A 1 g Or 1 [h 1IMS ROBERT SEDGEWICK | KEVIN WAYNE

3.3 BALANCED SEARCH TREES

» 2-3 search trees
» red-black BSTs (representation)
> red-black BSTs (operations)

» context

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Symbol table review

worst case
ordered key

implementation _ :
ops? interface
delete

sequential search
(unordered list)

n n n equals()

binary search
(sorted array)

BST @ @ " v compareTo()

goal log n log n log n v compareTo()

log n n n 4 compareTo()

Challenge. O(logn) time in worst case. optimized for teaching and coding

/ (introduced in COS 226)

This lecture. 2-3 trees and left-leaning red-black BSTs.
™~

co-invented by Bob Sedgewick in the 1970s

).

a2

-

)

3.3 BALANCED SEARCH TREES

» 2-3 search trees

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

2-3 tree

Each node contains either 1 or 2 keys.
 2-node: one key, two children.

 3-node: two keys, three children.

Symmetric order. Inorder traversal yields keys in ascending order.

«— data structure invariants

Perfect balance. Every path from the root to a null link has the same length.

how to maintain ?
m «— 7100t

3-node 2-node

peran_ CE LS (R,
Sdrer T larger than J

N /

(ac) /G () Cp) Csxg
N

between E and J null link

2-3 tree demo

Search.
 Compare search key against key(s) in node.
* Find interval containing search key.

* Follow associated link (recursively).

search for H

2-3 tree: insertion

Insertion into a 2-node at bottom.

 Add new key to 2-node to create a 3-node.

insert G

2-3 tree: insertion

Insertion into a 3-node at bottom.
* Add new key to 3-node to create temporary 4-node.
 Move middle key in 4-node into parent.
* Repeat up the tree, as necessary.

* |If you reach the root and it’s a 4-node, split it into three 2-nodes.

insert Z

Balanced search trees: poll 1

Suppose that you insert P into the following 2-3 tree.

What will be the root of the resulting 2-3 tree?

A. E

B. ER

- ay
D. P

E. R

Balanced search trees: poll 2

What is the maximum height of a 2-3 tree containing n keys?

A. ~ log,n
B. ~ log, n
C. ~ 2log,n

D. ~ N

16

2-3 tree: performance

Perfect balance. Every path from the root to a null link has the same length.

— root

null link

Key property. The height of a 2-3 tree containing n keys is O(log n).

» Min: ~logy;n = 0.631log,n. all 3-nodes]

» Max: ~ log,n. all 2-nodes

« Between 18 and 30 for n = 1 billion keys.

Bottom line. Both search and insert take ®(logn) time in the worst case.

ST implementations: summary

worst case
ordered

ops?
mm

sequential search

(unordered list) & & "
binary search 1 v
(sorted array) 03 7t & "
BST n n n v
2-3 trees log n log n log n v

but hidden constant c is large
(depends upon implementation)

key
interface

equals()

compareTo()

compareTo()

compareTo()

).

a2

-

)

18

2-3 tree: implementation?

Direct implementation is complicated, because:
* Maintaining multiple node types is cumbersome.
* Might need two compares to move one level down tree.
 Need to move back up the tree to split 4-nodes.

* Large number of cases for splitting.

fantasy code

public void put(Key key, Value val) {
Node x = root;
while (!x.isLeafNode())
X = xX.getTheCorrectChild(key) ;
h
X .squeezeKeyIntoNode(key, val);
while (x.1s4Node())

X = X.split4NodeIntoParent() ;

Bottom line. Could do it (see COS 326!), but there’s a better way.

19

3.3 BALANCED SEARCH TREES

> red-black BSTs (representation)
Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

How to implement 2-3 trees as binary search trees?

Challenge. How to represent a 3 node?

Approach 1. Two BST nodes.
* No way to tell a 3-node from two 2-nodes.

 Can’t (uniquely) map from BST back to 2-3 tree.

Approach 2. Two BST nodes, plus red “glue” node.
« Wastes space for extra node.

 Messy code.

Approach 3. Two BST nodes, with red “glue” link.
» Widely used in practice.

* Arbitrary restriction: red links lean left.

