A 1 g Or 1 [h 1IMS ROBERT SEDGEWICK | KEVIN WAYNE

3.4 HASH TABLES

> hash functions
> separate chaining
> linear probing

» context

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Symbol table implementations: summary

typical case
ordered key

implementation m_ :
ops? interface
delete search delete

sequential search

(unordered list) &
binary search 1
(ordered array) 08 1t
BST n
red-black BST log n
hashing n

Q. Can we do better?

log n

log n

n n n equals()
log n n n 4 compareTo()
log n log n Vn v compareTo()
log n log n log n \'4 compareTo()

equals()
T T T
e

T subject to certain technical assumptions

A. Yes, but only with different access to the symbol table keys.

Hashing: basic plan

Save key-value pairs in an array, using a hash function to determine index of each key.

Hash function: Mathematical function that maps (hashes) a key to an array (table) index.

Collision: Two distinct keys that hash to the same index.

Issue. Collisions are typically unavoidable. .
o . hash(‘J
 How to limit collisions?
- g | W | 3%
[good hash functions] hash(W) = 3 .
* How to accommodate collisions? /)
[novel algorithms and data structures] hash(&d) = 3 5

hash(&) = 99

3.4 HASH TABLES

» hash functions

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Designing a hash function

m = table size

Required properties. L/
« Valid indices: each key hashes to a table index between 0 and m — 1.

* Deterministic: hashing the same key twice yields the same index.

hash
Desirable properties. function
* Very fast to compute. l
 Distributes the keys uniformly: for any subset of n keys to be hashed, table index

each table index gets approximately n/m keys.

o0 @

@ ® o0 ® o0

® ® o & & o o o o0 o0 [X)

® o ©®© & & 6 o o o o o0 o0 o0
o 1 2 3 4 5 6 7 8 9 o 1 2 3 4 5 6 7 8 9
leads to good hash-table performance leads to poor hash-table performance

(m =10, n = 20) (m =10, n = 20)

Designing a hash function

Required properties.
« Valid indices: each key hashes to a table index between 0 and m — 1.

* Deterministic: hashing the same key twice yields the same index.

hash
Desirable properties. function
* Very fast to compute. l
« Distributes the keys uniformly: for any subset of n keys to be hashed, table index

each table index gets approximately n/m keys.

Ex 1. Last 4 digits of U.S. Social Security number.
Ex 2. Last 4 digits of phone number.

L3 g 123~45~6789

THISNUMBER HAS BEEN ESTABLISHED FOR (6 O 9) 8 76 = 5 3 O 9
JOHN Q PUBLIC

Hash tables: poll 1

Which is the last digit of your day of birth?

o 0

Oorl
2 or 3
4 or 5
6 or /

8or9

WELCOME BABY

y >
7y =

Y NN
&

Hash tables: poll 2

Which is the last digit of your year of birth?

o 0

Oorl
2 or 3
4 or 5
6 or /

8or9

WELCOME BABY

y >
7y =

Y NN
&

Java’s hashCode() method

All Java classes inherit a method hashCode (), which returns a 32-bit int.

Required. [for correctness| If x.equals(y), then x.hashCode() == y.hashCode().
Highly desirable. [for efficiency] If !x.equals(y), then x.hashCode() != y.hashCode().

X Y
hash hash
code code
X.hashCode () y.hashCode()

Customized implementations. Integer, Double, String, java.net.URL, ...
Legal (but highly undesirable) implementation. Always return 17.

User-defined types. Requires some care to design.

Implementing hashCode(): integers and doubles

Java library implementations

convert to IEEE

public final class Integer { public final class Double { , ,
: : : : : 64-bit representation
private final int value; private final double value;
public 1nt hashCode() { public 1nt hashCode() {
return value; long bits = doubleToLongBits(value); if used only least significant 32 bits,
} return (int) (bits A (bits >>> 32)); < all integers between —2*' and 2*'
} 1 would have same hash code (0)

¥ ¥

xor most significant 32-bits
with least significant 32-bits

10

Implementing hashCode(): user-defined types

31x + y rule.
e) origin of rule remains a mystery,
* Initialize hash to 1. but works well in practice
« Repeatedly multiply hash by 31 and add hash of each significant field.

public final class Transaction {
private final String who;
private final Date when;
private final double amount;

public int hashCode() {
int hash = 1;

hash = 31*hash + who.hashCode():) for reference types:
nash = 31*hash + when.hashCode(); use hashCode ()
nash = 31*hash + ((Double) amount) .hashCode():;

return hash; “\\\\\\\\\\
) for primitive types:

use hashCode () of wrapper type

11

Implementing hashCode(): user-defined types

31x + y rule.
e |nitialize hash to 1.

