

4.3 MINIMUM SPANNING TREES

- ▶ *introduction*
- ▶ *cut property*
- ▶ *edge-weighted graph API*
- ▶ *Kruskal's algorithm*
- ▶ *Prim's algorithm*

<https://algs4.cs.princeton.edu>

4.3 MINIMUM SPANNING TREES

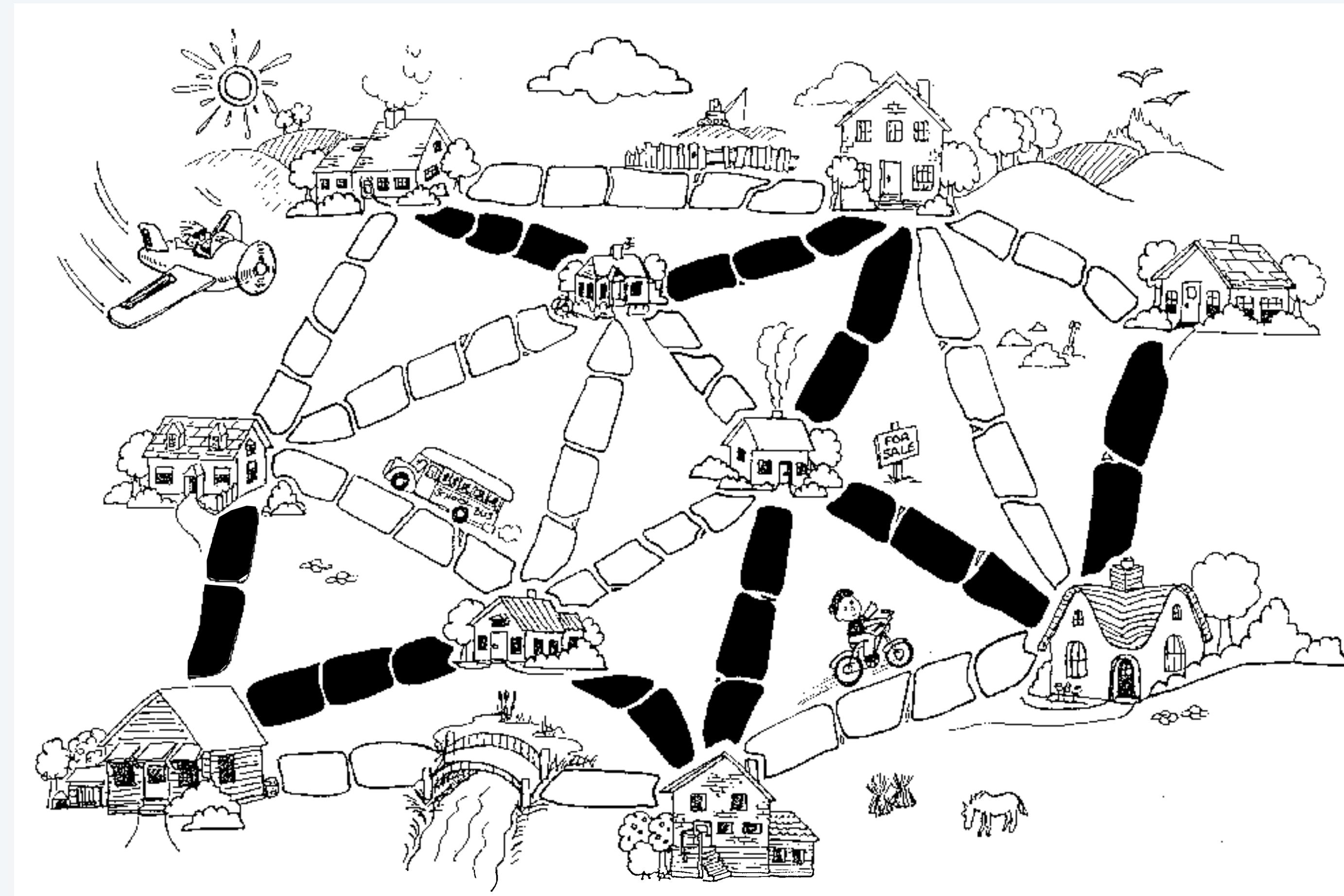
- ▶ *introduction*
- ▶ *cut property*
- ▶ *edge-weighted graph API*
- ▶ *Kruskal's algorithm*
- ▶ *Prim's algorithm*

ROBERT SEDGEWICK | KEVIN WAYNE

<https://algs4.cs.princeton.edu>

A motivating example

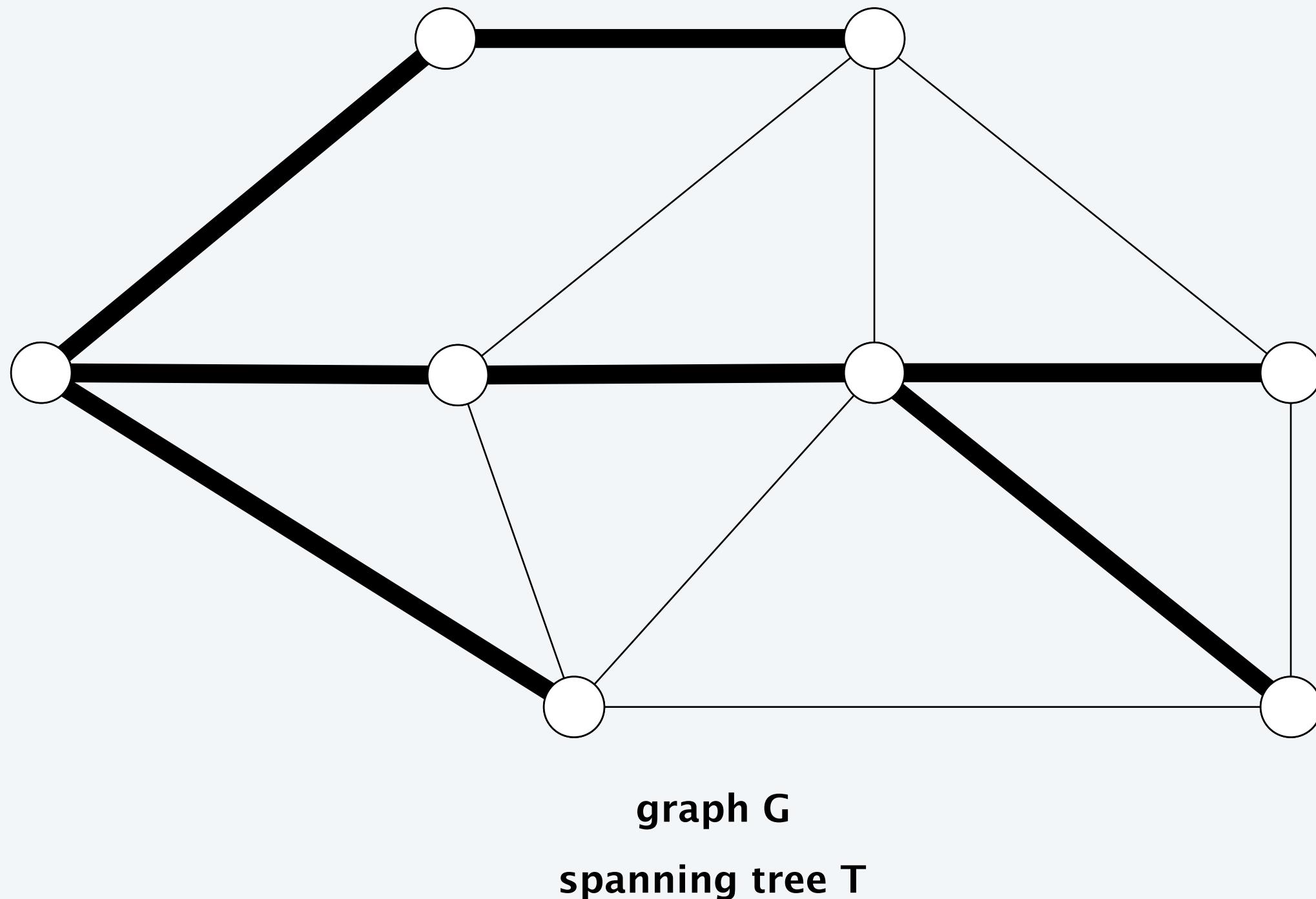
Install minimum number of paving stones to connect all of the houses.



Spanning tree

Def. A **spanning tree** of a graph G is a subgraph T that is:

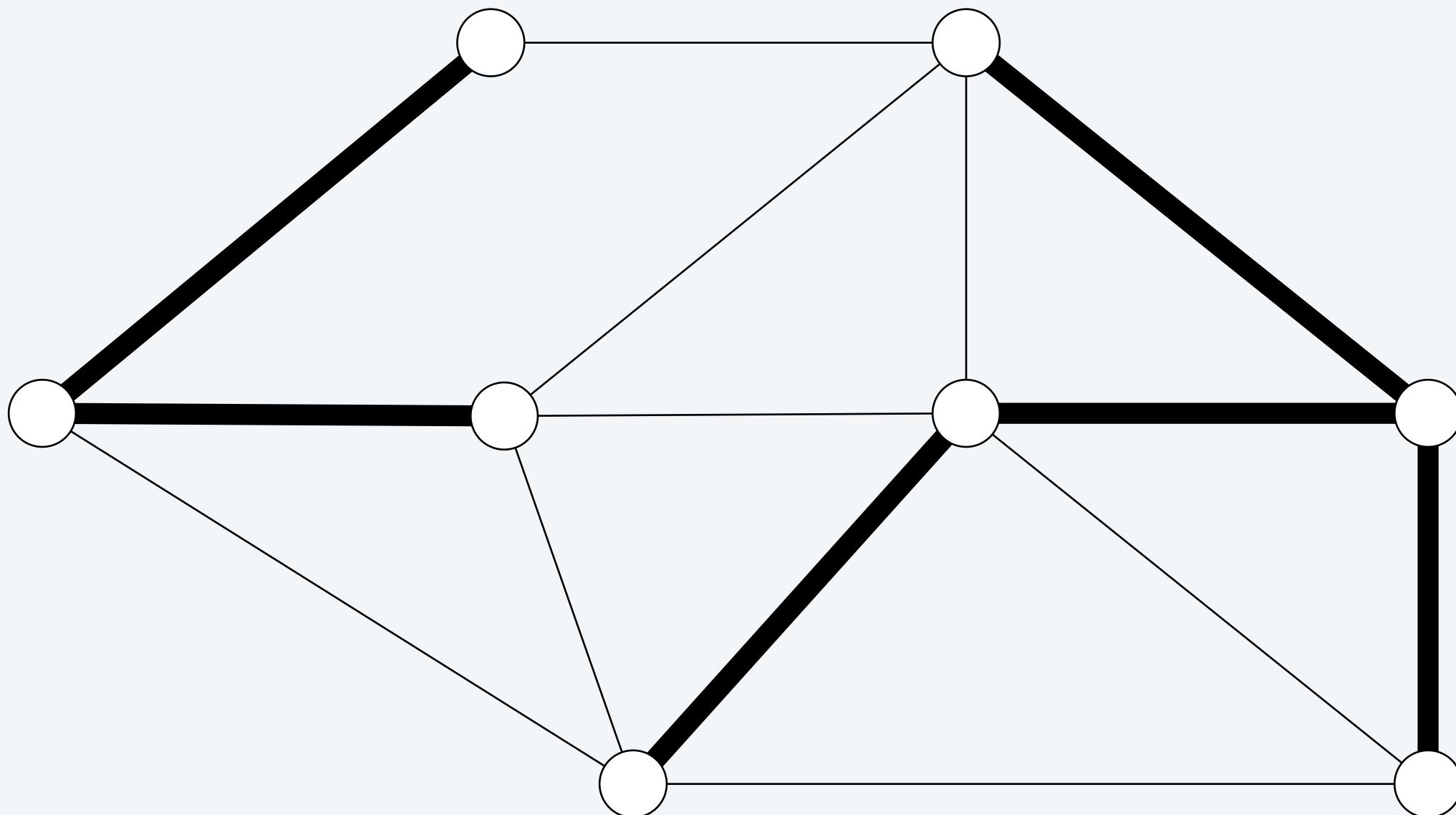
- A tree: connected and acyclic. ← *not to be confused with rooted trees in digraphs (such as BSTs)*
- Spanning: includes all of the vertices.



Spanning tree

Def. A **spanning tree** of a graph G is a subgraph T that is:

- A tree: connected and acyclic.
- Spanning: includes all of the vertices.

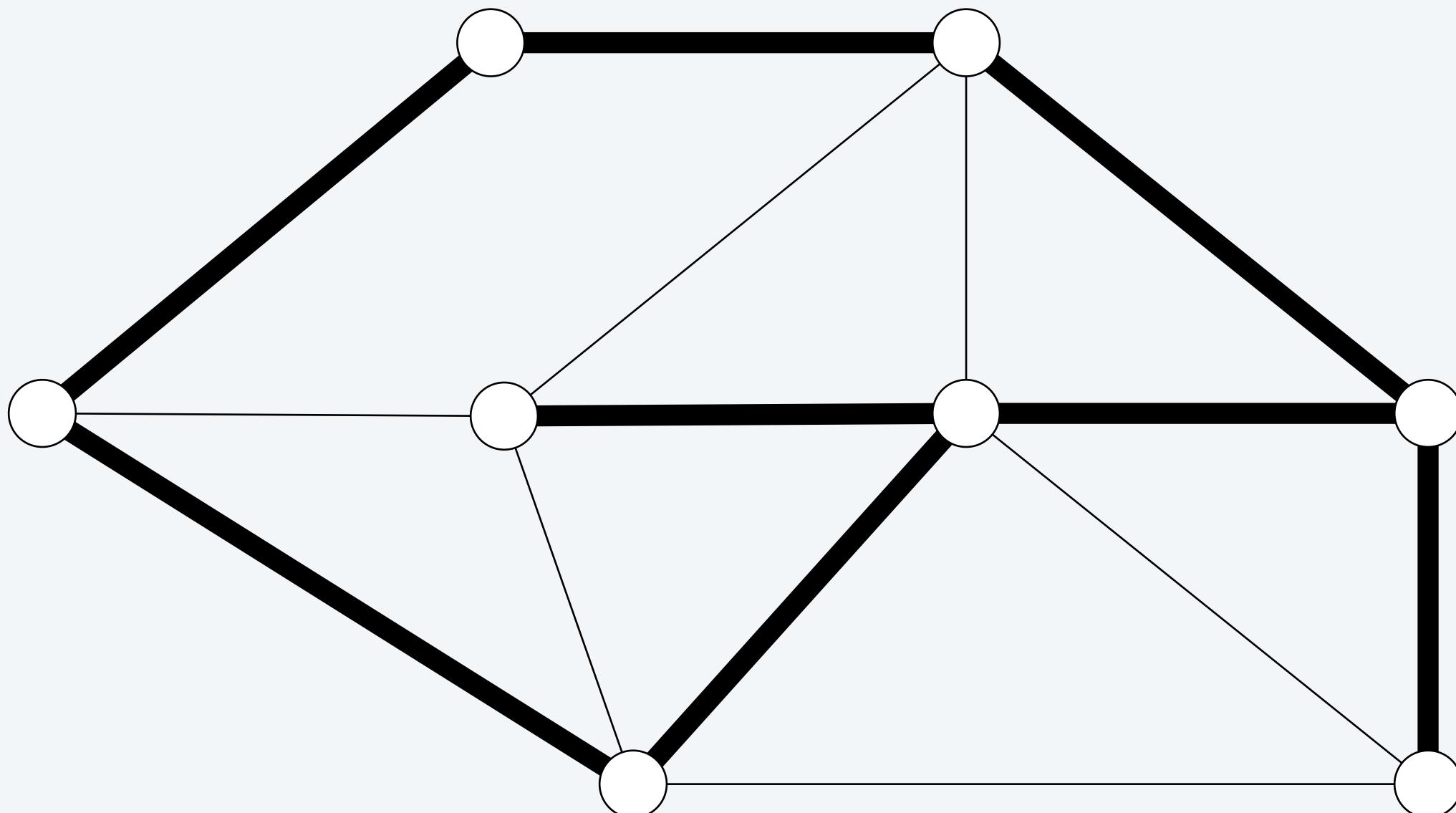


not a connected subgraph

Spanning tree

Def. A **spanning tree** of a graph G is a subgraph T that is:

- A tree: connected and acyclic.
- Spanning: includes all of the vertices.

