A 1 g Or 1 [h 1IMS ROBERT SEDGEWICK | KEVIN WAYNE

4. GRAPHS AND DIGRAPHS |

> introduction

> graph representation
> depth-first search

» path finding

ROBERT SEDGEWICK | KEVIN WAYNE > UndireCfed graphs

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

4. GRAPHS AND DIGRAPHS |

» introduction

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Graphs

Def. A graph is a set of vertices connected pairwise by edges.

vertex edge

Why study graphs and graph algorithms?
 Hundreds of graph algorithms.
 Thousands of real-world applications.

* Fascinating branch of computer science and discrete math.

Transportation networks

UNDERGROUND

Vertex = subway stop

TChcsham == Wotford Junction Epping @
Chalfont & Theydon Bois =
‘ Latimer 3= Watford High Street) High Barnet
Cockfosters Debden »
Amersham == Busl
* Chorleywood i e gowwood Loughton s
Rickmansworth i Southgate s Buckhurst Hill o
Hatch End ill Hil
_ 3 F Mill Hilt East 2) West Finchley o — hoding orangs
e (] Headstone Lane Edgware Valley HIl
f2) stanmore Bounds Green o
l 2= Harrow & Burnt Oak S b Chigwett
= Wealdstone Canons Park Esst Finchl Wood Greens Halnault
Uxbridge T leckenham ™ Colindale st Finchley Harringay Woodford et
Queensbury v Turnpike Lanc o
2= Harrow- ; Hendon Central Highgate Greesnines Feiop
o ow Northwick Crouch Hill South Tottenham South Woodford «
Ruislip on-the-Hill Park Barkingside
Gardens] Rayners Lane Brent Cross Archway Manor House m; - e
H‘:’::EN South Kenton Golders Green = Gospel Newbury Park
South Harrow « North Wembley Hampstead QA Tufnell Park I soper Hottows Walthamstow — e e
2= South Rulslip Q) Hampstead Heath ppe ¥ Central & ge pm .
h Te
= Wembley Central i b Kentish Town %= A L Watthamstow Wanstead A Upminster Bridge
Sudbury Hill 4 Stonebridge Park & Frognal Kentish Queen’s Road Hilt
Belsize Park Town West Holloway Road Hornchureh,
Northolt FO Leytonstone o
nian 3
Sudbury Town (2) West Hampstead 2= Chalk Farm Hghbery & Layton Leytoratene Dagenham Eim Park
Camden Islington 2= Canonbury Midland Road High Road
Finchley Road Fcamden Town Road -) — * *
- -
Alpertons Swiss Cottage Coledonian Dalston Kingstand Leyton \ Dagenham
() Queen'sPark Kilburn South . ¥ Momington Road & Wanstead Park Heathway
2 Greenford High Road Hampstead St. John's Wood Crescent ~ Barnsbury Dalston Junction 3 Hackney Central -] B N
2 = King’s Cross Stratford Woodgrange Park 4 econtree
Kilburn Park £d St. Pancras 3 3) O o
Maida Vale Paddington® figag Marylebone 2 Pgr't::;d Euston O ENERUELON Homerton Hackney AL e
Warwick Avenue ® ::r‘::’t ¢ ustone Wick 2 Barking 2=
7 < el Pudding || Upton Park 4%
Hanger Lane A - S S Sl ire e Hoxton G S MittLane | © ‘o EsstHam
na 4
T Warren street g::z: . . treet Gremn Ml End 4
Park Royal Regent's Park Famnxdotn N 2 Liverpool Bow Road 4y Puistow
Ladbroke Grove Russell N Street Shoreditch p _
b Bayswater Y ¥ High Street &% 2
[Latimer Road ¥ Square Barbican . ==\ LT Bromley- || West Ham =%