« Repeatedly multiply hash by 31 and add hash of each significant field.

public final class Transaction {
private final String who;
private final Date when;
private final double amount;

public int hashCode() {
return Objects.hash(who, when, amount);

} A

) a varargs method that applies
31x + y rule to its arguments

Practice. This approach works reasonably well;: used in Java libraries.

12

Hash tables: poll 3 "

Which Java function maps hashable keys to integers between O and m — 1 ?

key key
hash hash
A : : code function
: private int hash(Key key) {
return key.hashCode() % m; l l
1 key.hashCode () hash(key)

private 1nt hash(Key key) {
return Math.abs(key.hashCode()) % m;

C. Both A and B.

D. Neither A nor B.

13

Modular hashing

Hash code. An int between —2°! and 2°! — 1.
Hash function. An int between 0 and m — 1 (for use as a table index). y y
ey ey
IIIHHIII IIIHH'II
_ _ code function
private i1nt hash(Key key) {
return key.hashCode() % m; l l
} key.hashCode () hash(key)

bug

private 1nt hash(Key key) {
return Math.abs(key.hashCode()) % m;

1-in-a-billion bug

private i1nt hash(Key key) {
return Math.abs(key.hashCode() % m);

}

correct

14

Uniform hashing assumption

Uniform hashing assumption. Each key is equally likely to hash to any of m possible indices.

and independently of other keys
Balls-into-bins model. Toss n balls uniformly at random into m bins.

®
@ o
® ® o O ® o O ®
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
m = 16 bins, n = 11 balls
Bad news. [birthday problem]
* |In a random group of n =23 people, more likely than not & B
that two (or more) share the same birthday (m = 365). | \“
. Expect two balls in the same bin after ~ y/ 7m/2 tosses. R
— collisions are unavoidable \
\ 23.9 when m = 365

unless mis huge

Uniform hashing assumption

Uniform hashing assumption. Each key is equally likely to hash to any of m possible indices.

and independently of other keys
Balls-into-bins model. Toss n balls uniformly at random into m bins.

O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
m = 16 bins, n = 11 balls

Good news. [load balancing]
« Mean number of balls per bin = n/m, variance ~ n/m. <—— Binomial(n, 1 / m)

« Expect most bins to have approximately n/m balls.

T

hash value frequencies for words in Tale of Two Cities (im = 97, n = 10,679)

3.4 HASH TABLES

> separate chaining

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Separate-chaining hash table

Use an array of m singly linked lists.
 Hash: map key to table index i between 0 and m — 1.

* |Insert: add key-value pair at front of chain i (if not already in chain).

put(L, 11)
. hash(L) = 3
separate-chaining hash table (m = 4)
I —> D —> null
st[] /
K i ——— E —> A —> null
/

F —> C > B > null

18

Separate-chaining hash table

Use an array of m singly linked lists.
 Hash: map key to table index i between 0 and m — 1.
* |Insert: add key-value pair at front of chain i (if not already in chain).

« Search: perform sequential search in chain .

get(E)
o hash(E) = 1
separate-chaining hash table (m = 4)
I —> D —> null
st[]/ i
K | 10—t 3 | o —— e (D1 A | 0 —— nuu
/

19

Separate-chaining hash table: Java implementation

public class SeparateChainingHashST<Key, Value> {
private int m = 128;

private Node[] st = new Node[m];

private static class Node {
private Object key;
private Object val;
private Node next;

P no generic array creation
(declare key and value of type Object)

private 1nt hash(Key key)
{ /* as before */ }

public Value get(Key key) {
int 1 = hash(key) ;
for (Node x = st[1]; X != null; X = X.next)
it (key.equals(x.key)) return (Value) x.val;
return null;

array resizing
code omitted

20

Separate-chaining hash table: Java implementation

public class SeparateChainingHashST<Key, Value>
private int m = 128;
private Node[] st = new Node[m];

private static class Node {
private Object key;
private Object val;
private Node next;

}

private 1nt hash(Key key)
{ /* as before */ }

public void put(Key key, Value val) {
int 1 = hash(key):
for (Node x = st[1]; x != null; X = x.next)
1f (key.equals(x.key)) { x.val = val; return; }
st[1] = new Node(key, val, st[1]);

21

Hash tables: poll 4

What is worst-case number of probes to search for a key in a separate-chaining hash table

with n keys and m = n chains? \

calls to either
equals() or hashCode()

A. O
B. O(ogn)
C. O

D. 0O(n?)

22

Analysis of separate chaining

Recall load balancing: Under the uniform hashing assumption,

the length of a chain is tightly concentrated around its mean = n/m.