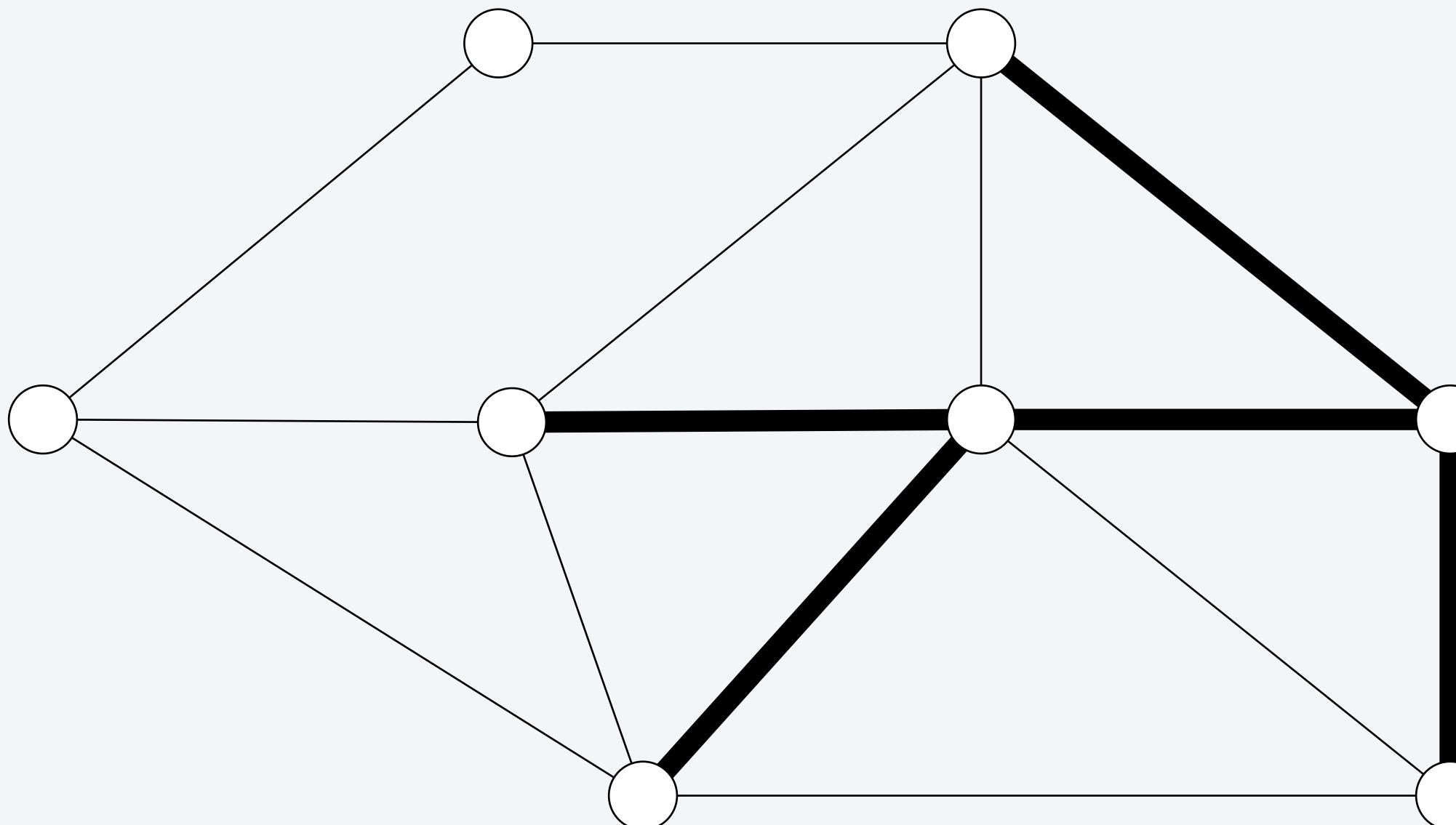


not an acyclic subgraph

Spanning tree

Def. A **spanning tree** of a graph G is a subgraph T that is:

- A tree: connected and acyclic.
- Spanning: includes all of the vertices.

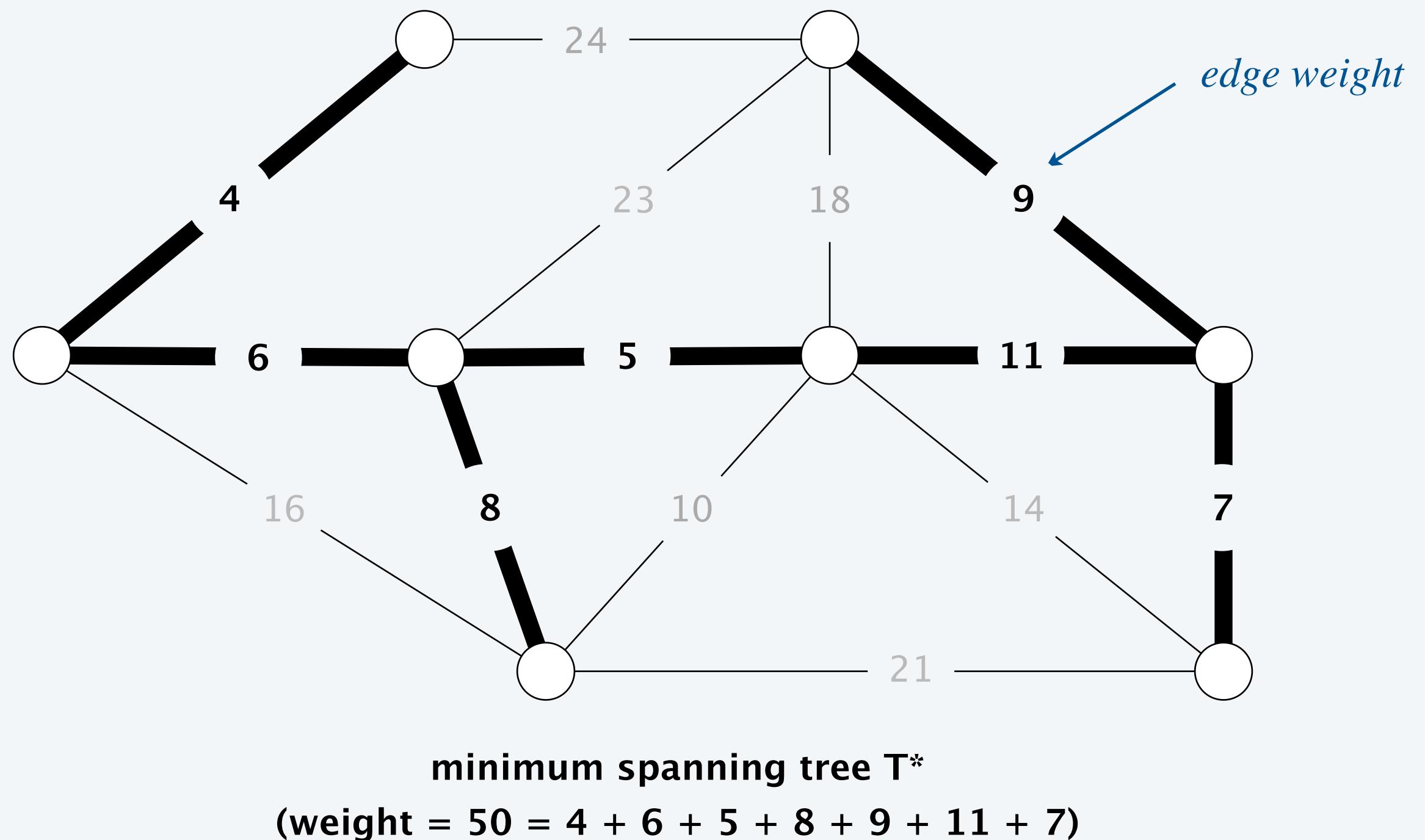


not a spanning subgraph

Minimum spanning tree problem

Input. Connected, undirected graph G with positive edge weights.

Output. A spanning tree of minimum weight.

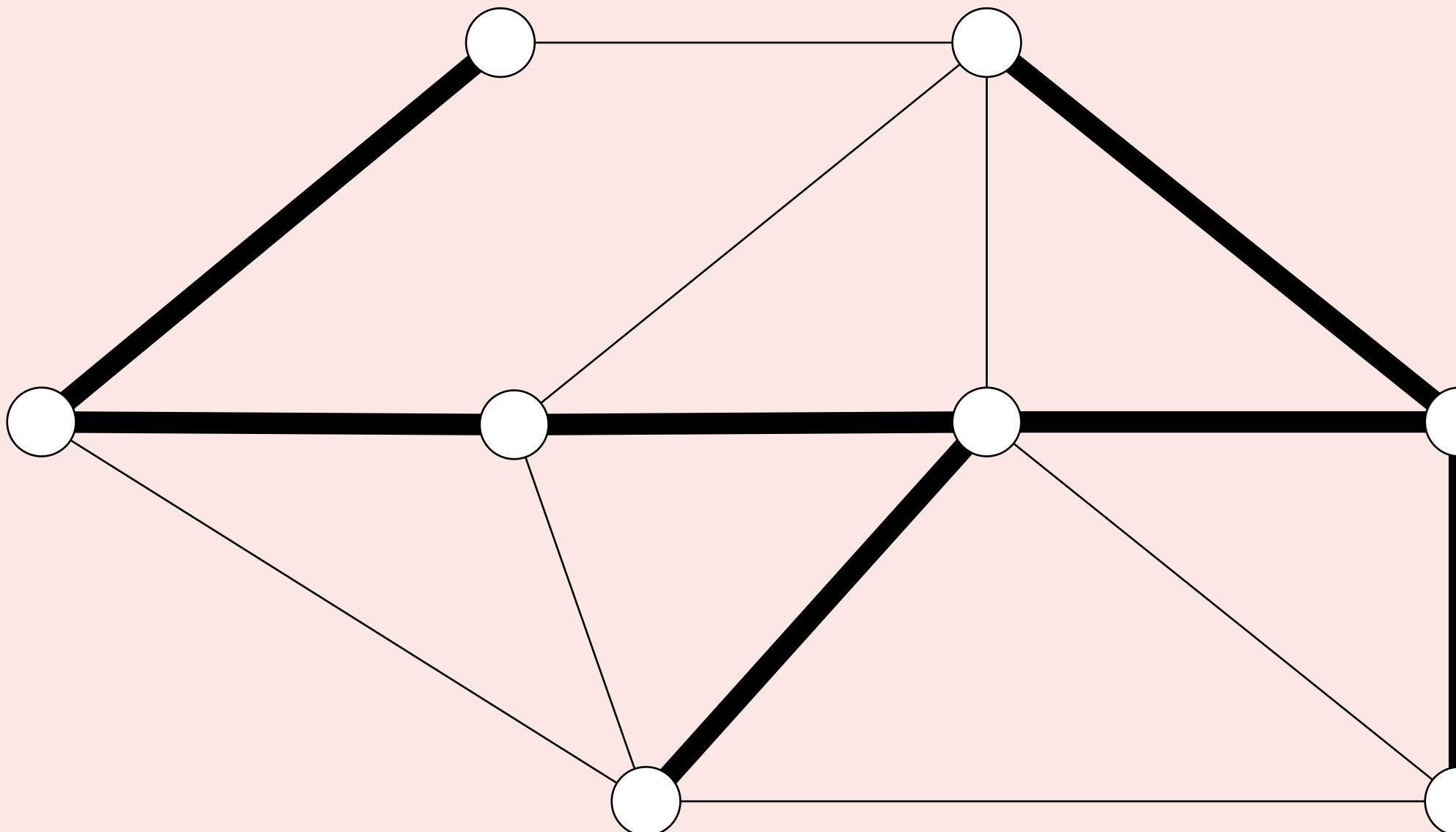


Brute force. Try all spanning trees?

Let T be any spanning tree of a connected graph G with V vertices.

Which of the following properties must hold?

- A. Removing any edge from T disconnects it.
- B. Adding any edge to T creates a cycle.
- C. T contains exactly $V - 1$ edges.
- D. All of the above.

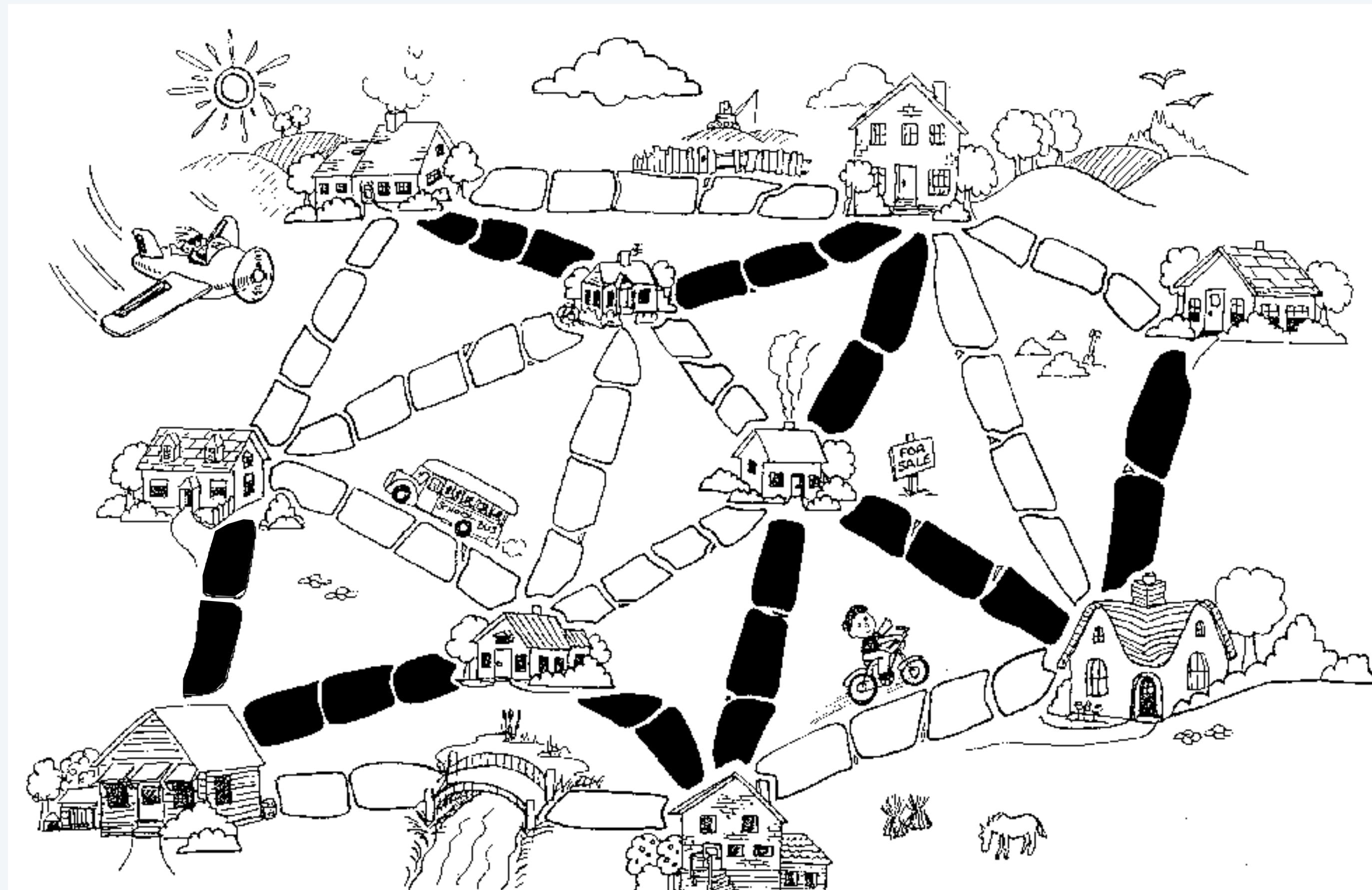


spanning tree T of graph G

Network design

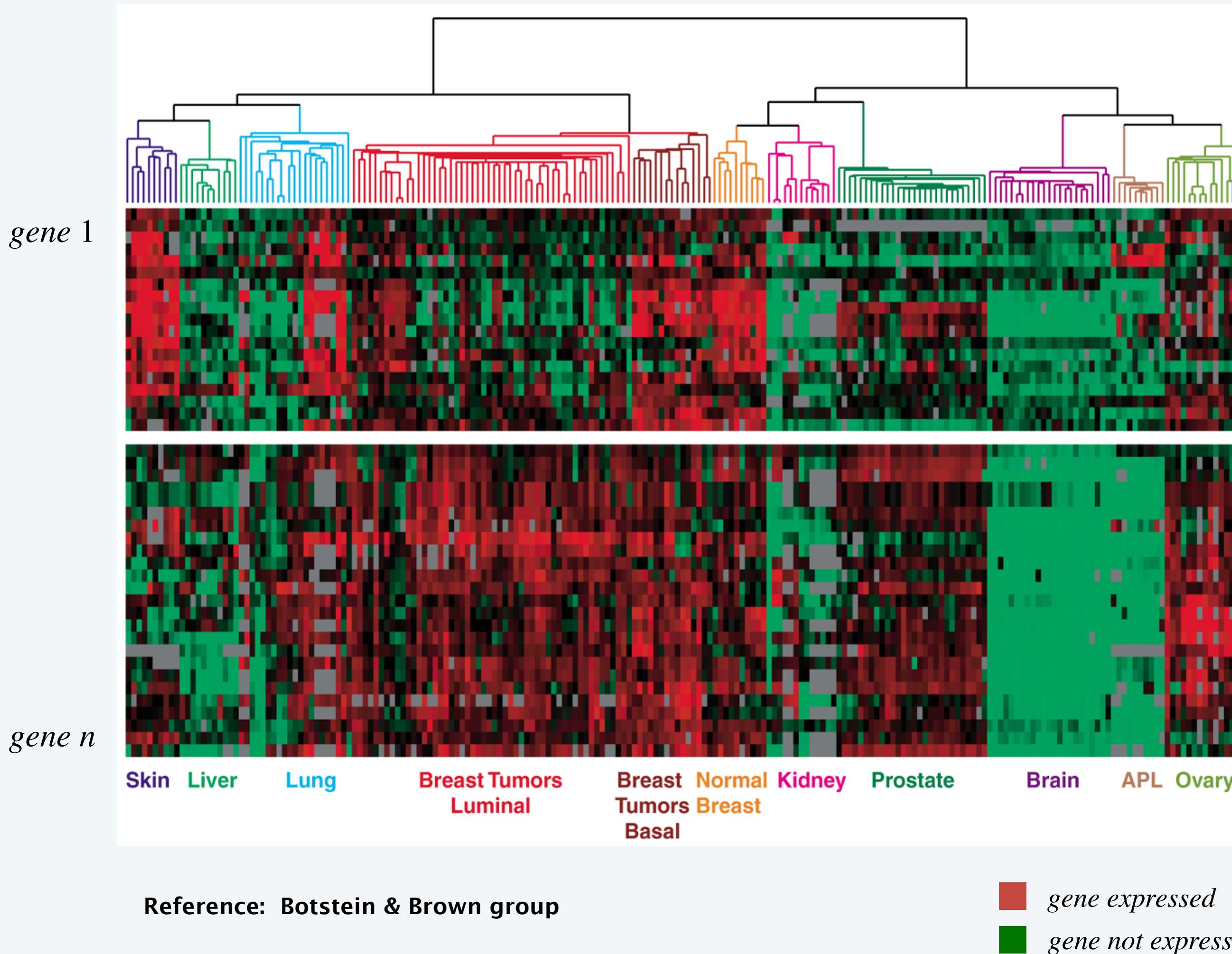
Network. Vertex = network component; edge = potential connection; edge weight = cost.