North Ealin { Goodge) ow Church) Bow
’ East White§ \ Shepherd's Notting Lancaster Bond || Oxford Street Chancery Moorgate = i =3
Acton City Bush == HillGate Gate Street Circus Lane g %) Devons Road
2= Ealing Broadway () =) i O Stepney Green
W .
& Y N\ West North & Holand [Queen y Mardle ¥ ¥ Tottenham Holborn St-Paul’s Whitechapel 2) Langdon Park
Acton Acton Park Arch Court Road ¥ Bank)
Wood Lane Covent GardenT Aldgate I¥) All Saints
High Street Shadwell Royal
Acton Central Shephercs Bush i xegnsmg_m Green Park Leicester Square T Waestferry Blackwall $::2|ng Victoria
2 U . D
Ealing Common () Market "';; Hyde Park Corner. Plccadilly T* Cannon Street v &)) & - &) Custom House for ExCel
J Ke.gtlngtoc; 33 Circus Monument Tower Limehouse Poplar East v _
Goldhawk Road « ympia Knightsbridge, Mansion House - HL T India Prince Regent
Y2 Charing * finch du Catow = Wapping Ky West 3
Barons Gloucester Cross T-Blaekfriors- ateway) India QuayT West Silvertown Royal Albert
Hammersmith Court Road 2 | StJames’s River Thames R\ >
South Ealing 5o 3 Victoria Park Temple V. Rotherhithed|) / Beckton Park
& 3 - 'f'c:nnry Wharf & - &
L L T O ' < N N Pontoon Dock ¢
Turnham Stamford Rave:scoun ’ West Earl's South Sloane @ Westminster Embankment & T ¥ Lomdon \O Conad? O ?m::wi i yprus
Green Brook ark Kensin, i uare - Berm O
e Court Kenslegon % T Bridge onqeer Water T Heron Quays €} 3 Gallions Reach
- = A London City Alrport
& West Brompton (&) Tw"““f’: O South Quay €} Beckton
f‘; Surrey Quays « - <
rossharbour {5
: Pimlico = Southwark King George V
ounslow
West i) Kew Gardens N Fulham Broadway (& megal Mudchute (&) ;
2
l h Parsons Green o Borough Island Gardens | |
Hatton Cross, é Richmond =& ’\\\'- = P 'L:;:‘?fm & \ A E—— j-‘
Heathrow _Putney Bridge = J N\ : 5 .
Terminals 1.2.3 A 4 £y Cutty Sark for 2 Woolwich Arsenal
Maritime Greenwich &
Heathrow East Putney
Terminal 4T § =& Vauxhall Elephant & Castle % 2= New Cross Gate 6) New Cross %= EY Greenwich ==
Southfields o Deptford Brid;
) tford Bridge
Heathrow Terminal 5 | Wimbledon Park o [l Ovalygf™ Kennington
e) Brockley) Elverson Road
4 Stockwell
Gla 3 Wimbledon (&) Clapham North, %) Lewisham =
Clapham Commeon,
- Brixton == Honor Oak Park
Clapham South
Forest HIll €
<= Balham
Tooting Bec Sydenham
Tooting Broadway, » Penge West
Colliers Wood Anerley
South Wimbledon, 2 Crystal Palace Norwood Junction 2=
Morden TIV Sagram & 34 evolution of T ariginat design cancebwd i 1831 by Mavy beck - 05 1

O Tivasen fev Lanoon

edge = direct connection.

-

o)

West Croydon 2= ol

London Underground (Tube) Map

VT I 47 GWg B B, Moy 2019

Social networks m

Vertex = person; edge = Linkedln connection.

Pure
orks

Cisco .\

recryiters
personal

Disney

Linkedln social network

Twitter followers

- edge = Twitter follower.

Vertex = Twitter account

At

Z

/)

0y

e
/
.s“\\\\.w\»\

/A &i : W«
.N% ..Q'l/A...-‘
.

!