---------- ! - Hsabw st - itk -5 e (R i Pm| | At il %-------- n/m~110
o>
<
N\
~
S
0 96
hash value frequencies for words in Tale of Two Cities (im = 97, n = 10,679)

Consequence. Expected number of probes for search/insert is ®(n/m).

« m too small = chains too long. \

m times faster than

« m too large = too many empty chains. sequential search

. Typical choice: m ~ %n —> O(1) time for search/insert.

average length
of a chain = 4

23

Resizing in a separate-chaining hash table

Goal. Resize array so that the average length of a chain is ©(1).
 Double length m of array when n/m > 8.
« Halve length m of array whenn/m < 2.

* Note: must rehash all keys when resizing.

before resizing (n/m = 8)

st[]

after resizing (n/m = 4)

St[]/

| WN—{EF— P AL

T~

Deletion in a separate-chaining hash table

Q. How to delete a key (and its associated value)?

A. Easy: need to consider only linked list containing key.

before deleting F

st[]

/

st[]

after deleting F

/'

/

/

.

™~

25

Symbol table implementations: summary

worst case

implementation __
ops?
mm

sequential search

(unordered list) " " " "
binary search 1 |
(ordered array) 08 " " 08 11
BST n n n log n
red-black BST log n log n log n log n
separate chaining n n n 1

can achieve ©(1) probabilistic, amortized guarantee
by choosing a hash function at random
(see “universal hashing’)

typical case

log n

log n

ordered

n
n \'4
Vn \'4

log n v
1

key
interface

equals()

compareTo()

compareTo()

compareTo()

equals()
hashCode ()

T under uniform hashing assumption

26

3.4 HASH TABLES

Algorithm S > linear probing

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Linear-probing hash table: insertion

 Maintain key-value pairs in two parallel arrays, with one key per cell.
» Resolve collisions by linear probing:

search successive cells until either finding the key or an unused cell.

Inserting into a linear-probing hash table.

linear-probing hash table

0 1 2 3 4 5 6 7 8 9 10 11 12 13
keys[] P M A C H L E

put(K, 14) K

hash(K) = 7 14

vals|[]

14

15

28

Linear-probing hash table: search

 Maintain key-value pairs in two parallel arrays, with one key per cell.
» Resolve collisions by linear probing:

search successive cells until either finding the key or an unused cell.

Searching in a linear-probing hash table.

linear-probing hash table

0 1 2 3 4 5 6 7 8 9 10 11 12 13
keys[] P M A C H L ® E
get(K) get(Z) . z

hash(K) = 7 hash(Z) = 8

vals[] O

14

15

29

Linear-probing hash table demo

Hash. Map key to integer i between 0 and m — 1.
Insertion. Put at table index i if free; if not, try i+ 1,i+2, ...

Search. Search table index i; if occupied but no match, try i+ 1,i+ 2, ...

Note. Array length m must be greater than number of key-value pairs n.

keys[] P M A C S H L E

14

15

30

Linear-probing symbol table: Java implementation

public class LinearProbingHashST<Key, Value> {

private int m = 32768;

private Value[] vals = (Value[]) new Object[m]; array resizing
<€
private Key| | keys = (Key[) new Object[m]; code omitted

private 1nt hash(Key key)
{ /* as before */ }

private void put(Key key, Value val) { }

public Value get(Key key) {
for (int 1 = hash(key); keys[i]
1f (key.equals(keys[i]))
return vals|[1];

}

return null;

l= null; 1 = (A+1) %2 m) {

31

Linear-probing symbol table: Java implementation

public class LinearProbingHashST<Key, Value> {
private int m = 32768;
private Value[] vals = (Value[]) new Object[m];
private Key[] keys = (Key[]) new Object[m];

private 1nt hash(Key key)
{ /* as before */ }

public Value get(Key key) { /* previous slide */ }

public void put(Key key, Value val) {
int 1;
for (1 = hash(key); keys[1] !'= null; 1 = (3+1) % m) {
1f (keys[1].equals(key))
break;
}
keys[1] = key;
vals[1] = val;

32

Hash tables: poll 6

Under the uniform hashing assumption, where is the next key most likely to be added

in this linear-probing hash table (no resizing)?

