

Weighted edge API

22

v
weight

w

edge e = v–w

implements Comparable<Edge>

int v = e.either();
int w = e.other(v);
double weight = e.weight();

idiom for processing an edge e

Weighted edge: Java implementation

23

public class Edge implements Comparable<Edge> {
 private final int v, w;
 private final double weight;

}

public Edge(int v, int w, double weight) {
 this.v = v;
 this.w = w;
 this.weight = weight;
}

public int either() {
 return v;
}

public int other(int vertex) {
 if (vertex == v) return w;
 else return v;
}

public int compareTo(Edge that) {
 return Double.compare(this.weight, that.weight);
}

constructor

either endpoint

other endpoint

compare edges by weight

Edge-weighted graph API

API. Same as Graph and Digraph, except with explicit Edge objects.

24

 public class EdgeWeightedGraph

EdgeWeightedGraph(int V) edge-weighted graph with V vertices (and no edges)

void addEdge(Edge e) add the weighted edge e

Iterable<Edge> adj(int v) edges incident with vertex v

int V() number of vertices

int E() number of edges

⋮ ⋮

Maintain vertex-indexed array of lists: adj[v] contains edges incident with vertex .v

Edge-weighted graph: adjacency-lists representation

25

Edge-weighted graph representation

adj[]
0

1

2

3

4

5

6

7

6 0 .58 0 2 .26 0 4 .38 0 7 .16 Bag
objects

8
16
4 5 0.35
4 7 0.37
5 7 0.28
0 7 0.16
1 5 0.32
0 4 0.38
2 3 0.17
1 7 0.19
0 2 0.26
1 2 0.36
1 3 0.29
2 7 0.34
6 2 0.40
3 6 0.52
6 0 0.58
6 4 0.93

1 3 .29 1 2 .36 1 7 .19 1 5 .32

6 2 .40 2 7 .34 1 2 .36 0 2 .26 2 3 .17

3 6 .52 1 3 .29 2 3 .17

6 4 .93 0 4 .38 4 7 .37 4 5 .35

1 5 .32 5 7 .28 4 5 .35

6 4 .93 6 0 .58 3 6 .52 6 2 .40

2 7 .34 1 7 .19 0 7 .16 5 7 .28 4 7 .37

references to the
same Edge object

tinyEWG.txt
V

E
adj[]

0
1
2
3
4
5
6
7

Edge-weighted graph: adjacency-lists implementation

26

public class EdgeWeightedGraph {
 private final int V;
 private final Queue<Edge>[] adj;

}

same as Graph (but adjacency lists of Edge objects)

public EdgeWeightedGraph(int V) {
 this.V = V;
 adj = (Queue<Edge>[]) new Queue[V];
 for (int v = 0; v < V; v++)
 adj[v] = new Queue<>();
}

public void addEdge(Edge e) {
 int v = e.either(), w = e.other(v);
 adj[v].enqueue(e);
 adj[w].enqueue(e);
}

public Iterable<Edge> adj(int v) {
 return adj[v];
}

add same Edge object to both adjacency lists

Minimum spanning tree API

Q. How to represent the MST?
A. Technically, an MST is an edge-weighted graph.
 But, for convenience, we represent it as a set of edges.

27

 public class MST

MST(EdgeWeightedGraph G) constructor

Iterable<Edge> edges() edges in MST

double weight() weight of MST

 ⋮ ⋮

4.3 MINIMUM SPANNING TREES

‣ introduction
‣ cut property
‣ edge-weighted graph API
‣Kruskal’s algorithm
‣ Prim’s algorithmROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Kruskal’s algorithm demo

Consider edges in ascending order by weight:

・Add next edge to unless doing so would create a cycle.T

29

edges (sorted by weight)

0-7 0.16

2-3 0.17

1-7 0.19

0-2 0.26

5-7 0.28

1-3 0.29

1-5 0.32

2-7 0.34

4-5 0.35

1-2 0.36

4-7 0.37

0-4 0.38

6-2 0.40

3-6 0.52

6-0 0.58

6-4 0.93

5

4

7

1
3

0

2

6

an edge-weighted graph

edges (sorted by weight)

Minimum spanning trees: quiz 3

In which order does Kruskal’s algorithm select edges in MST?  