.\.\A»siq»
[/

47
i

/L LA
i

>
[/

@ V0% va\\N \ ,

W

W

.\%\f »
]

\ o’

“ ‘y
K VA
="

Y,
e

(

Twitter follower subgraph

\

N4
N

N
W

=

S
\“

Protein-protein interaction network

. \ | Al ; s O an R . P
T ” 4 ® & 38 2o AN : A
x fﬁ:...luolu ’ 7 ot woao.“ﬂs“ W@%.Wuﬁﬁﬂ .0»/6 ..C.\ . S . O -
0| 04 o .\..w@wx@ 2Ny 8 N o NS
O‘\

®) = N 4 £ N
Co@,\? ! ol ” LN P ,\,ﬁnw h%rwwﬂmvo? ﬂ%ﬂ.. 3 et A N

Interaction.

o
6
2
yeast protein interaction map

protein; edge

Vertex

Graph applications

graph vertex edge
cell phone phone placed call
infectious disease person infection
financial stock, currency transactions
game board position legal move
transportation Intersection street
internet router fiber optic cable
web web page URL link
social relationship person friendship
object object pointer / reference
protein network protein protein—protein interaction
circuit logic gate wire
neural network neuron synapse

Undirected graph terminology

Def. A graph is a set of vertices connected pairwise by edges.
Def. A path is a sequence of vertices connected by edges (with no repeated edges).
Def. Two vertices are connected if there is a path between them.

Def. A cycle is a path (with > 1 edge) whose first and last vertices are the same.

vertex 6 edge 6-8
° (of degree 3) (vertices 6 and 8 are adjacent)

path between O and 3 @
(of length3) ~__ @ @

cycle
(of length 4)

—

Directed graph terminology

Def. A digraph is a set of vertices connected pairwise by directed edges.
Def. A directed path is a sequence of vertices connected by directed edges (with no repeated edges).
Def. Vertex w is reachable from vertex v if there is a directed path from v to w.

Def. A directed cycle is a directed path (with > 1 edge) whose first and last vertices are the same.

vertex 6

directed edge '1—6
outdegree = 4 , ,
. 7 is adjacent to 6
indegree = 1 , ,
\ 6 is adjacent from]

directed path @ @
from 0O to 3 ~—
(of length 3)
directed cycle

(

10

Graphs and digraphs |: poll 1

Which of these graphs is best modeled as a directed graph?

A. Facebook: vertex = person; edge = friendship.

B. Web: vertex

webpage; edge = URL link.

C. Internet: vertex = router; edge = fiber optic cable.

D. Molecule: vertex = atom; edge = chemical bond.

11

Some graph-processing problems

Find a path between s and t.

s—-t path

(3

shortest s-t path

(3

cycle
) Euler cycle

Hamilton cycle

connected com ponents

(3

graph isomorphism

o

planarity

(:

Find a path with the fewest edges between s to t.

Find a cycle.
Find a cycle that uses each edge exactly once.
Find a cycle that uses each vertex exactly once.
Find connected components.

Find an isomorphism between two graphs.

Draw graph in the plane with no crossing edges.

Challenge. Which problems are easy? Difficult? Intractable?

also digraph versions

4. GRAPHS AND DIGRAPHS |

> graph representation

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Digraph representation

Vertex representation.
« This lecture: integers between 0 and V — 1.

« Real-world applications: use symbol table to convert between names and integers.

symbol table

Def. A digraph is simple if it has no self-loops or parallel edges.

parallel edges
self-loop
C 0 ->

14

Digraph API

public class Digraph

our API allows self-loops
and parallel edges

<

Digraph(int V) create an empty digraph with V vertices
void addEdge(int v, i1nt W) add a directed edge v—w
Iterable<Integer> adj(int v) vertices adjacent from v
int V() number of vertices
Digraph reverse() reverse digraph

public static 1nt outdegree(Digraph digraph, 1nt v) { <
int count = 0;
for (int w : digraph.adj(v))
count++;
return count;

Note: this method is in full Digraph API
(so, no need to re-implement)

15

Digraph representation: adjacency matrix

to

adj [][]

Maintain a V-by-V boolean array adj[]1[] with adj[v][w] true if and only if v—w is an edge.