*computer, transportation,
electrical, telecommunication*

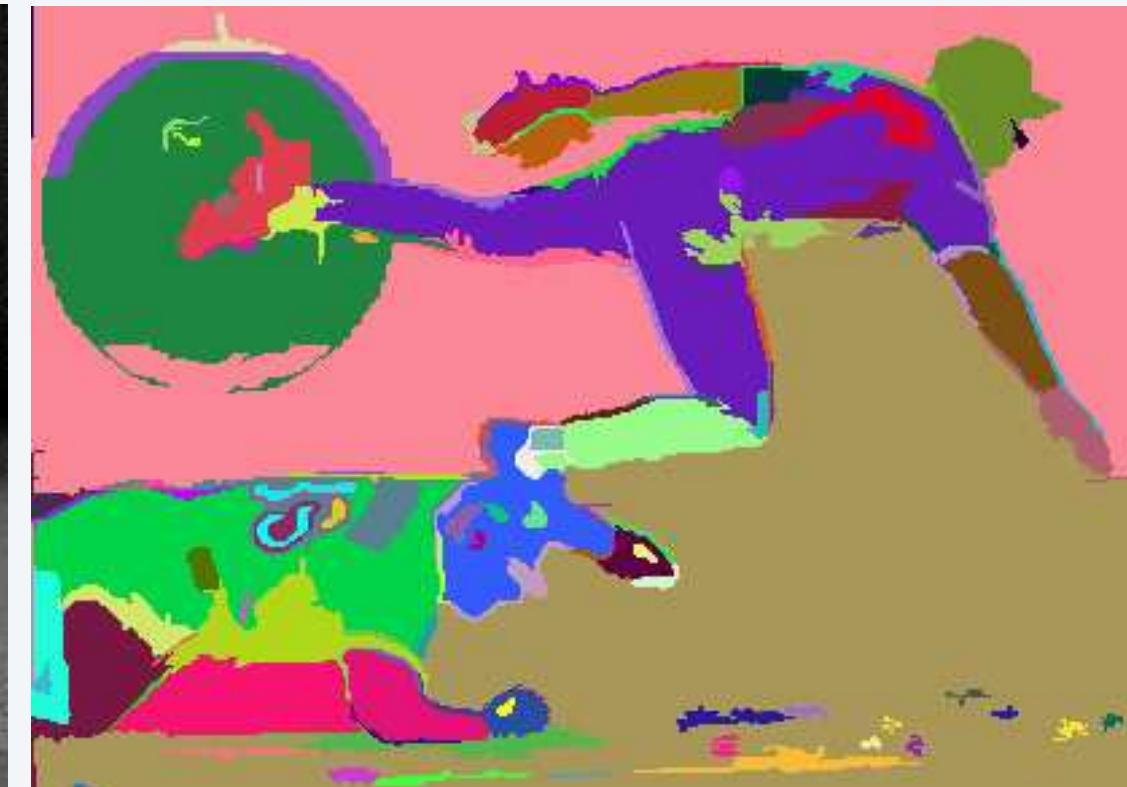
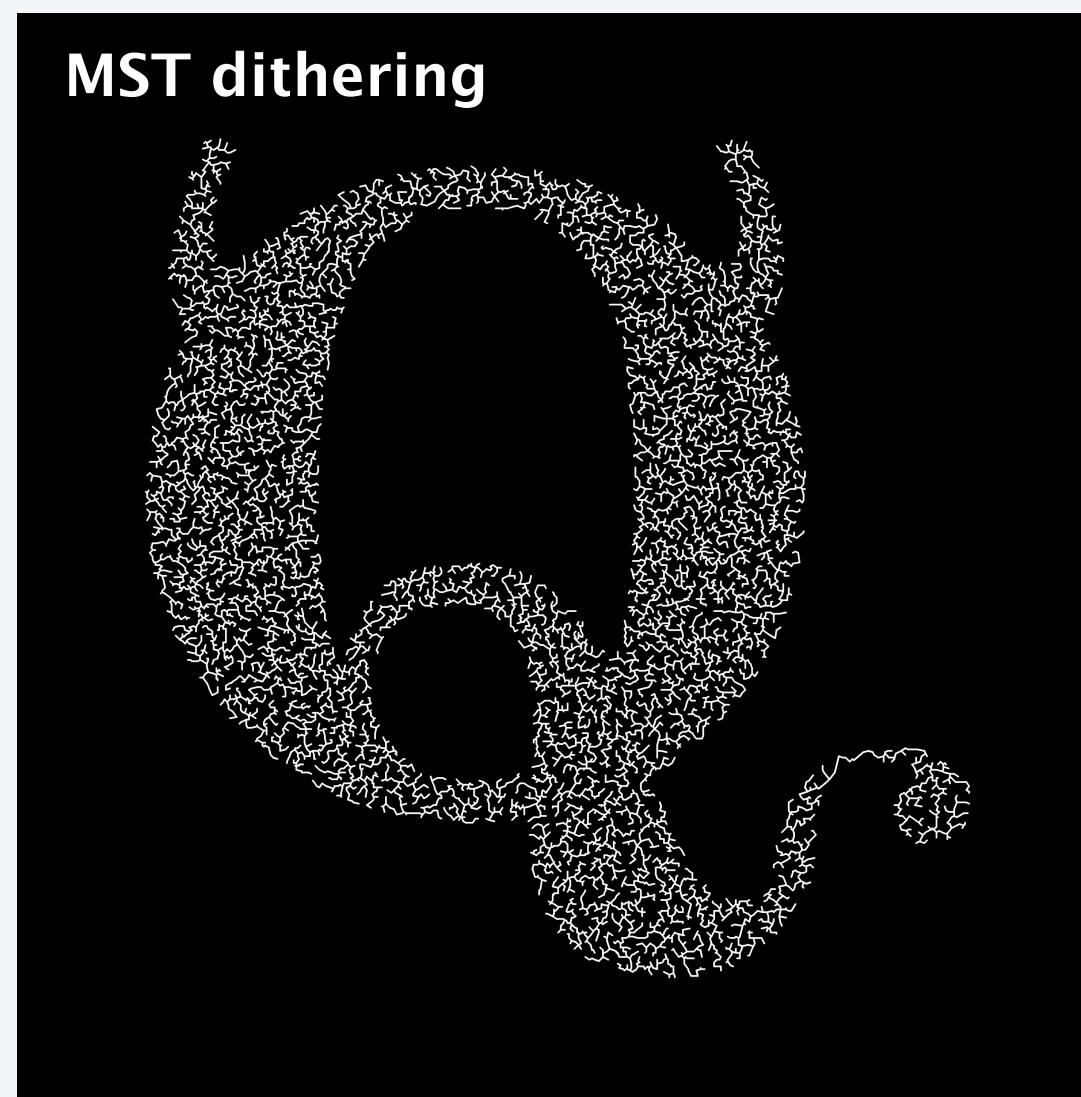
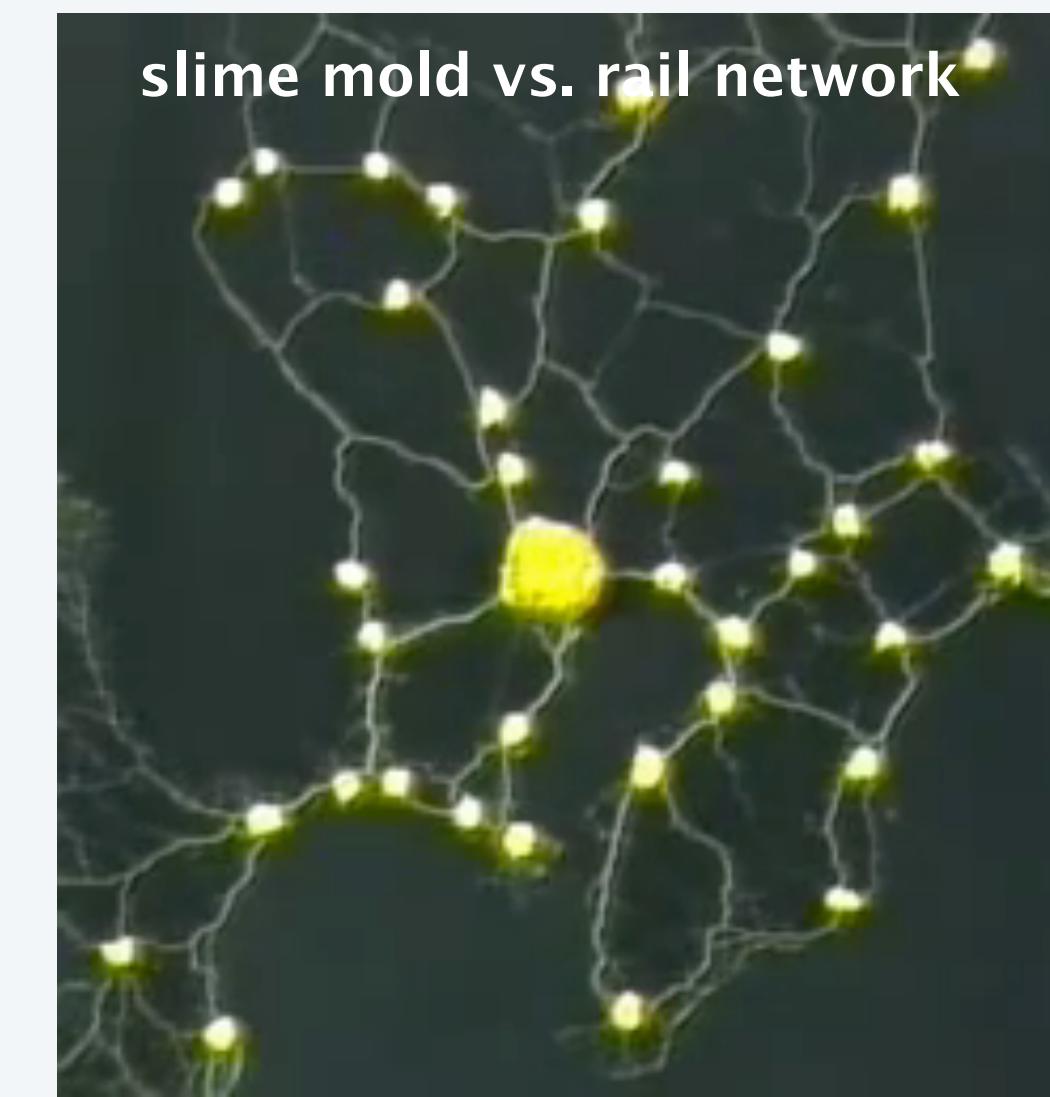


Hierarchical clustering

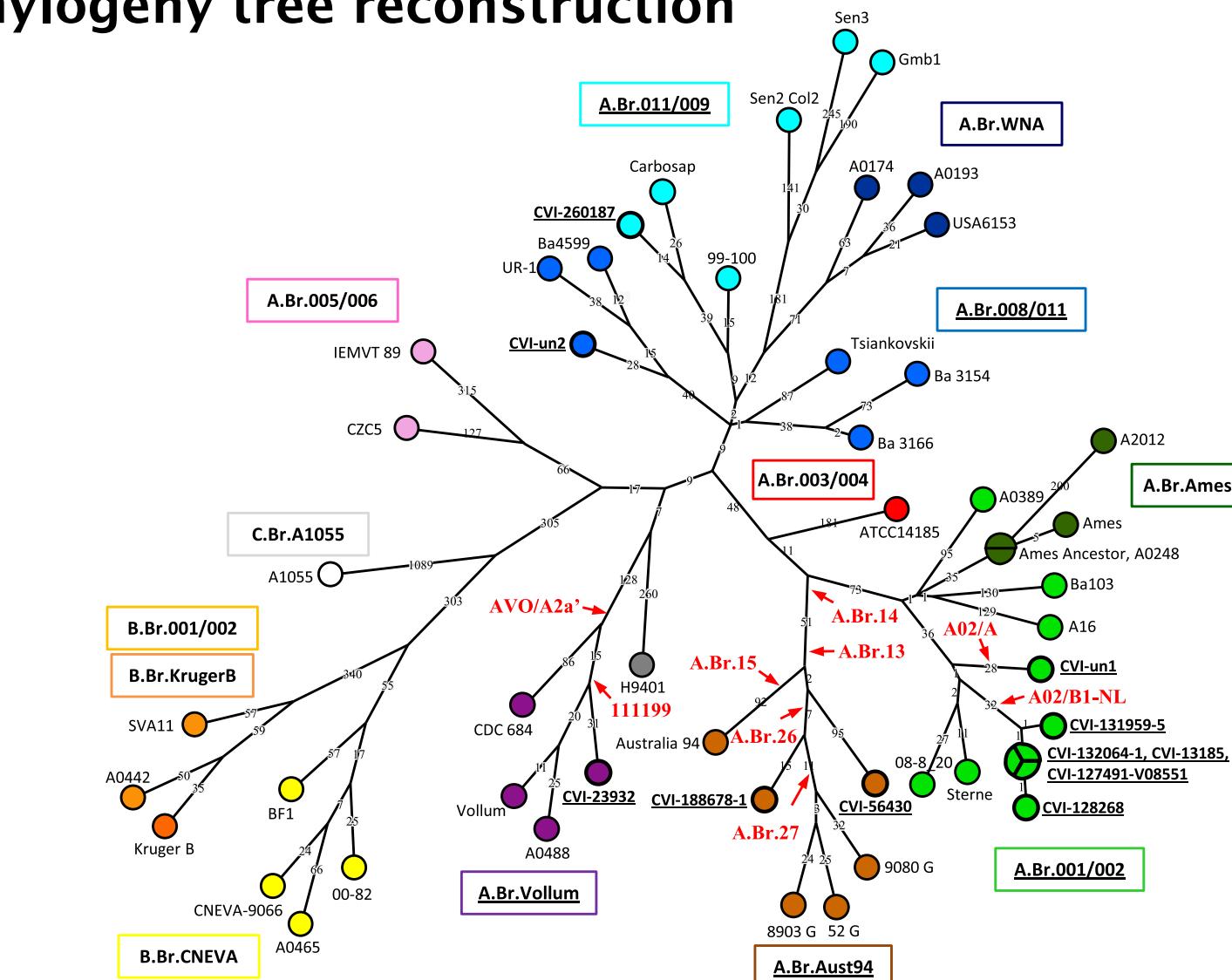
Microarray graph. Vertex = cancer tissue; edge = all pairs; edge weight = dissimilarity.