0 1 2 3 4 5 6 / 8 9 10 11 12 13 14 15 16 17 18 19

A. Index 4.

B. Index 17.
C. Either index 4 or 17.

D. All open indices (4, 7,9, 10, 17) are equally likely.

33

Analysis of linear probing

Proposition. Under uniform hashing assumption, the average # of probes in a

linear-probing hash table of size m that contains n = «a - m keys is at most

1 1 1 1
— il — —(1+
2 1 —a 2 (1 - a)?

search hit search miss / insert

[beyond course scope]

SN A R ""‘""Wi‘:t Ir. 8& Iﬂ(ntrsoa
.] " : : : N . . 8354
. NOTES on “opm" apDRESEING. - . D, Knua 120iés

- s Istroduction and Definitions. Upen addressing is a widely-used technique
- for keeping "symbol tsbles,” The pethod was first used, in 1954 by Samuyel, Amdahl,
and Rochme in an assembly propram “or the IHM T0l, An extensive QiScussion of
the method was given by Peterson in 1957 {1], and frequent rei’erences have ceen
wade to it ever since (e.g., Schey and Spruth {2), Iversen [31). However, the
tlwing characteristics have apparently never besn axactliy established, and indeed
the anthor has heard reports of seversl reputable mathematieiana who falled %0

find the aolution after some trial. Tharefore it iz the purpsse of this note to
indicate one way by which the solu.ion cen be cbiained,

Parameters.

 m too large =— wastes space (empty array entries).

« mtoo small = search time blows up.

Typical choice: o = n/m ~ 1 e # probes for search hif LS gbout 3/2
2 # probes for search miss is about S/ 2

Deletion in a linear-probing hash table

Q. How to delete a key-value pair from a linear-probing hash table?

A. Requires some care: can’t simply null out array entries.

before deleting S

0 1 2 3 4 5 6 / 8 9 10 11 12 13 14 15

keys[] P M A C H L E R X

vals[]

search no longer works

(e.g., if hash(H) = 4)

after deleting S ? /

0 1 2 3 2 5 6 / 8 S 10 11 12 13 14 15
keys[] P M A c A H L E R X
A
vals[]
“tombstone”

(skip for search; reuse for insert)

35

ST implementations: summary

typical case
ordered

implementation m—
ops?
mm

sequential search

(unordered list) & " " . . !
binary search 1 1 v
(ordered array) 0 1 " & 08 7t " "
BST n n n log n log n Vn 4
red-black BST log n log n log n log n log n log n \'4
separate chaining n n n 17 1 1
linear probing n n n 17 17 1

key
interface

equals()

compareTo()

compareTo()

compareTo()

equals()
hashCode ()

equals()
hashCode ()

T under uniform hashing assumption

36

Separate chaining vs. linear probing

Separate chaining.

» Performance degrades gracefully.

—> null

st[]

* Clustering less sensitive to poorly-designed hash function.

[LN

—> null

Linear probing.

* Unrivaled data locality. C

* More probes because of clustering.

keys[] [P [M Al C|]S| H]|L E R | X

vals|[]

—> null

> null

37

3-Sum (revisited)

3-SuM. Given n distinct integers, find three such that a + b6 + ¢ = 0.

Goal. ®(n’) expected time:; O(n) extra space.

38

3.4 HASH TABLES

Algorithms
> confext

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Hashing: variations on the theme

Many many improved versions have been studied.

Use different probe sequence, i.e., not h(k), h(k) + 1, h(k) + 2, ...

\ \ \

Google Swiss Table Facebook F14 Python 3

During insertion, relocate some of the keys already in the table.

[Cuckoo hashing, Robin Hood hashing, Hopscotch hashing, ...]

Insert tombstones prophylactically, to avoid primary clustering.

[graveyard hashing]

A

Google

quadratic probing, double hashing, pseudo-random probing, ...

]

eliminates primary clustering,
<—— which enables higher load factor / less memory
(but sacrifices data locality)

«<— reduces worst-case time for search

«—— eliminates primary clustering,
maintains data locality

40

Hash tables vs. balanced search trees

Hash tables. R
/
* Simpler to code.
> —> —>
» Typically faster in practice.
\

Balanced search trees.
» Stronger performance guarantees.