Memory. Uses ©(V?) space.

=
(@)
-
(m

16

Digraph representation: adjacency lists

Maintain vertex-indexed array of lists: adj[v] contains vertices adjacent from vertex v.

Memory. Uses O(E + V) space.

adj [

]

77TV

11

10

12

12

17

Graphs and digraphs I: poll 2

What is the running time of the following code fragment in the worst case?

Assume adjacency-lists representation, with V = # vertices and F = # edges.

for (int v = 0; v < digraph.V(); v++)
for (int w : digraph.adj(v)) ~ 5 |1
StdOut.println(v + "->" + w);

12

adj[] ~
print each directed edge once / 0 ’
///////(“ 5 2
:::::::* 3 2
A Q) —
- N9 4
B. @(E + V) \ ~[6 -9
C. O § N
1110
D. OEV) §

Digraph representations

In practice. Use adjacency-lists representation.

« Algorithms based on iterating over vertices adjacent from v.

» Real-world graphs tend to be sparse (not dense).

T T

O(V) edges O(V?) edges

add edge has edge

representation
fromvtow from v to w?

adjacency matrix V2 1 1

adjacency lists C E + V) 1 outdegree(v)

iterate over vertices
adjacent from v?

Vi

Coutdegree(v))

T disallows parallel edges

19

Digraph representation (adjacency lists): Java implementation

public class Digraph {

private final int V; . .
adjacency lists

rivate Queue<Integer> adj; «
P Q J L]] (could also use a stack)
public Digraph(int V) { < create empty digraph with V vertices
this.V = V;
adj = (Queue<Integer>[]) new Queue[V]; < can’t create an array of a parameterized type

for (int v = 0; v < V; v++)
adjlv] = new Queue<>();

}

public void addEdge(int v, int w) { < add edge v—w
adj[v].enqueue(w) ; (parallel edges and self-loops allowed)

}

public Iterable<Integer> adj(int v) { < iterate over vertices adjacent from v
return adjlv];

}

20

https://algs4.cs.princeton.edu/41undirected/Graph.java.html

4. GRAPHS AND DIGRAPHS |

Algorithms > depth-first search

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Reachability problem in a digraph

Reachability problem. Given a digraph G and vertex s, find all vertices reachable from s.

S

>’<—¢
A
QP =< @ >0
Y
i
L.
Y

-e
A
@ =<
Y

e
e
+.

N
]

22

Reachability problem in a digraph

Reachability problem. Given a digraph G and vertex s, find all vertices reachable from s.

Depth-first search. A systematic method to explore all vertices reachable from s.

DFS (to visit a vertex v)

Mark vertex v.
Recursively visit all unmarked

vertices w adjacent from v.

23

Depth-first search (in a digraph) demo

To visit a vertex v :
e Mark vertex v.

« Recursively visit all unmarked vertices adjacent from v.

%

a directed graph

24

Depth-first search (in a digraph) demo

To visit a vertex v :

« Mark vertex v.

« Recursively visit all unmarked vertices adjacent from v.

o

reachable from O

v marked]]
0 T
1 T
2 T
3 T
4 T
5 T
6 F
/ F
8 F
9 F
10 F
11 F
12 F

reachable
from vertex 0

25

Graphs and digraphs I: poll 3

Run DFS using the given adjacency-lists representation of digraph G,

starting at vertex 0. In which order is dfs(digraph, v) called?