More MST applications



phylogeny tree reconstruction



4.3 MINIMUM SPANNING TREES

- ▶ *introduction*
- ▶ *cut property*
- ▶ *edge-weighted graph API*
- ▶ *Kruskal's algorithm*
- ▶ *Prim's algorithm*

ROBERT SEDGEWICK | KEVIN WAYNE

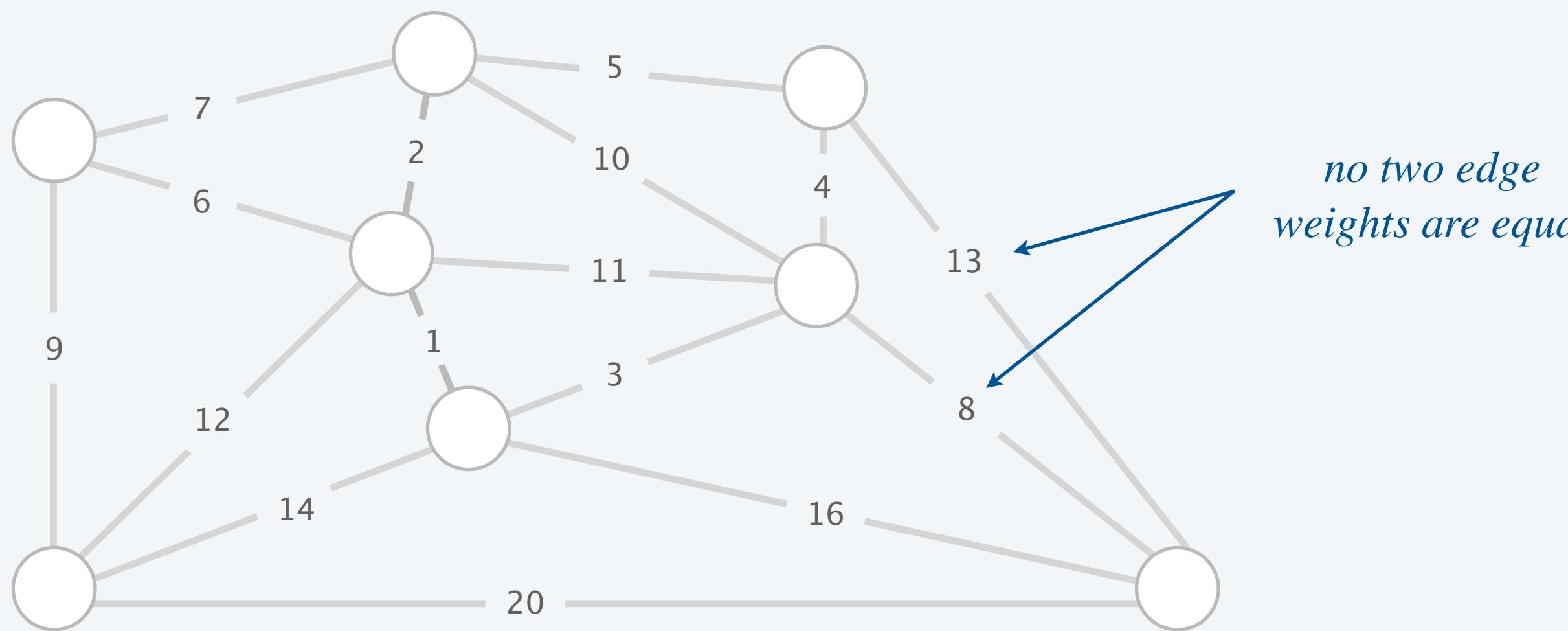
<https://algs4.cs.princeton.edu>

Simplifying assumptions

For simplicity, we assume:

- The graph is connected. \implies MST exists.
- The edge weights are distinct. \implies MST is unique. \leftarrow *see Exercise 4.3.3
(solution on booksite)*

Note. Today's algorithms all work even if edge weights are not distinct.



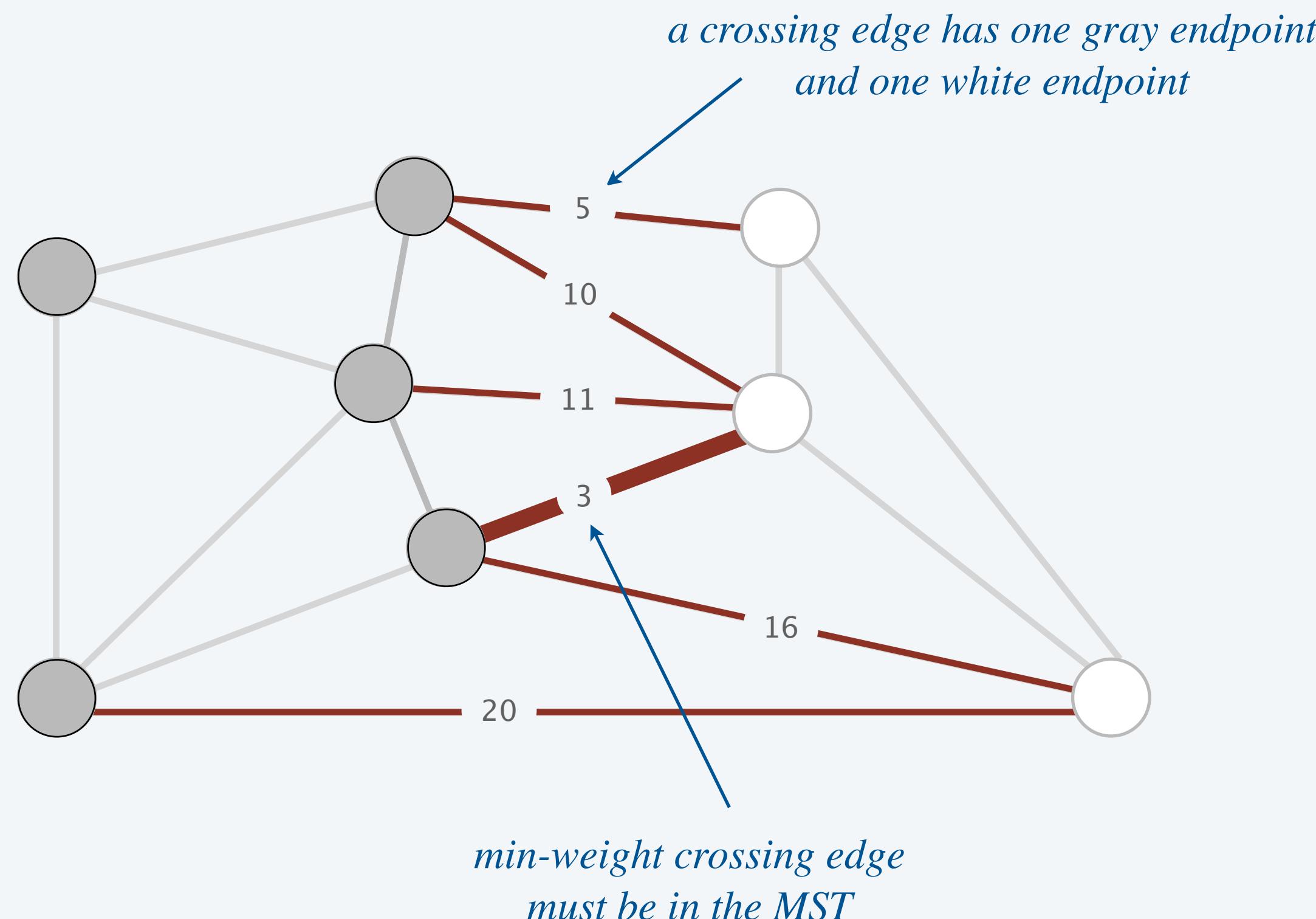
assumption simplifies the analysis and exposition

Cut property

Def. A **cut** in an undirected graph is a partition of its vertices into two nonempty sets.

Def. A **crossing edge** of a cut is an edge that has one endpoint in each set.

Cut property. For any cut, its min-weight crossing edge e is in the MST.



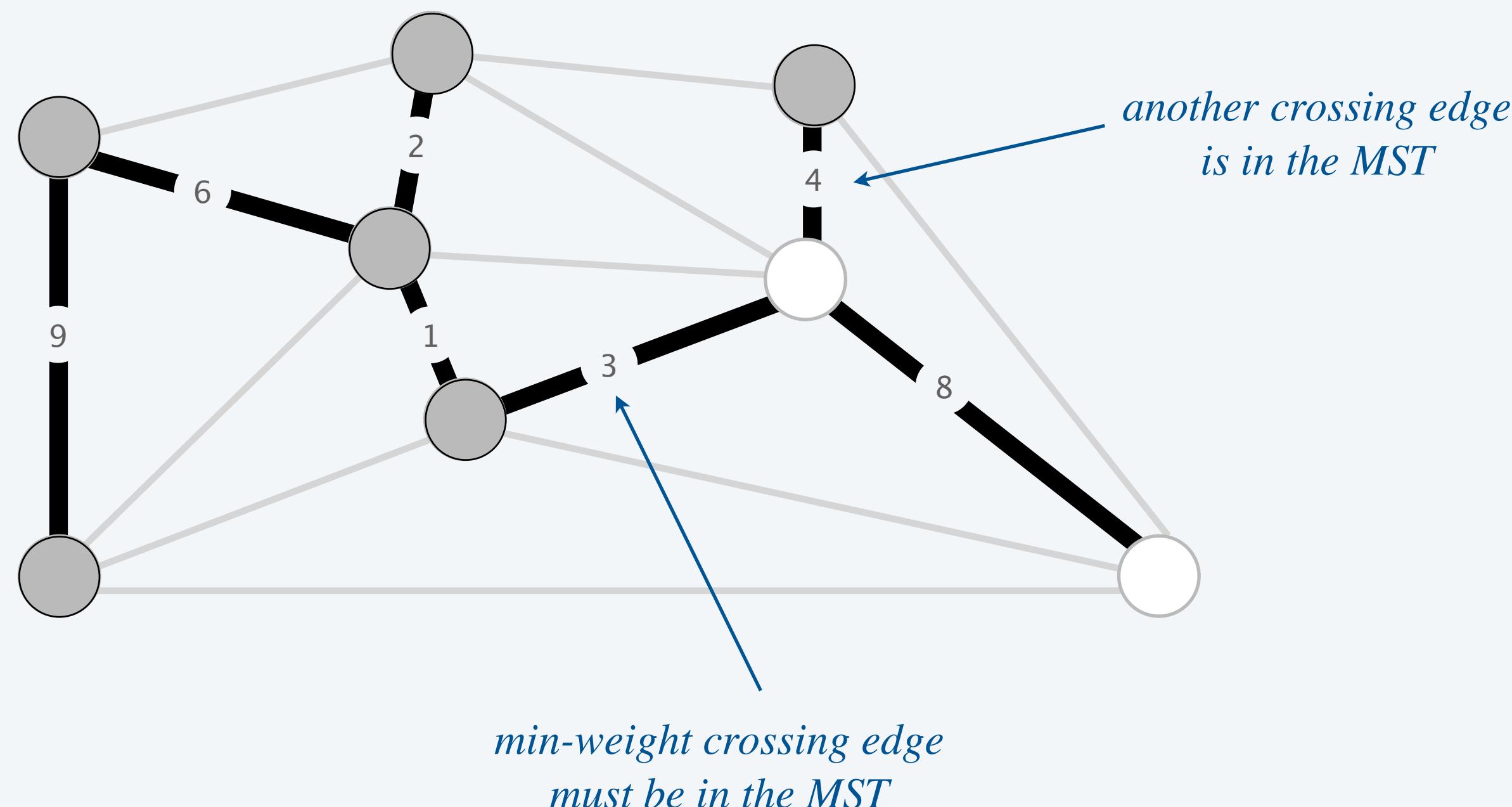
Cut property

Def. A **cut** in an undirected graph is a partition of its vertices into two nonempty sets.

Def. A **crossing edge** of a cut is an edge that has one endpoint in each set.

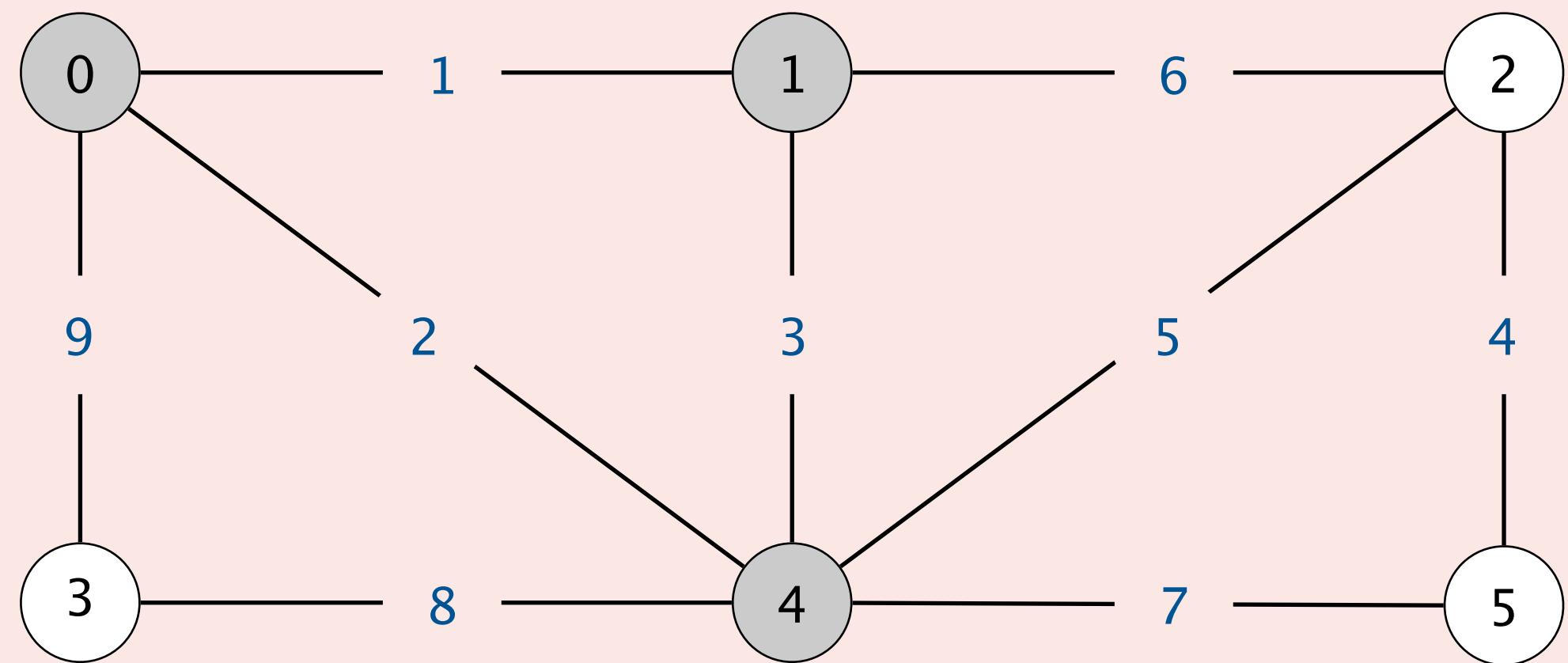
Cut property. For any cut, its min-weight crossing edge e is in the MST.

Note. A cut may have multiple crossing edges in the MST.



Which is the min-weight crossing edge for the cut $\{ 2, 3, 5 \}$?