A. 1, 2, 4, 5, 6

B. 1, 2, 4, 5, 8

C. 1, 2, 5, 4, 8

D. 8, 2, 1, 5, 4

30

8

1 6

42

7

9 3 5

Kruskal’s algorithm: correctness proof

Proposition. [Kruskal 1956] Kruskal’s algorithm computes the MST.  

Pf. Kruskal’s algorithm adds edge to if and only if is in the MST.
 
[Case 1] Kruskal’s algorithm adds edge to .

・Vertices and are in different connected components of .

・Cut = set of vertices connected to in .

・By definition of cut, is a crossing edge; moreover,
– no crossing edge is currently in
– no crossing edge was considered by Kruskal before

・Thus, is a min-weight crossing edge.

・Cut property is in the MST. ▪

e T e

⟹ e = v−w T
v w T

v T
e

T
e

e
⟹ e

31

adding edge to tree
would create a cycle

add edge to tree

v
w

Kruskal considers edges
in ascending order by weight

Kruskal’s algorithm: correctness proof

Proposition. [Kruskal 1956] Kruskal’s algorithm computes the MST.  
 
Pf. Kruskal’s algorithm adds edge to if and only if is in the MST.
 
[Case 2] Kruskal’s algorithm discards edge .

・From Case 1, all edges currently in are in the MST.

・The MST can’t contain a cycle, so it can’t also contain . ▪

e T e

⟸ e = v−w
T

e

32

adding edge to tree
would create a cycle

add edge to tree

v w

Challenge. Would adding edge to create a cycle? If not, add it.  

Efficient solution. Use the union–find data structure.

・Maintain a set for each connected component in , with each vertex in its own set initially.

・If and are in same set, then adding edge to would create a cycle. [Case 2]

・Otherwise, add edge to and merge sets containing and . [Case 1]

v−w T

T
v w v−w T

v−w T v w

Kruskal’s algorithm: implementation challenge

v w

33

Case 2: adding v–w creates a cycle

v w

Case 1: add v–w to T and merge sets containing v and w

w

v

connected components

Kruskal’s algorithm: Java implementation

34

public class KruskalMST {
 private Queue<Edge> mst = new Queue<>();

 public KruskalMST(EdgeWeightedGraph graph) {
 Edge[] edges = graph.edges();
 Arrays.sort(edges);
 UF uf = new UF(graph.V());

 for (int i = 0; i < graph.E(); i++) {

 }
 }

 public Iterable<Edge> edges() {
 return mst;
 }
}

Edge e = edges[i];
int v = e.either(), w = e.other(v);
if (uf.find(v) != uf.find(w)) {
 mst.enqueue(e);
 uf.union(v, w);
}

sort edges by weight

greedily add edges to MST

edge v–w does not create cycle

merge connected components
add edge e to MST

maintain connected components

edges in the MST

optimization: stop as soon as V−1 edges in T

Kruskal’s algorithm: running time

Proposition. In the worst case, Kruskal’s algorithm computes the MST  
in an edge-weighted graph in time and extra space.  

Pf.

・Bottlenecks are sorting and union–find operations.  
 
 
 
 
 
 
 

・Total. + + .

Θ(E log E) Θ(E)

Θ(V log V) Θ(E log V) Θ(E log E)

35

† using weighted quick union

operation frequency time per op

SORT 1 Θ(E log E)