DFS preorder
A. 124536
B. 124563
C. 132645
D. 126453 L— 4 a
2 3

adj[]

R

adjacency-lists representation digraph G

Depth-first search: Java implementation

public class DirectedDFS {

private boolean[] marked;

public DirectedDFS(Digraph digraph, int s) {
marked = new boolean[digraph.V()];
dfs(digraph, s);

private void dfs(Digraph digraph, int v) {
marked|[v] = true;
for (int w : digraph.adj(v))
1f (!'marked[w])
dfs(digraph, w);

public boolean isReachable(int v) {
return marked|[v]:

}

marked[v] = true if v is reachable from s

constructor marks vertices reachable from s

recursive DF'S does the work

is v reachable from s ?

27

https://algs4.cs.princeton.edu/42digraph/DirectedDFS.java.html

Depth-first search: analysis

Proposition. DFS uses ®(V) extra space (not including the digraph itself).
Pf.

 The marked[] array uses (V) space.

 The function-call stack uses O(V) space.

Proposition. DFS marks all vertices reachable from s in ®(E + V) time in the worst case.
Pf.

 |nitializing the marked[] array takes ®(V) time.
« Each vertex is visited at most once.

* Visiting a vertex takes time proportional to its outdegree:

outdegree(vy) + outdegree(vy) + outdegree(v,) + ... = E

Note. If all vertices are reachable from s, then £ > V —1 and running time simplifies to O(F).

28

Graphs and digraphs I: poll 4

What could happen if we marked a vertex at the end of the DFS call (instead of beginning)?

A. Marks a vertex not reachable from s.
private void dfs(Digraph digraph, int v) {

B. Compile-time error. trarkee v l——Erae
for (int w : digraph.adj(v))
1t (Imarked[w])
dfs(digraph, w);
[marked[v] = true;]
¥

C. Infinite loop / stack overflow.

D. None of the above.

29

Reachability application: program control-flow analysis

Every program is a digraph.
* Vertex = basic block of instructions (straight-line program).

 Edge = jump.

Dead-code elimination.

Find (and remove) unreachable code.

2 Logical-And-Left

/

Infinite-loop detection. 3 Lopiakand gt >
Determine whether exit is unreachable. @

8 For-Loop-Body
9 For-Loop-Update

30

Reachability application: mark-sweep garbage collector

Every data structure is a digraph.
* Vertex = object.

 Edge = reference/pointer.
Roots. Objects known to be directly accessible by program (e.g., stack frame).

Reachable objects. Objects indirectly accessible by program

(starting at a root and following a chain of pointers).

/ J

==
J\J/.)J/J_/i'

:{/-/'/-'

31

Reachability application: mark-sweep garbage collector

Mark-sweep algorithm. [McCarthy, 1960]
« Mark: mark all reachable objects.
* Sweep: if object is unmarked, it is garbage (so add to free list).

Memory cost. Uses one extra mark bit per object (plus DFS function-call stack).

//;i\;,/
/J =9

32

4. GRAPHS AND DIGRAPHS |

Algorithms
» path finding

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Directed paths DFS demo

Goal. DFS determines which vertices are reachable from s. How to reconstruct paths?

Solution. Use parent-link representation.

0
\G &

o

o

e/y

vertices reachable from 0
(and directed paths)

v marked[] edgeTol]
0 T -
1 T 0
2 T 3
3 T 4
4 T 5
5 T 0
6 F -
/ F -
8 F -
9 F -
10 F -
11 F -
12 F -

parent-link representation
of paths from vertex 0

34

Depth-first search: path finding

Parent-link representation of paths from vertex s.
* Maintain an integer array edgeTo[].
* Interpretation: edgeTo[v] is the next-to-last vertex on a directed path from s to v.

* To reconstruct path from s to v, trace edgeTo[] backward from v to s (and reverse).