- A. 0-1 (1)
- B. 1-2 (6)
- C. 2-4 (5)
- D. 2-5 (4)



Cut property: correctness proof

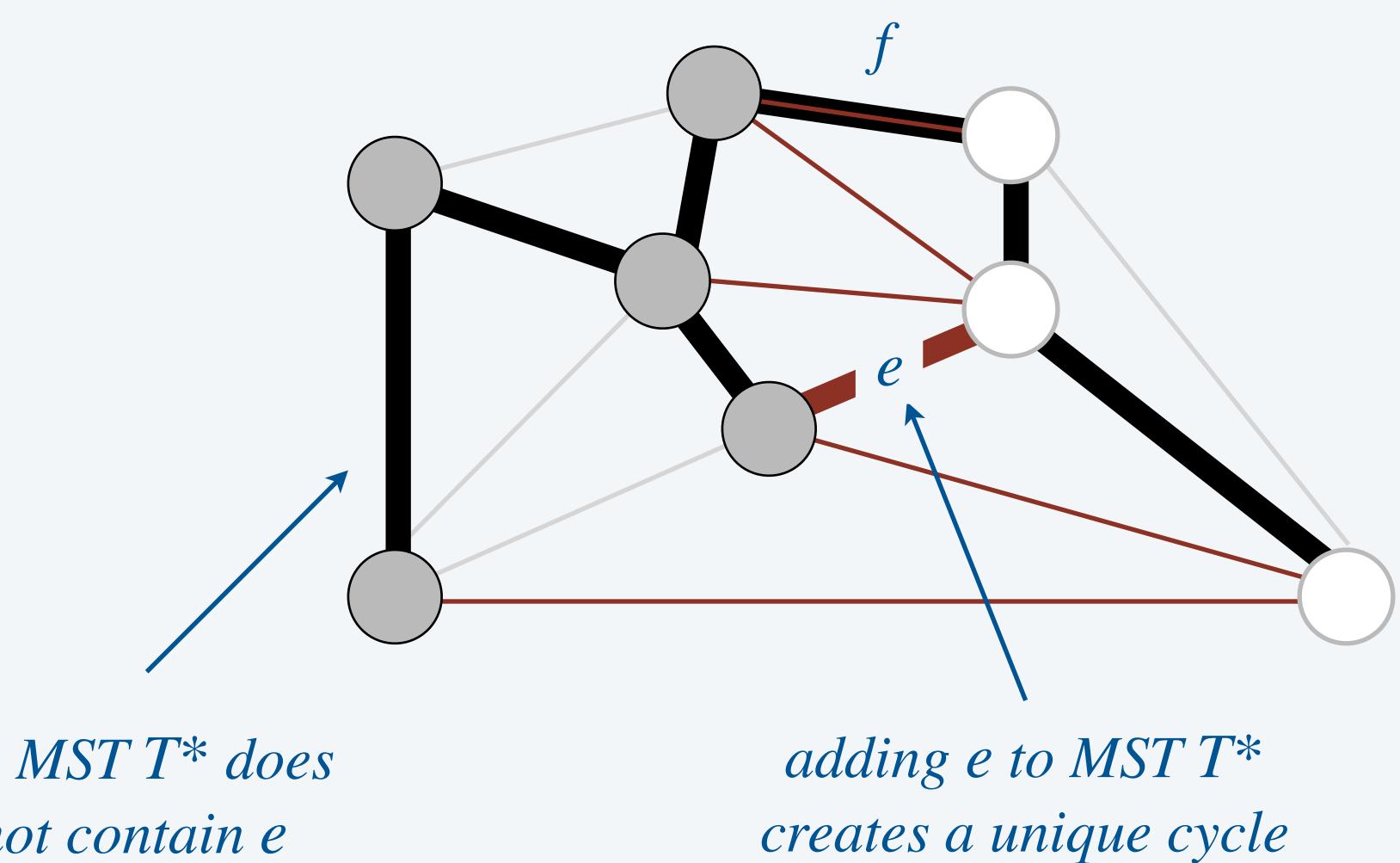
Def. A **cut** in an undirected graph is a partition of its vertices into two nonempty sets.

Def. A **crossing edge** of a cut is an edge that has one endpoint in each set.

Cut property. For any cut, its min-weight crossing edge e is in the MST T^* .

Pf. [by contradiction]

- Suppose e is not in the MST T^* .
- Adding e to T^* creates a unique cycle.
- Some other edge f in cycle must also be a crossing edge.
- Replacing f with e in T^* yields a different spanning tree T' .
- Since $\text{weight}(e) < \text{weight}(f)$, we have $\text{weight}(T') < \text{weight}(T^*)$.
- Contradiction.



Framework for minimum spanning tree algorithms

Generic algorithm (to compute MST in G)

$T = \emptyset$.

Repeat until T is a spanning tree: $\leftarrow V - 1$ edges

- Find a cut in G .
- $e \leftarrow \text{min-weight crossing edge}$.
- $T \leftarrow T \cup \{ e \}$.

Efficient implementations.

- Which cut? $\leftarrow 2^{V-2}$ distinct cuts
- How to compute min-weight crossing edge?

Ex 1. Kruskal's algorithm.

Ex 2. Prim's algorithm.

Ex 3. Borüvka's algorithm.

4.3 MINIMUM SPANNING TREES

- ▶ *introduction*
- ▶ *cut property*
- ▶ **edge-weighted graph API**
- ▶ *Kruskal's algorithm*
- ▶ *Prim's algorithm*

Weighted edge API

API. Edge abstraction for weighted edges.

```
public class Edge implements Comparable<Edge>
```

Edge(int v, int w, double weight)	<i>create a weighted edge v-w</i>
-----------------------------------	-----------------------------------

int either()	<i>either endpoint</i>
--------------	------------------------

int other(int v)	<i>the endpoint that's not v</i>
------------------	----------------------------------

double weight()	<i>weight of edge</i>
-----------------	-----------------------

int compareTo(Edge that)	<i>compare edges by weight</i>
--------------------------	--------------------------------

⋮

⋮

edge **e** = **v-w**

```
int v = e.either();
int w = e.other(v);
double weight = e.weight();
```

idiom for processing an edge e

Weighted edge: Java implementation

```
public class Edge implements Comparable<Edge> {
    private final int v, w;
    private final double weight;

    public Edge(int v, int w, double weight) {
        this.v = v;
        this.w = w;
        this.weight = weight;
    }

    public int either() {
        return v;
    }

    public int other(int vertex) {
        if (vertex == v) return w;
        else return v;
    }

    public int compareTo(Edge that) {
        return Double.compare(this.weight, that.weight);
    }
}
```

← *constructor*

← *either endpoint*

← *other endpoint*

← *compare edges by weight*

Edge-weighted graph API

API. Same as [Graph](#) and [Digraph](#), except with explicit Edge objects.

```
public class EdgeWeightedGraph
```

	EdgeWeightedGraph(int V)	<i>edge-weighted graph with V vertices (and no edges)</i>
--	--------------------------	---

void	addEdge(Edge e)	<i>add the weighted edge e</i>
------	-----------------	--------------------------------

Iterable<Edge>	adj(int v)	<i>edges incident with vertex v</i>
----------------	------------	-------------------------------------

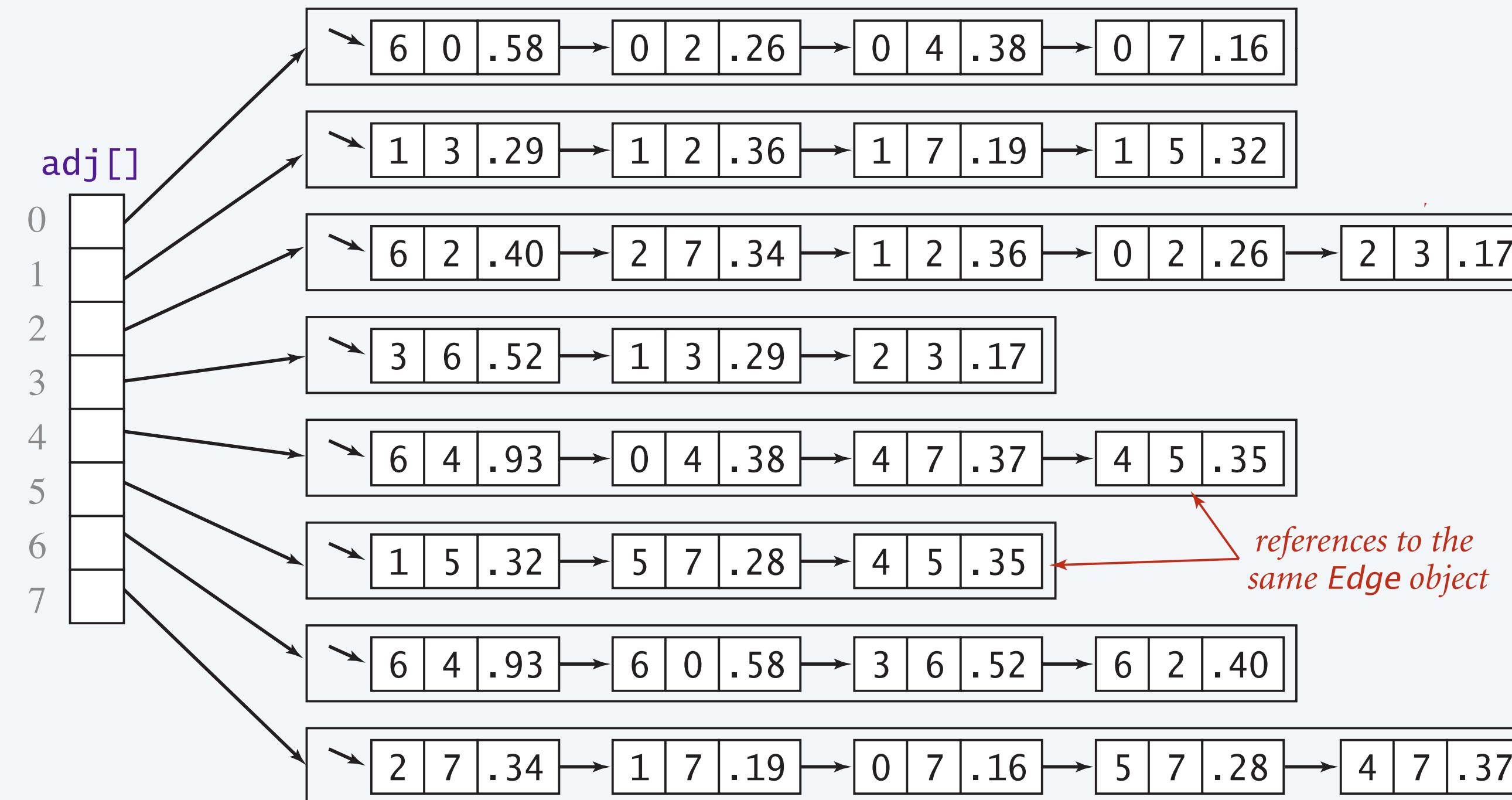
int	V()	<i>number of vertices</i>
-----	-----	---------------------------

int	E()	<i>number of edges</i>
-----	-----	------------------------

:	:	
---	---	--

Edge-weighted graph: adjacency-lists representation

Maintain vertex-indexed array of lists: $\text{adj}[v]$ contains edges incident with vertex v .



Edge-weighted graph: adjacency-lists implementation

```
public class EdgeWeightedGraph {  
    private final int V;  
    private final Queue<Edge>[] adj;           ← same as Graph (but adjacency lists of Edge objects)  
  
    public EdgeWeightedGraph(int V) {  
        this.V = V;  
        adj = (Queue<Edge>[]) new Queue[V];  
        for (int v = 0; v < V; v++)  
            adj[v] = new Queue<>();  
    }  
  
    public void addEdge(Edge e) {  
        int v = e.either(), w = e.other(v);  
        adj[v].enqueue(e);  
        adj[w].enqueue(e);           ← add same Edge object to both adjacency lists  
    }  
  
    public Iterable<Edge> adj(int v) {  
        return adj[v];  
    }  
}
```

Minimum spanning tree API

Q. How to represent the MST?

A. Technically, an MST is an edge-weighted graph.

But, for convenience, we represent it as a set of edges.

```
public class MST
```

<code>MST(EdgeWeightedGraph G)</code>	<i>constructor</i>
---------------------------------------	--------------------

<code>Iterable<Edge> edges()</code>	<i>edges in MST</i>
---	---------------------

<code>double weight()</code>	<i>weight of MST</i>
------------------------------	----------------------

:

:

4.3 MINIMUM SPANNING TREES

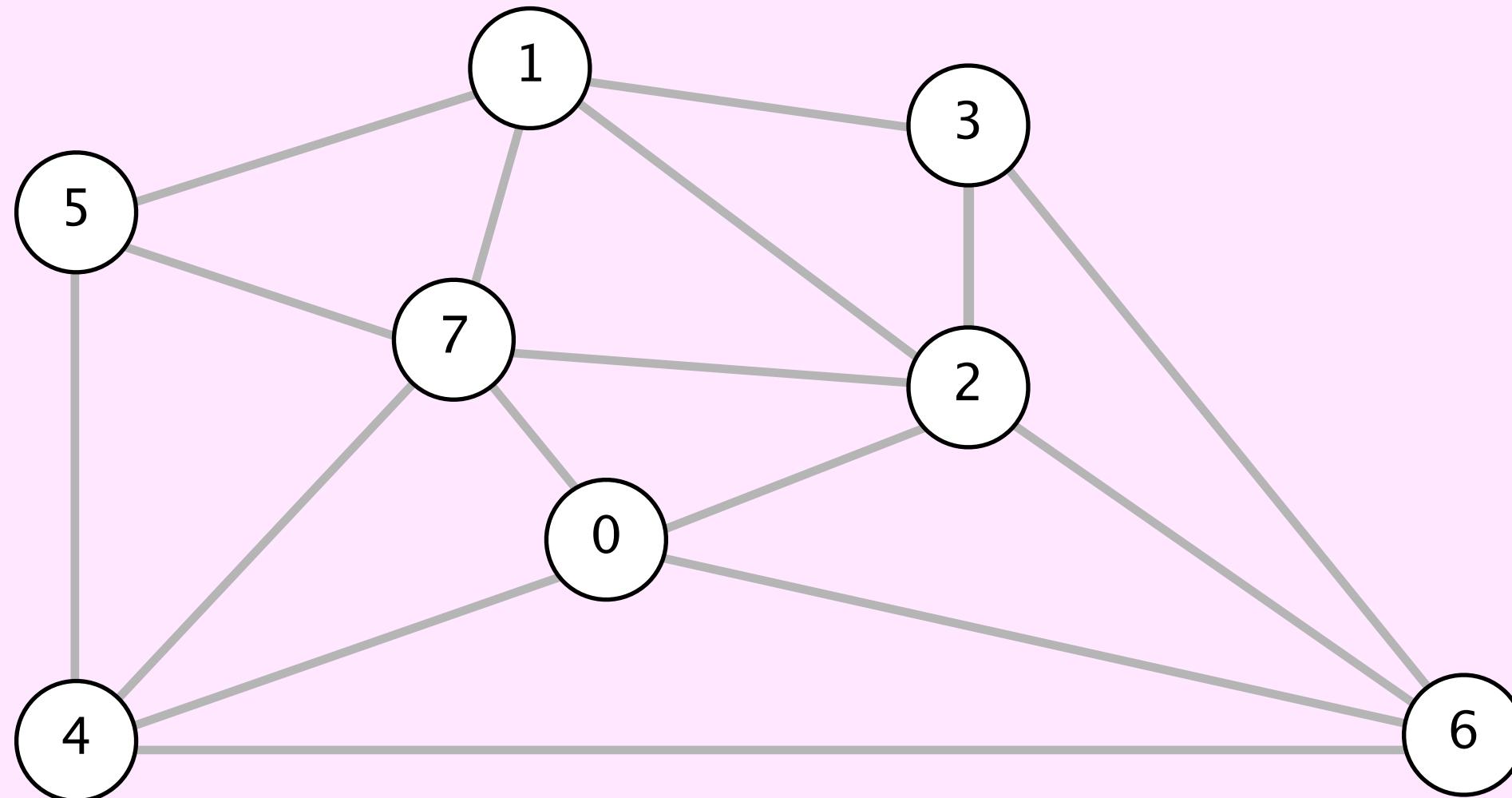
- ▶ *introduction*
- ▶ *cut property*
- ▶ *edge-weighted graph API*
- ▶ ***Kruskal's algorithm***
- ▶ *Prim's algorithm*

Kruskal's algorithm demo



Consider edges in ascending order by weight:

- Add next edge to T unless doing so would create a cycle.



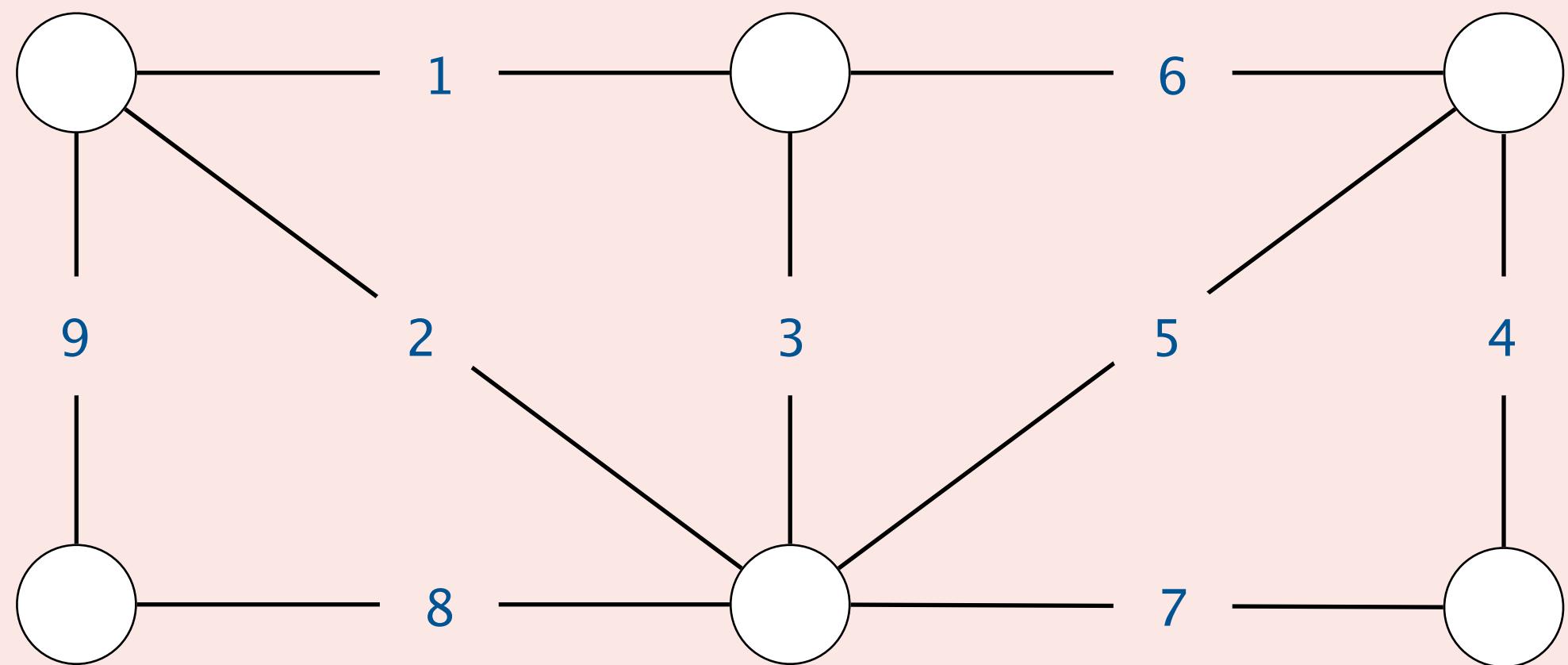
an edge-weighted graph

edges (sorted by weight)

0-7	0.16
2-3	0.17
1-7	0.19
0-2	0.26
5-7	0.28
1-3	0.29
1-5	0.32
2-7	0.34
4-5	0.35
1-2	0.36
4-7	0.37
0-4	0.38
6-2	0.40
3-6	0.52
6-0	0.58
6-4	0.93
7-0	0.30
7-2	0.30
7-5	0.30

In which order does Kruskal's algorithm select edges in MST?