UNION V − 1 Θ(log V) †

FIND 2 E Θ(log V) †

dominated by Θ(E log E)
since graph is connected

x < y () x2 < y2 ()
p
x <

p
y

<latexit sha1_base64="hhod+WAkJZX0HprU9ewpXth1fhI=">AAACoXichVHRTtswFHUC2xiDrcDjXiyqSXuqUoYY0/aAtJdN2kOHKCA1XXXj3LQWjh3sm5Eo6ofugX9Z0kZsBSSuZOvonHN97eMoU9JREPzx/LX1Z89fbLzcfLW1/fpNZ2f33JncChwKo4y9jMChkhqHJEnhZWYR0kjhRXT1tdEvfqN10ugzKjMcpzDVMpECqKYmnZuCh5/5l2YrOefhdQ4xD38YPVWYkJXTGYG15qZVil8H//wNfsIfumtLVTG/a1oS5XzS6Qa9YFH8Iei3oMvaGkx2vN0wNiJPUZNQ4NyoH2Q0rsCSFArnm2HuMANxBVMc1VBDim5cLRKa83c1E/PE2Hpp4gv2/44KUufKNKqdKdDM3dca8jFtlFNyPK6kznJCLZaDklxxMryJm8fSoiBV1gCElfVduZiBBUH1p6xMWZydoVh5SVXkWgoT4z1WUUEWlil+auroLrOH4Pyg1//QO/x52D05bvPcYG/ZPnvP+uwjO2Hf2IANmWC33pq35W37Xf+7P/BPl1bfa3v22Er5o78G+s09</latexit>

Minimum spanning trees: quiz 4

Given a graph with positive edge weights, how to find a spanning tree 
that minimizes the sum of the squares of the edge weights?  

A. Run Kruskal’s algorithm using the original edge weights.

B. Run Kruskal’s algorithm using the squares of the edge weights.

C. Run Kruskal’s algorithm using the square roots of the edge weights.

D. All of the above.

36
sum of squares = 42 + 62 + 52 + 102 + 112 + 72 = 347

6

5

7104

11

Maximum spanning tree

Problem. Given an undirected graph G with positive edge weights,  
find a spanning tree that maximizes the sum of the edge weights.

Goal. Design algorithm that takes time in the worst case. Θ(E log E)

37
maximum spanning tree T* (weight = 104)

14 19

17

712 13 6

5

8

9

18 10 15

16

4.3 MINIMUM SPANNING TREES

‣ introduction
‣ cut property
‣ edge-weighted graph API
‣Kruskal’s algorithm
‣ Prim’s algorithmROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Prim’s algorithm demo

・Start with vertex and grow tree .

・Repeat until contains edges:
– add to the min-weight edge with exactly one endpoint in

0 T
T V − 1

T T

39

5

4

7

1
3

0

2

6

an edge-weighted graph

0-7 0.16

2-3 0.17

1-7 0.19

0-2 0.26

5-7 0.28

1-3 0.29

1-5 0.32

2-7 0.34

4-5 0.35

1-2 0.36

4-7 0.37

0-4 0.38

6-2 0.40

3-6 0.52

6-0 0.58

6-4 0.93

Minimum spanning trees: quiz 5

In which order does Prim’s algorithm select edges in the MST?

Assume it starts from vertex .  

A. 8, 2, 1, 4, 5

B. 8, 2, 1, 5, 4

C. 8, 2, 1, 5, 6

D. 8, 2, 3, 4, 5

s

40

s 8

1 5

62

4

9 3 7

Prim’s algorithm: proof of correctness

Proposition. [Jarník 1930, Dijkstra 1957, Prim 1959]  
Prim’s algorithm computes the MST.  

Pf. Let = min-weight edge with exactly one endpoint in .

・Cut = set of vertices in .

・Cut property edge is in the MST. ▪
 
 
Challenge. How to efficiently find min-weight edge with exactly one endpoint in ? 

e T
T

⟹ e

T

41

edge e = 7-5 added to tree

Prim’s algorithm demo: lazy implementation

・Start with vertex and grow tree .

・Repeat until contains edges:
– add to the min-weight edge with exactly one endpoint in

0 T
T V − 1

T T

42

5

4

7

1
3

0

2

6

an edge-weighted graph

0-7 0.16

2-3 0.17

1-7 0.19

0-2 0.26

5-7 0.28

1-3 0.29

1-5 0.32

2-7 0.34

4-5 0.35

1-2 0.36

4-7 0.37

0-4 0.38

6-2 0.40

3-6 0.52

6-0 0.58

6-4 0.93

Prim’s algorithm: lazy implementation

Challenge. How to efficiently find min-weight edge with exactly one endpoint in ? 

Lazy solution. Maintain a PQ of edges with (at least) one endpoint in .