» Support for ordered ST operations.

Java collections library includes both.
« BSTs: java.util.TreeMap. «—— red-black BST

 Hash tables: java.util.HashMap, java.util.IdentityHashMap.

T T

separate chaining linear probing
(if chain gets too long, use red—black BST for chain)

Algorithmic complexity attacks

Q. Is the uniform hashing assumption important in practice?
Al. Yes: aircraft control, nuclear reactor, pacemaker, HFT, missile-defense system, ...

A2. Yes: denial-of-service (DoS) attacks.

st[]

/

malicious adversary learns your hash function
(e.g., by reading Java API) and causes a big pile-up
in single chain that grinds performance to a halt

Real-world exploits.
* Linux 2.4.20 kernel: save files with carefully chosen names.
* Bro server: send carefully chosen packets to DoS the server,

using less bandwidth than a dial-up modem.

42

Hashing: beyond symbol tables

File verification. When downloading a file from the web:
* Vendor publishes hash of file.
* Client checks whether hash of downloaded file matches.

e |If mis match, file corru pted . «<— (e.g., error in transmission or infected by virus)

Download IntelliJ IDEA

Windows Mac Linux

Ultimate Community

For web and enterprise development For JVM and Android development

Version: 2019.3.3

Build: 193.6494.35
10 February 2020

Release notes Free trial Free, open-source
M-+
. . - ‘
Download and verify the flleCSHA—256 checksum)
%

c62ed2df891ccbb40d890e8a0074781801f086a3091a4a2a592a96afaba31270

sha256sum 1deaIC-2019.3.dmg

c62ed2df891ccbb40d890e8a0074781801f086a3091ad4a2a592a96ataba31270

43

Hashing: cryptographic applications

One-way hash function. “Hard” to find a key that will hash to a target value

(or two keys that hash to same value).

Ex. MD5, SHA-1, SHA-256, SHA-512, SHA3-512, Whirlpool, BLAKE3, ...

B
W,

- c62ed2df891cchbb40d890e8a0074781801f086a3091a4a2a592a96afaba31270 (M) -,
72272

- . |

fixed-length hash (256 bits) - %

Applications. File verification, digital signatures, cryptocurrencies, password authentication,

blockchain, non-fungible tokens, Git commit identifiers, ...

44

Credits

media source license
Collision Icon Adobe Stock Education License
Sound Effects Mixkit Mixkit free license
Social Security Card Adobe Stock Education License
Cell Phone Number Adobe Stock Education License

Birth Announcement
Recipe
People Standing in Line
Tombstone Icon
Meat Grinder
Document Icon

Donald Knuth

postable.com

Pixabay
Adobe Stock

Adobe Stock

flaticon.com

stockio.com

Hector Garcia-Molina

Pixabay Content License

Education License

Education License

Flaticon license

free with attribution

Lecture Slides © Copyright 2025 Robert Sedgewick and Kevin Wayne

https://stock.adobe.com/images/vector-illustration-of-the-shape-of-an-explosive-collision/459443876
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://mixkit.co/free-sound-effects/game/
https://mixkit.co/license/#sfxFree
https://stock.adobe.com/images/generic-american-social-security-card/27922613
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/flat-design-concept-message-and-chat-present-by-icon-text-message-vector-illustrate/206595690
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://www.postable.com/card/pine-branch-birth-announcement
https://pixabay.com/vectors/recipe-label-icon-symbol-spoon-575434/
https://pixabay.com/service/license-summary/
https://stock.adobe.com/images/diverse-community-of-people-standing-in-line-isolated-cartoon-men-and-women/316212153
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/flat-rip-icon/676112179
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://www.flaticon.com/free-icon/meat-grinder_180476
https://www.freepikcompany.com/legal#nav-flaticon
https://www.stockio.com/free-icon/documents
https://www.stockio.com/free-icon/documents
https://www.cs.cmu.edu/news/2010/carnegie-mellon-announces-knuth-and-kleinberg-will-receive-katayanagi-prizes-computer-science

A final thought

“ Programmers waste enormous amounts of time thinking about,

or worrying about, the speed of noncritical parts of their programs,
and these attempts at efficiency actually have a strong negative

impact when debugging and maintenance are considered.

We should forget about small efficiencies, say about 97% of the time:

premature optimization is the root of all evil.

Yet we should not pass up our opportunities in that critical 3%.

— Donald Knuth