- A. 1, 2, 4, 5, 6
- B. 1, 2, 4, 5, 8
- C. 1, 2, 5, 4, 8
- D. 8, 2, 1, 5, 4



Kruskal's algorithm: correctness proof

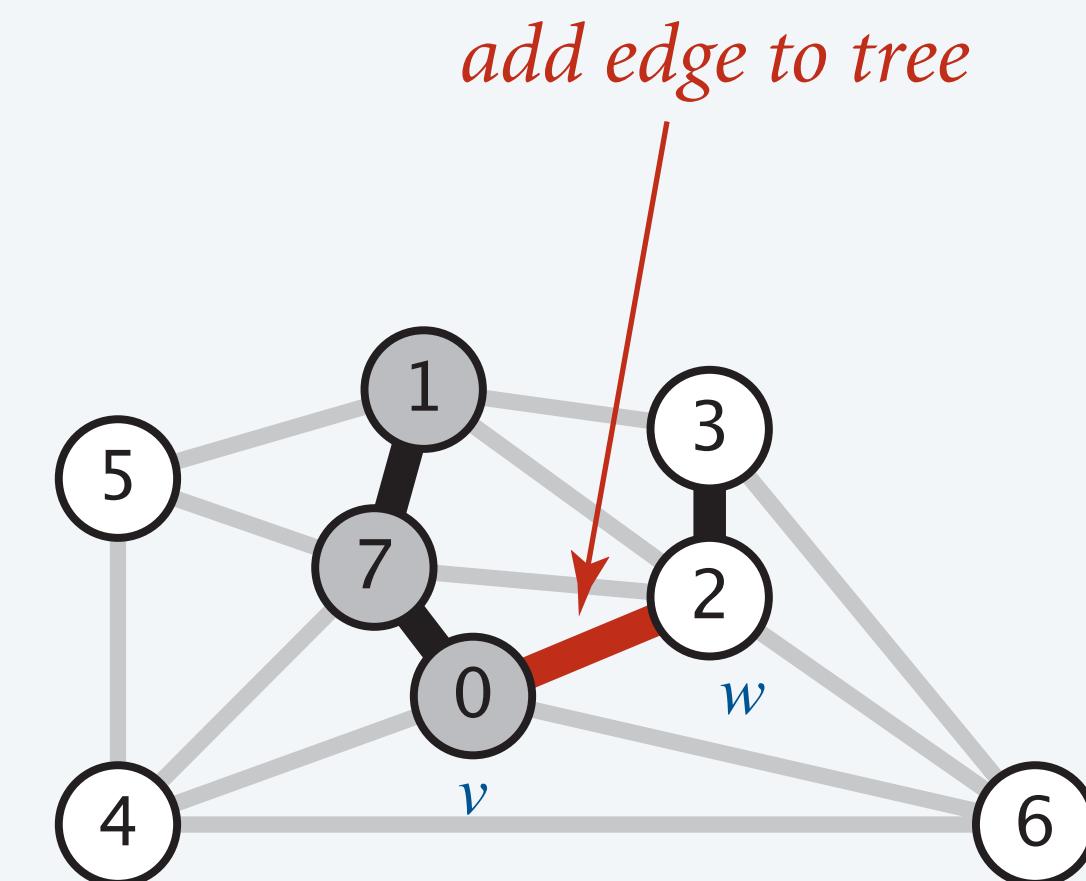
Proposition. [Kruskal 1956] Kruskal's algorithm computes the MST.

Pf. Kruskal's algorithm adds edge e to T if and only if e is in the MST.

[Case 1 \implies] Kruskal's algorithm adds edge $e = v-w$ to T .

- Vertices v and w are in different connected components of T .
- Cut = set of vertices connected to v in T .
- By definition of cut, e is a crossing edge; moreover,
 - no crossing edge is currently in T
 - no crossing edge was considered by Kruskal before e
- Thus, e is a min-weight crossing edge.
- Cut property $\implies e$ is in the MST. ■

*Kruskal considers edges
in ascending order by weight*



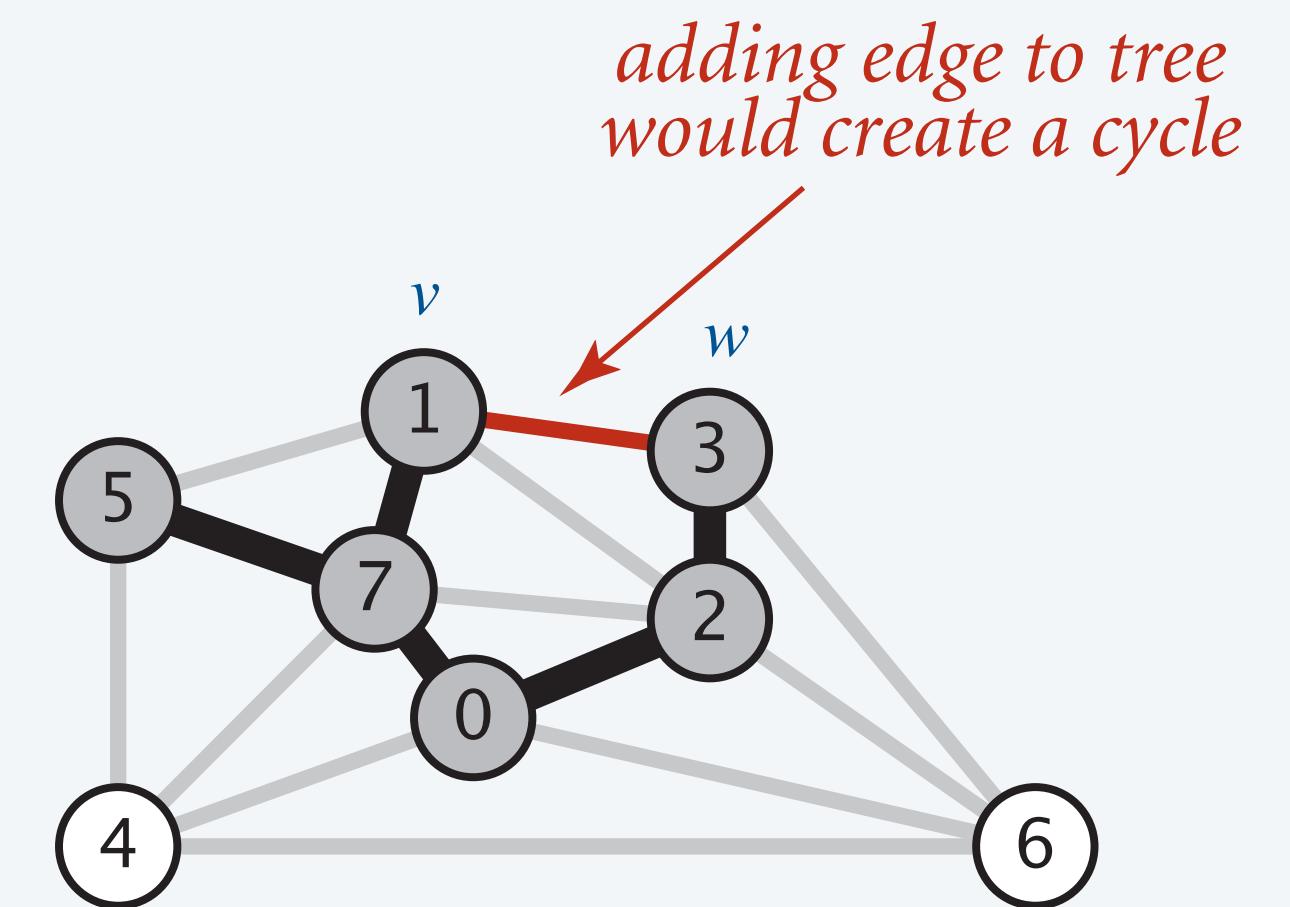
Kruskal's algorithm: correctness proof

Proposition. [Kruskal 1956] Kruskal's algorithm computes the MST.

Pf. Kruskal's algorithm adds edge e to T if and only if e is in the MST.

[Case 2 \Leftarrow] Kruskal's algorithm discards edge $e = v-w$.

- From Case 1, all edges currently in T are in the MST.
- The MST can't contain a cycle, so it can't also contain e . ▀

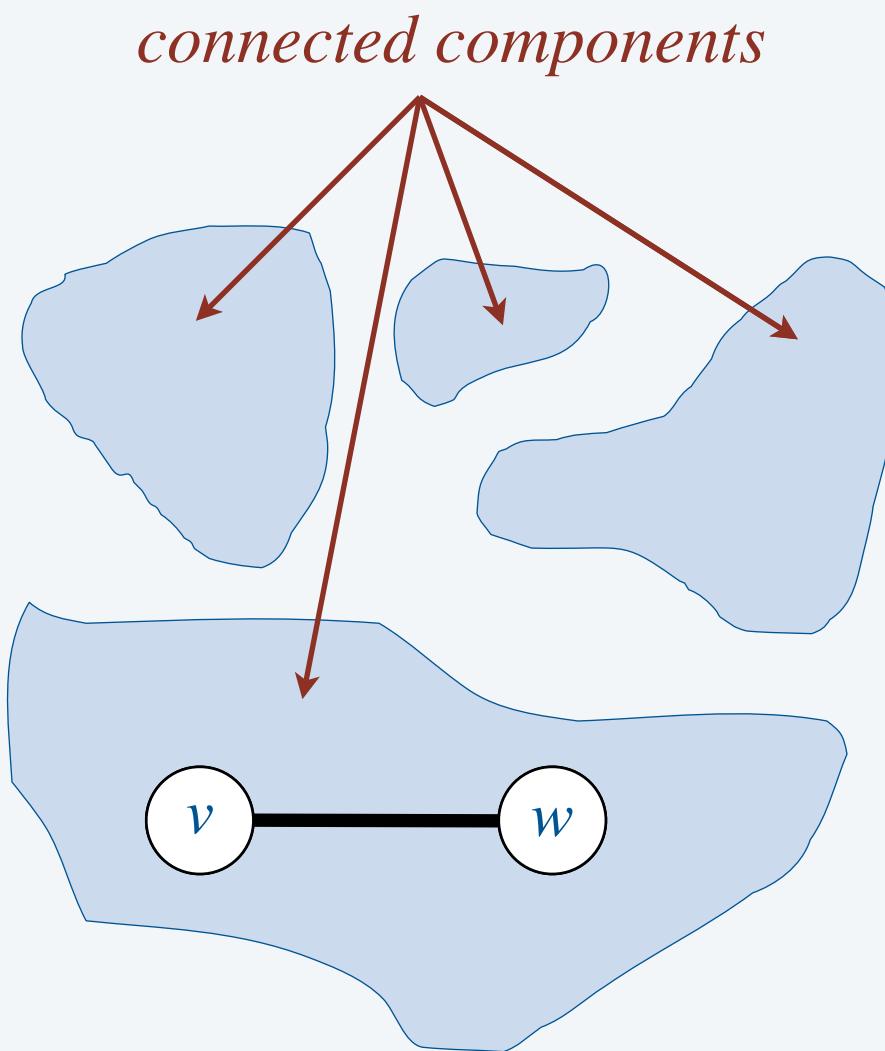


Kruskal's algorithm: implementation challenge

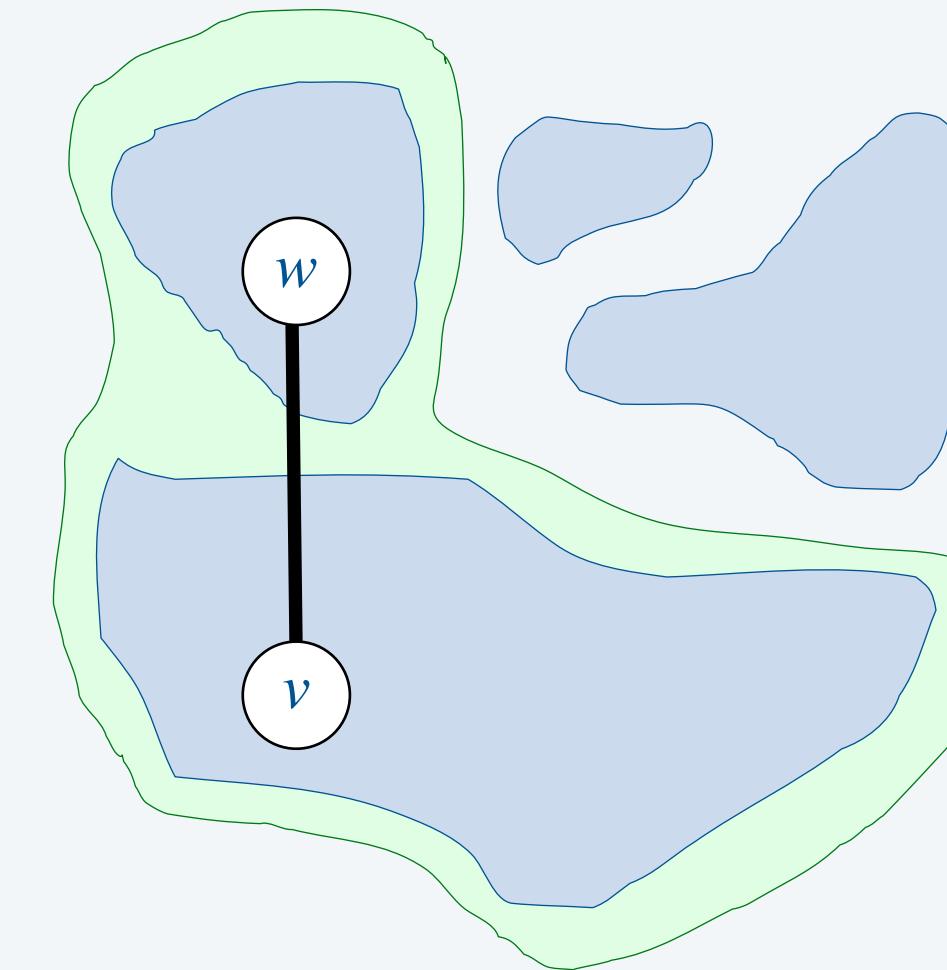
Challenge. Would adding edge $v-w$ to T create a cycle? If not, add it.

Efficient solution. Use the **union-find** data structure.

- Maintain a set for each **connected component** in T , with each vertex in its own set initially.
- If v and w are in same set, then adding edge $v-w$ to T would create a cycle. [Case 2]
- Otherwise, add edge $v-w$ to T and merge sets containing v and w . [Case 1]



Case 2: adding $v-w$ creates a cycle



Case 1: add $v-w$ to T and merge sets containing v and w

Kruskal's algorithm: Java implementation

```
public class KruskalMST {  
    private Queue<Edge> mst = new Queue<>(); ← edges in the MST  
  
    public KruskalMST(EdgeWeightedGraph graph) {  
        Edge[] edges = graph.edges(); ← sort edges by weight  
        Arrays.sort(edges); ← maintain connected components  
        UF uf = new UF(graph.V());  
  
        for (int i = 0; i < graph.E(); i++) { ← optimization: stop as soon as V-1 edges in T  
            Edge e = edges[i]; ← greedily add edges to MST  
            int v = e.either(), w = e.other(v); ← edge v-w does not create cycle  
            if (uf.find(v) != uf.find(w)) { ← add edge e to MST  
                mst.enqueue(e); ← merge connected components  
                uf.union(v, w);  
            }  
        }  
    }  
  
    public Iterable<Edge> edges() {  
        return mst;  
    }  
}
```

Kruskal's algorithm: running time

Proposition. In the worst case, Kruskal's algorithm computes the MST in an edge-weighted graph in $\Theta(E \log E)$ time and $\Theta(E)$ extra space.