@ v marked[] edgeTo][]

(2) (4)
@/@_\%,E

public Iterable<Integer> pathTo(int v) {

1t (Imarked[v]) return null;

Stack<Integer> path = new Stack<>();

for (Iint x = v; X !=s; x = edgeTo[x])
path.push(x) ;

path.push(s);

return path;

S v MW NN R, O
m 4 =4 4 4 4 -
S uvi A W O

35

Depth-first search (with path finding): Java implementation

DepthFirstDirectedPaths

private 1nt[] edgeTo; < edgeTo[V] = previous vertex
private int s; on a directed path from s to v

DepthFirstDirectedPaths

edgeTo[w] = v;

AN

v—w is edge that led
to the discovery of w

36

https://algs4.cs.princeton.edu/42digraph/DepthFirstDirectedPaths.java.html

Graphs and digraphs I: poll 5

Suppose there are many paths from s to v. Which one does DepthFirstDirectedPaths find?

A. A shortest path (fewest edges).
B. A longest path (most edges).

C. Depends on digraph representation.

37

4. GRAPHS AND DIGRAPHS |

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE > UndireCfed graphs

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Flood fill

Problem. Implement flood fill (Photoshop magic wand).

39

Depth-first search in undirected graphs

Connectivity problem. Given an undirected graph G and vertex s, find all vertices connected to s.

Solution. Use DFS. «——— pur now, for each undirected edge v—w:
v is adjacent with w (and w is adjacent with v)

DFS (to visit a vertex v)

Mark vertex v.
Recursively visit all unmarked

vertices w adjacent with v.

Proposition. DFS marks all vertices connected to s in ©(E

V) time in the worst case.

40

Depth-first search (in an undirected graph) demo

To visit a vertex v :
e Mark vertex v.

« Recursively visit all unmarked vertices adjacent with v.

tinyG. txt
0 ’ 8 U E

05
4 3
01
o
6 4
5 4
0 2
N\ Q 11 12
3 4 11 12 _—r
06
7 8
9 11
’ 5 3

graph G

41

Depth-first search (in an undirected graph) demo

To visit a vertex v :
e Mark vertex v.

« Recursively visit all unmarked vertices adjacent with v.

vertices connected to O

(and associated paths)

v marked[] edgeTol]
0 T -
1 T 0
2 T 0
3 T 5
4 T 6
5 T 4
6 T 0
/ F -
8 F -
9 F -
10 F -
11 F -
12 F -

42

Graphs and digraphs I: poll 6

How to represent an undirected edge v—w using adjacency lists?

A. Add w to adjacency list for v.

B. Add v to adjacency list for w.

C. Both A and B.

D. None of the above.

43

Directed graph representation (review)

public class Digraph {

private final int V;

private Queue<Integer>[] adj: <
public Digraph(int V) { <
this.V = V;

adj = (Queue<Integer>[]) new Queuel[V];
for (int v = 0; v < V; v++)
adjlv] = new Queue<>();

public void addEdge(int v, 1nt w) { <
adj[v].enqueue(w) ;

public Iterable<Integer> adj(int v) { <
return adjlv];

}

adjacency lists

create empty digraph with V vertices

add edge v—w

iterate over vertices adjacent from v

44

https://algs4.cs.princeton.edu/41undirected/Graph.java.html

Undirected graph representation

Graph

Graph

adj[w].enqueue(v);

adjacency lists

create empty graph with V vertices

add edge v—w

iterate over vertices adjacent with v

45

https://algs4.cs.princeton.edu/41graph/Graph.java.html

Depth-first search (in directed graphs)

public class DirectedDFS {

private boolean[] marked;

public DirectedDFS(Digraph graph, int s) {
marked = new boolean[graph.V()];
dfs(graph, s);

}

private void dfs(Digraph graph, int v) {
marked|[v] = true;
for (int w : graph.adj(v))
1f (!'marked[w])
dfs(graph, w);

public boolean isReachable(int v) {
return marked|[v]:

}

marked[v] = true if v is reachable from s

constructor marks vertices reachable from s

recursive DF'S does the work

is v reachable from s !

46

https://algs4.cs.princeton.edu/42digraph/DirectedDFS.java.html

Depth-first search (in undirected graphs)

DepthFirstSearch

DirectedDFS(Graph

Graph

1sConnected

marked[v] = true if vertices s and v are connected

constructor marks vertices connected with s

recursive DF'S does the work

are vertices s and v connected?