・Key = edge; priority = weight of edge.

・DELETE-MIN to determine next edge to add to .

・If both endpoints and are marked (both in), disregard.

・Otherwise, let be the unmarked vertex (not in):
– add to and mark
– add to PQ any edge incident with

T

T

e = v−w T
v w T

w T
e T w

w

43

1-7 0.19
0-2 0.26
5-7 0.28
2-7 0.34
4-7 0.37
0-4 0.38
6-0 0.58

priority queue
of crossing edges

1-7 is min weight edge with
exactly one endpoint in T

but don’t bother if other
endpoint is already in T

 public Iterable<Edge> mst() {
 return mst;
 }

public class LazyPrimMST {
 private boolean[] marked; // MST vertices
 private Queue<Edge> mst; // MST edges
 private MinPQ<Edge> pq; // PQ of edges

 public LazyPrimMST(EdgeWeightedGraph graph) {
 pq = new MinPQ<>();
 mst = new Queue<>();
 marked = new boolean[graph.V()];
 visit(G, 0);

 }
 ...
}

Prim’s algorithm: lazy implementation

44

while (mst.size() < graph.V() - 1) {
 Edge e = pq.delMin();
 int v = e.either(), w = e.other(v);
 if (marked[v] && marked[w]) continue;
 mst.enqueue(e);
 if (!marked[v]) visit(G, v);
 if (!marked[w]) visit(G, w);
}

repeatedly delete the min-weight
edge e = v–w from PQ

ignore if both endpoints in tree T

add either v or w to tree T

assume graph G is connected

add edge e to tree T

private void visit(EdgeWeightedGraph graph, int v) {
 marked[v] = true;
 for (Edge e : graph.adj(v))
 if (!marked[e.other(v)])
 pq.insert(e);
}

for each edge e = v–w:
add e to PQ if w not already in T

add v to tree T

Lazy Prim’s algorithm: running time

Proposition. In the worst case, lazy Prim’s algorithm computes the MST  
in time and extra space.
 
Pf.

・Bottlenecks are PQ operations.

・Each edge is added to PQ at most once.

・Each edge is deleted from PQ at most once.

Θ(E log E) Θ(E)

45

operation frequency time per op

INSERT E Θ(log E) †

DELETE-MIN E Θ(log E) †

† using binary heap

Prim’s algorithm: eager implementation

Challenge. Find min-weight edge with exactly one endpoint in .
 
Observation. For each vertex , need only min-weight edge connecting to .

・MST includes at most one edge connecting to . Why?

・If MST includes such an edge, it must take lightest such edge. Why?
 
Impact. PQ of vertices; extra space; running time in worst case.

T

v v T
v T

Θ(V) Θ(E log V)

46

5

4

7

1
3

0

2

6

see te xtbook

for de tai ls

instead of edges

MST: algorithms of the day

47

algorithm visualization bottleneck running time

Kruskal
sorting

union–find
Θ(E log E)

Prim priority queue Θ(E log V)

Lecture Slides © Copyright 2025 Robert Sedgewick and Kevin Wayne

Credits

48

media source license

Muddy City Problem CS Unplugged CC BY-NC-SA 4.0

Microarrays and Clustering Botstein and Brown by author

Image Segmentation Felzenszwalb and Huttenlocher

Phylogeny Tree Derzelle et al.

MST Dithering Mario Klingemann CC BY-NC 2.0

Slime Mold vs. Rail Network Harvard Magazine

Mona Singh Princeton University

https://classic.csunplugged.org/documents/activities/minimal-spanning-trees/unplugged-09-minimal_spanning_trees.pdf
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://link.springer.com/article/10.1023/B:VISI.0000022288.19776.77
https://www.sciencedirect.com/science/article/pii/S156713481500115X
http://www.flickr.com/photos/quasimondo/2695389651
https://creativecommons.org/licenses/by-nc/2.0/
https://www.youtube.com/watch?v=GwKuFREOgmo
https://www.cs.princeton.edu/people/profile/mona

A final thought

49

 “ The algorithms we write are only as good
 as the questions we ask. And the best
 questions come from creative thinking and
 collaboration. ” — Mona Singh