Pf.

- Bottlenecks are sorting and union-find operations.

operation	frequency	time per op
SORT	1	$\Theta(E \log E)$
UNION	$V - 1$	$\Theta(\log V)^\dagger$
FIND	$2E$	$\Theta(\log V)^\dagger$

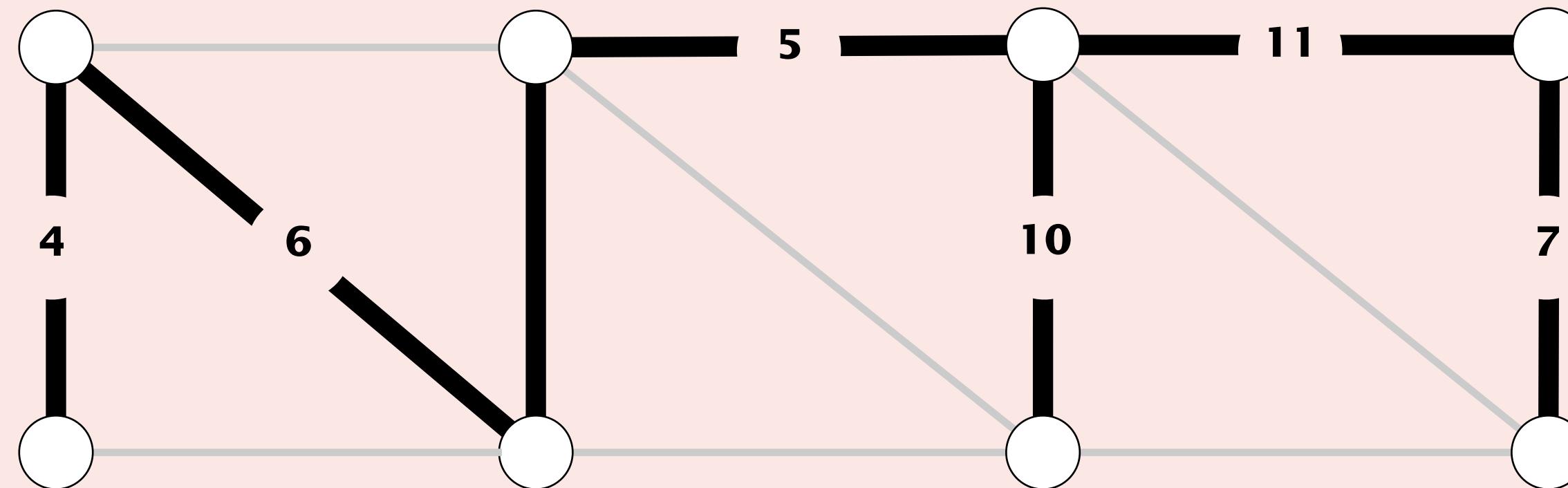
\dagger using weighted quick union

- Total. $\Theta(V \log V) + \Theta(E \log V) + \Theta(E \log E)$.

\nearrow \nearrow
*dominated by $\Theta(E \log E)$
since graph is connected*

Given a graph with positive edge weights, how to find a spanning tree that minimizes the sum of the squares of the edge weights?

- A. Run Kruskal's algorithm using the **original** edge weights.
- B. Run Kruskal's algorithm using the **squares** of the edge weights.
- C. Run Kruskal's algorithm using the **square roots** of the edge weights.
- D. All of the above.

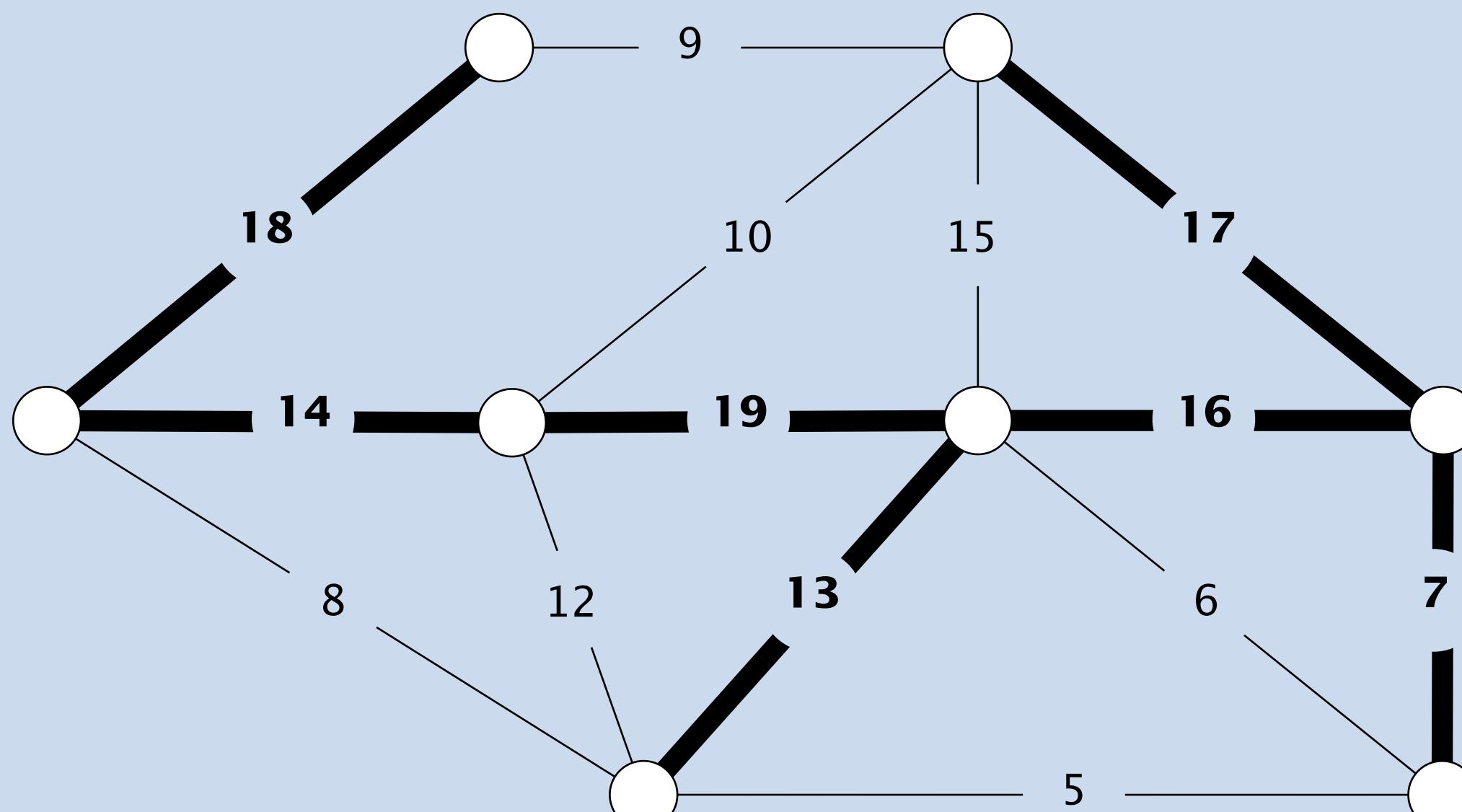


$$\text{sum of squares} = 4^2 + 6^2 + 5^2 + 10^2 + 11^2 + 7^2 = 347$$

Maximum spanning tree

Problem. Given an undirected graph G with positive edge weights, find a spanning tree that **maximizes the sum of the edge weights**.

Goal. Design algorithm that takes $\Theta(E \log E)$ time in the worst case.



maximum spanning tree T^* (weight = 104)

4.3 MINIMUM SPANNING TREES

- ▶ *introduction*
- ▶ *cut property*
- ▶ *edge-weighted graph API*
- ▶ *Kruskal's algorithm*
- ▶ ***Prim's algorithm***

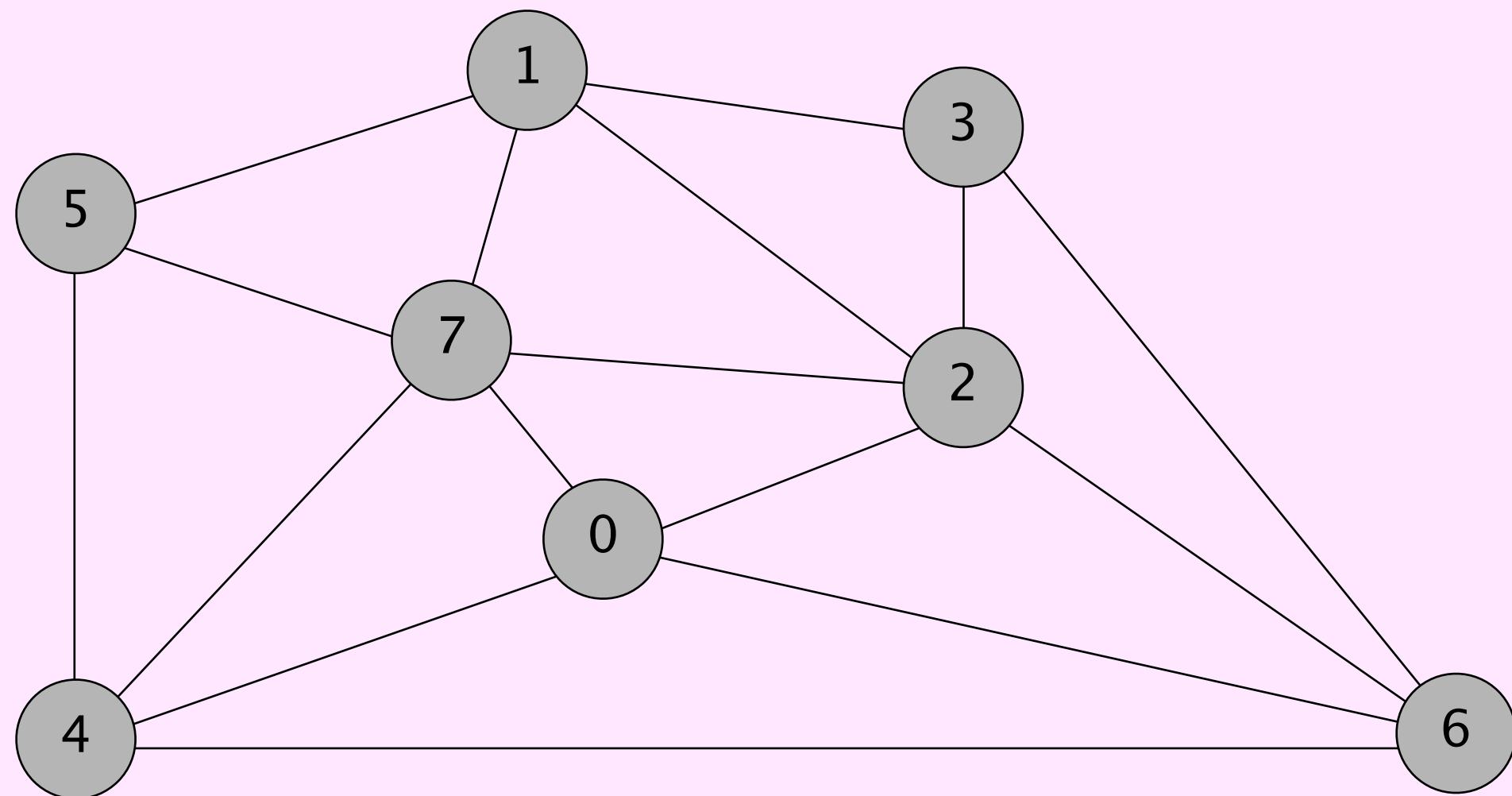
Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

<https://algs4.cs.princeton.edu>

Prim's algorithm demo

- Start with vertex 0 and grow tree T .
- Repeat until T contains $V - 1$ edges:
 - add to T the min-weight edge with exactly one endpoint in T



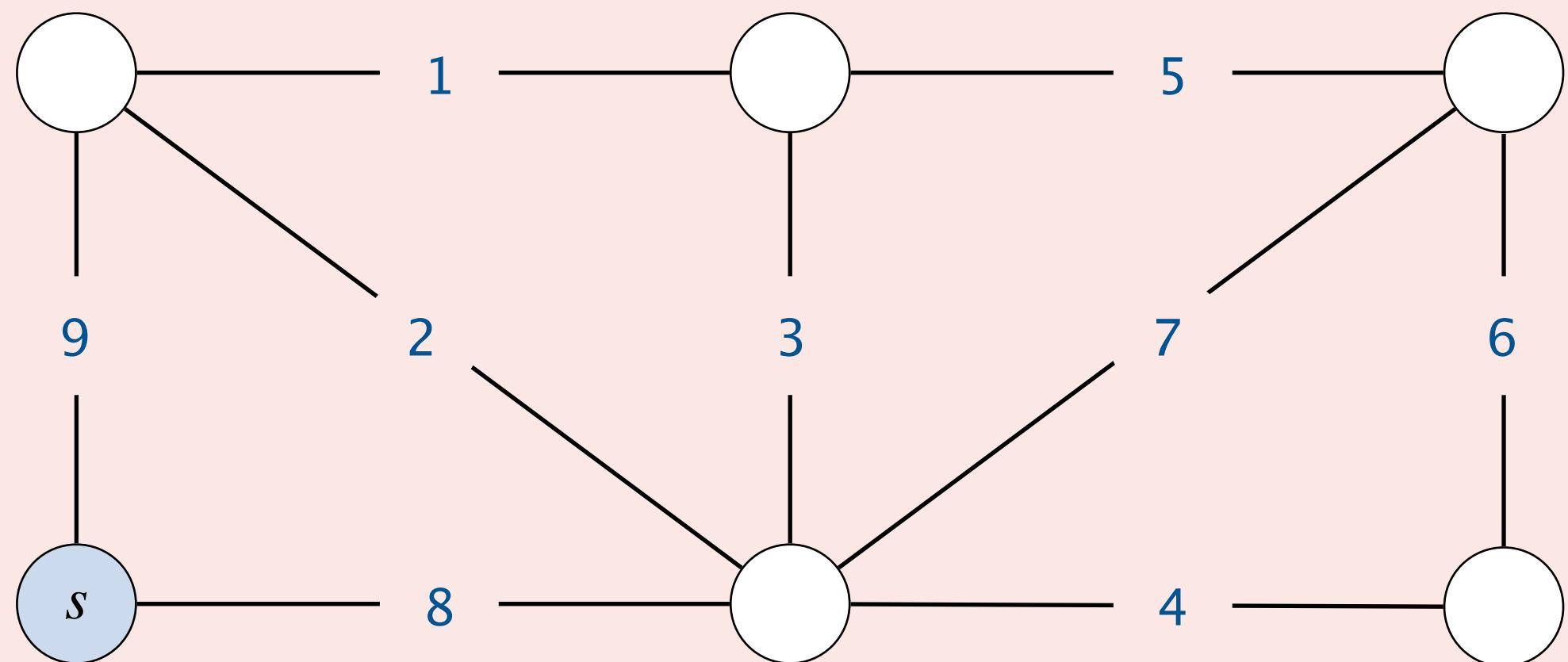
an edge-weighted graph

0-7	0.16
2-3	0.17
1-7	0.19
0-2	0.26
5-7	0.28
1-3	0.29
1-5	0.32
2-7	0.34
4-5	0.35
1-2	0.36
4-7	0.37
0-4	0.38
6-2	0.40
3-6	0.52
6-0	0.58
6-4	0.93

In which order does Prim's algorithm select edges in the MST?

Assume it starts from vertex s .