47

https://algs4.cs.princeton.edu/41graph/DepthFirstSearch.java.html

Depth-first search summary

DFS enables direct solution of several elementary graph and digraph problems.
« Reachability (in a digraph). v
« Connectivity (in a graph). v
« Path finding (in a graph or digraph). V¥
* Topological sort.

* Directed cycle detection.

DFS is also core of solution to more advanced problems.
* Euler cycle.

¢ BiconneCtiVity- SIAM J. CoMpuT.

Vol. 1, No. 2, June 1972

« 2-satisfiabil ITy. DEPTH-FIRST SEARCH AND LINEAR GRAPH ALGORITHMS*

ROBERT TARJANY

* Planarity testing.

Abstract. The value of depth-first search or “‘backtracking’ as a technique for solving problems is

° St r O n C O m O n e n t S illustrated by two examples. An improved version of an algorithm for finding the strongly connected
g p . components of a directed graph and an algorithm for finding the biconnected components of an un-

direct graph are presented. The space and time requirements of both algorithms are bounded by

k,V + k,E + k,for some constants k,, k,, and k5, where V'is the number of vertices and E is the number

¢ N O n b I pa rt I te m atC h I n g . of edges of the graph being examined.

Credits

media source license
Function Graph Adobe Stock Education License
Pac—Man Graph (OF1VAY
Pac—Man Game Old Classic Retro Gaming
London Tube Map Transport for London
London Tube Graph visualize.org
LinkedIn Social Network Caleb Jones
Twitter Graph Caleb Jones

Protein Interaction Graph Hawing Jeong / KAIST

PageRank Wikipedia public domain
Control Flow Graph Stack Exchange
DFS Graph Visualization Gerry Jenkins

Lecture Slides © Copyright 2025 Robert Sedgewick and Kevin Wayne

https://stock.adobe.com/images/vector-scientific-or-educational-scheme-or-diagram-of-the-analog-signal-and-digital-signal-isolated-on-white-continuous-time-varying-signal-and-discrete-signal-used-to-carry-data-physics-technology/416897583
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://oatzy.blogspot.com/2011/09/playing-with-pac-man.html
https://www.youtube.com/watch?v=dScq4P5gn4A
https://content.tfl.gov.uk/standard-tube-map.pdf
https://visualign.org/2012/07/11/london-tube-map-and-graph-visualizations/
http://allthingsgraphed.com/2014/10/16/your-linkedin-network/
https://allthingsgraphed.com/2014/11/02/twitter-friends-network/
https://images.nigms.nih.gov/Pages/DetailPage.aspx?imageID2=2423#
https://en.wikipedia.org/wiki/File:PageRanks-Example.svg
https://creativecommons.org/share-your-work/public-domain/
https://cs.stackexchange.com/questions/77017/best-algorithm-for-sequencing-reducible-control-flow-graph
https://www.youtube.com/watch?v=NUgMa5coCoE

DFS visualization (by Gerry Jenkins)

@ @
® @ @ ® ®
® o O 7 4
o @ 0 O @ O© © O
O @ O 65 @ O
®© O 5 @ ® O @
© O @ 006 O o @ O
O 6 o0 © 6 O @ @ ®
2 © 0 6 6 o 07
@ o o © @ 6 & @
o O ®@ © @ O ©
@ © O @ O @
© © O @ @ ©
© @ 0 O @
10 20 57, @
22 50 @ e ©
@ O @ ®
@ © © O o 17
@ 6 O Q@ ©
@ O @ ®

https://www.youtube.com/watch?v=NUgMa5coCoE

®@ 6 6 @

®
e 6 6

& o

=

e 6 6 6
o O
o 0 O 6
@ 6 e o O

@ 6 6

@ O

https://algs4.cs.princeton.edu/41undirected/Graph.java.html