- A. 8, 2, 1, 4, 5
- B. 8, 2, 1, 5, 4
- C. 8, 2, 1, 5, 6
- D. 8, 2, 3, 4, 5



Prim's algorithm: proof of correctness

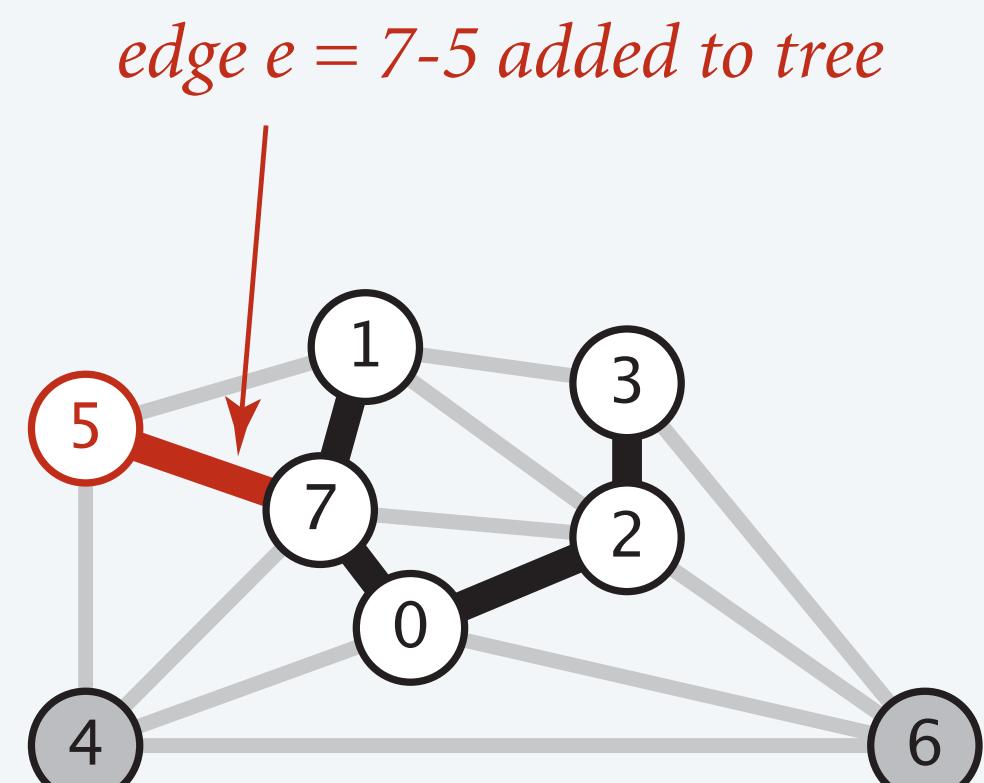
Proposition. [Jarník 1930, Dijkstra 1957, Prim 1959]

Prim's algorithm computes the MST.

Pf. Let e = min-weight edge with exactly one endpoint in T .

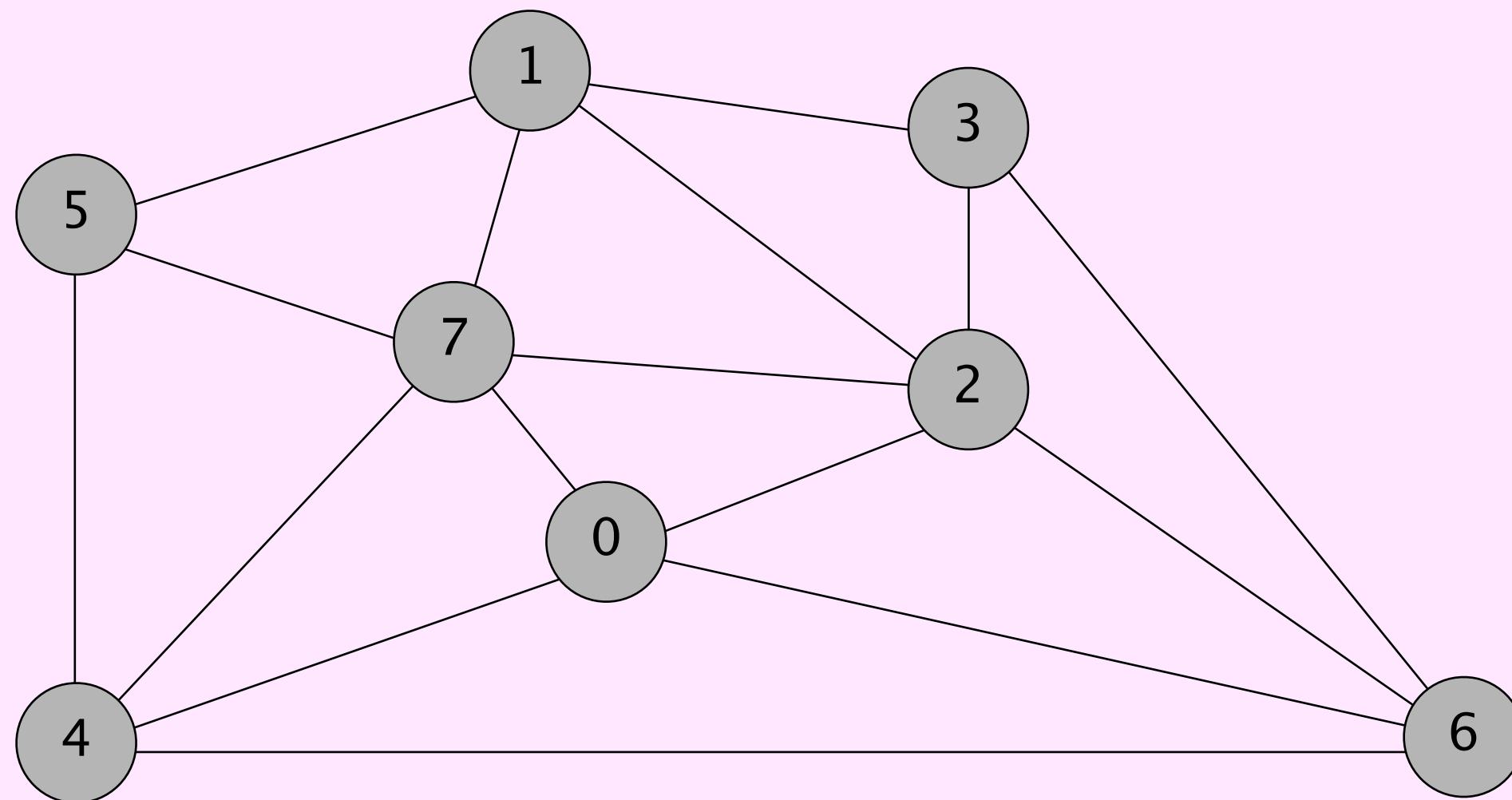
- Cut = set of vertices in T .
- Cut property \implies edge e is in the MST. ■

Challenge. How to efficiently find min-weight edge with exactly one endpoint in T ?



Prim's algorithm demo: lazy implementation

- Start with vertex 0 and grow tree T .
- Repeat until T contains $V - 1$ edges:
 - add to T the min-weight edge with exactly one endpoint in T



an edge-weighted graph

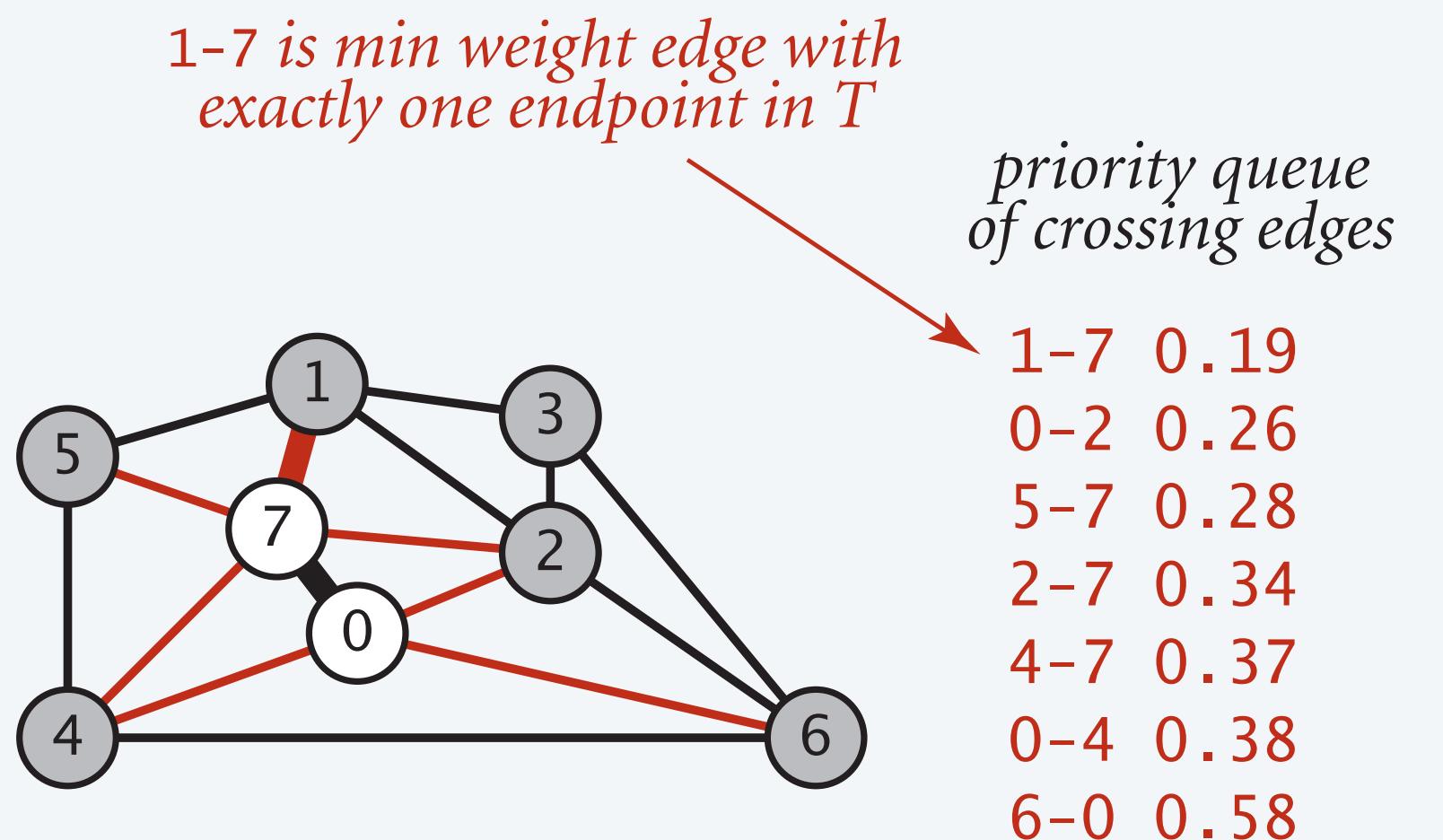
0-7	0.16
2-3	0.17
1-7	0.19
0-2	0.26
5-7	0.28
1-3	0.29
1-5	0.32
2-7	0.34
4-5	0.35
1-2	0.36
4-7	0.37
0-4	0.38
6-2	0.40
3-6	0.52
6-0	0.58
6-4	0.93

Prim's algorithm: lazy implementation

Challenge. How to efficiently find min-weight edge with exactly one endpoint in T ?

Lazy solution. Maintain a PQ of edges with (at least) one endpoint in T .

- Key = edge; priority = weight of edge.
- DELETE-MIN to determine next edge $e = v-w$ to add to T .
- If both endpoints v and w are marked (both in T), disregard.
- Otherwise, let w be the unmarked vertex (not in T):
 - add e to T and mark w
 - add to PQ any edge incident with w \leftarrow *but don't bother if other endpoint is already in T*



Prim's algorithm: lazy implementation

```
public class LazyPrimMST {  
    private boolean[] marked; // MST vertices  
    private Queue<Edge> mst; // MST edges  
    private MinPQ<Edge> pq; // PQ of edges  
  
    public LazyPrimMST(EdgeWeightedGraph graph) {  
        pq = new MinPQ<>();  
        mst = new Queue<>();  
        marked = new boolean[graph.V()];  
        visit(G, 0); // ← assume graph G is connected  
  
        while (mst.size() < graph.V() - 1) {  
            Edge e = pq.delMin();  
            int v = e.either(), w = e.other(v);  
            if (marked[v] && marked[w]) continue;  
            mst.enqueue(e);  
            if (!marked[v]) visit(G, v);  
            if (!marked[w]) visit(G, w);  
        }  
    }  
    ...  
}
```

```
private void visit(EdgeWeightedGraph graph, int v) {  
    marked[v] = true; // ← add v to tree T  
    for (Edge e : graph.adj(v))  
        if (!marked[e.other(v)])  
            pq.insert(e);  
}  
  
public Iterable<Edge> mst() {  
    return mst;  
}
```

repeatedly delete the min-weight edge $e = v-w$ from PQ

ignore if both endpoints in tree T

add edge e to tree T

add either v or w to tree T

for each edge $e = v-w$:
add e to PQ if w not already in T

Lazy Prim's algorithm: running time

Proposition. In the worst case, lazy Prim's algorithm computes the MST in $\Theta(E \log E)$ time and $\Theta(E)$ extra space.

Pf.

- Bottlenecks are PQ operations.
- Each edge is added to PQ at most once.
- Each edge is deleted from PQ at most once.

operation	frequency	time per op
INSERT	E	$\Theta(\log E)$ [†]
DELETE-MIN	E	$\Theta(\log E)$ [†]

[†] using binary heap

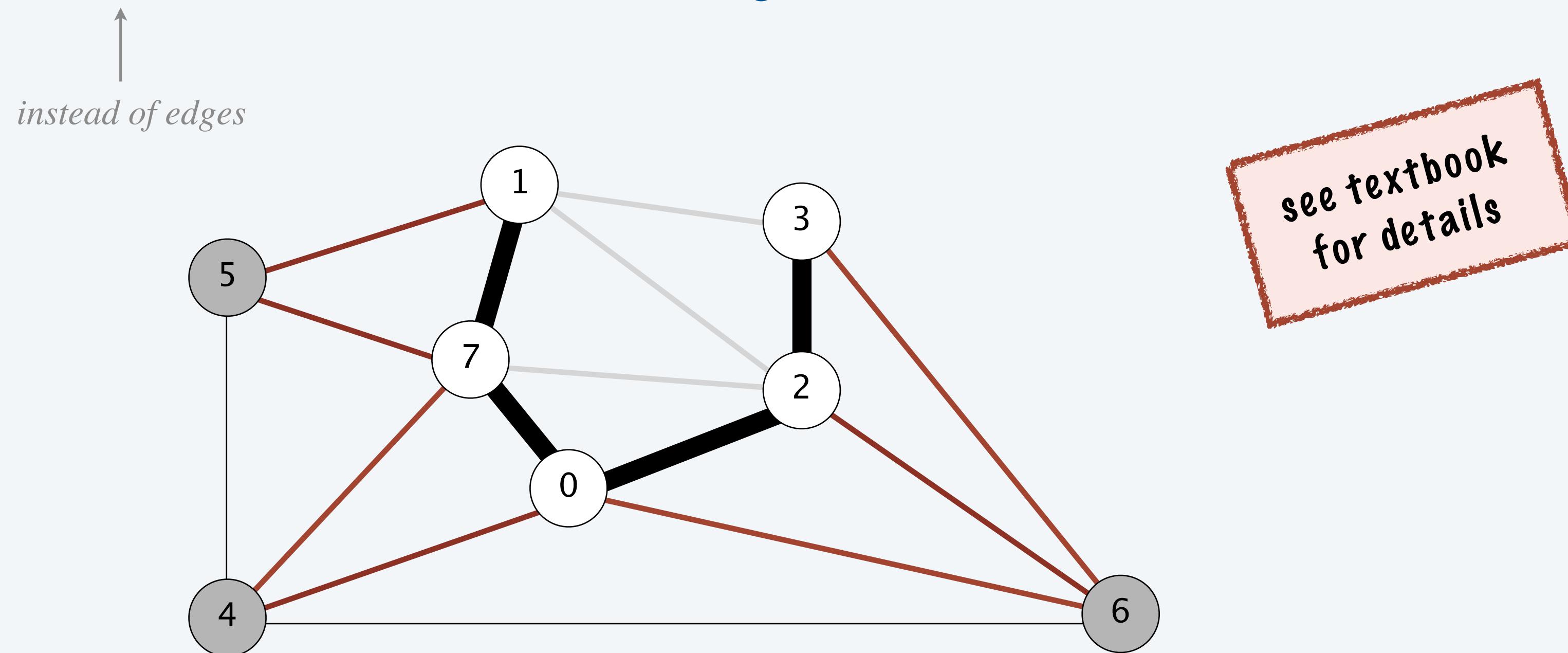
Prim's algorithm: eager implementation

Challenge. Find min-weight edge with exactly one endpoint in T .

Observation. For each vertex v , need only min-weight edge connecting v to T .

- MST includes at most one edge connecting v to T . Why?
- If MST includes such an edge, it must take lightest such edge. Why?

Impact. PQ of vertices; $\Theta(V)$ extra space; $\Theta(E \log V)$ running time in worst case.



MST: algorithms of the day

algorithm	visualization	bottleneck	running time
Kruskal		<i>sorting</i> <i>union–find</i>	$\Theta(E \log E)$
Prim		<i>priority queue</i>	$\Theta(E \log V)$

Credits

media	source	license
<i>Muddy City Problem</i>	CS Unplugged	CC BY-NC-SA 4.0
<i>Microarrays and Clustering</i>	Botstein and Brown	by author
<i>Image Segmentation</i>	Felzenszwalb and Huttenlocher	
<i>Phylogeny Tree</i>	Derzelle et al.	
<i>MST Dithering</i>	Mario Klingemann	CC BY-NC 2.0
<i>Slime Mold vs. Rail Network</i>	Harvard Magazine	
<i>Mona Singh</i>	Princeton University	

A final thought

“ The algorithms we write are only as good as the questions we ask. And the best questions come from creative thinking and collaboration. ” — Mona Singh