21

Left-leaning red-black BSTs

1. Represent 2-3 tree as a BST.

2. Use “internal” left-leaning red links as “glue” for 3-nodes. larger key is parent;
smaller key is left child

ALY
greater
than y
less between greater less between
than x x and y than y than x x and y
3-node in a 2-3 tree two nodes in the corresponding red-black BST

red link “glues together”
the two BST nodes

black links are identical to those
that correspond to a 3-node

/ in corresponding 2-3 tree

2-3 tree corresponding red-black BST

22

Left-leaning red-black BSTs

Key property. 1-1 correspondence between 2-3 trees and LLRB trees.

2-3 tree

corresponding red-black BST

23

Balanced search trees: poll 3

Which LLRB tree corresponds to the following 2-3 tree?

C. Both A and B.

D. Neither A nor B.

24

An equivalent definition of LLRB trees (without reference to 2-3 trees)

/ binary tree, symmetric order

Def. A left-leaning red-black BST is a BST such that:

* No node has two red links connected to it.
 Red links lean left.

«—— color invariants

* Every path from root to a null link has the same number of black links. «<—— perfect black balance invariant

N\

black height

25

Balance in LLRB trees

Proposition. Height of LLRB tree is < 2 log, n.
Pf.
« Black height = height of corresponding 2-3 tree < log, n.
* Never two red links in a row.
—> height of LLRB tree < (2 X black height) + 1
< 2log,n + 1.

height < 2log, n

26

Red-black BST representation

Each node (except root) is pointed to by precisely one link (from its parent) —

cah encode color of links in child nodes.

private static final boolean RED = true;
private static final boolean BLACK = false;
private class Node {

private Key key;

private Value val;

private Node left, right;

private boolean color; «— color of parent link
¥
private boolean isRed(Node h) {

1f (h == null) return false;

return h.color == RED; ‘\\ by convention,

¥ null links are black

h.left.color
is red

h.right.color

/ is black

\/

null links are black

27

The red-black tree song (by Sean Sandys)

http://gsc-history.cs.washington.edu/2002-2003/orientation/

3.3 BALANCED SEARCH TREES

Algorithms » red—black BSTs (operations)

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Review: the road to LLRB trees

BSTs
(can get imbalanced)

how we draw LLRB trees
(color in links)

2-3 trees

(balanced but awkward to implement)

how we implement LLRB trees
(color in nodes)

30

Search in a red-black BST

Observation. Red-black BSTs are BSTs = search is the same as for BSTs (ignore color).

\

but runs faster
(because of better balance)

public Value get(Key key) { search H

Node x = root; ‘M’

while (x != null) { (3 (R)

int cmp = key.compareTo(x.key) ;

if (cmp < 0) x = x.left; G G Q

else 1 (cmp > 0) x = x.right; G m 9

else return x.val;
} (A,

return null;

Remark. Many other operations (iteration, floor, rank, selection) are also identical.

31

Insertion into a LLRB tree: overview

Basic strategy. Maintain 1-1 correspondence with 2-3 trees.

During LLRB insertion, always maintain these two structural invariants:

* Symmetric order.

 Perfect black balance.

* [but may temporarily violate color invariants |}

Example violations of color invariants:

right-leaning two red children left-left red
red link (a temporary 4-node) (a temporary 4-node)

To restore color invariants: perform color flips and rotations.

left-right red
(a temporary 4-node)

32

Elementary red-black BST operations

Color flip. Recolor to split a (temporary) 4-node.

flip colors
(before) private void flipColors(Node h) {

n.color = RED;
n. left.color = BLACK;
n.right.color = BLACK;

Invariants. Maintains symmetric order and perfect black balance.

33

Elementary red-black BST operations

Color flip. Recolor to split a (temporary) 4-node.

flip colors
(after) private void flipColors(Node h) {

n.color = RED;
n. left.color = BLACK;
n.right.color = BLACK;

Invariants. Maintains symmetric order and perfect black balance.

34

Elementary red-black BST operations

Left rotation. Orient a (temporarily) right-leaning red link to lean left.

rotate E left
(before) private Node rotateLeft(Node h) {

Node x = h.right;
h.right = x.left;
x.left = h;
x.color = h.color;
h.color = RED;
return Xx;

Invariants. Maintains symmetric order and perfect black balance.

Elementary red-black BST operations

Left rotation. Orient a (temporarily) right-leaning red link to lean left.

rotate E left
(after) private Node rotateLeft(Node h) {

Node x = h.right;
h.right = x.left;
x.left = h;
x.color = h.color;
h.color = RED;
return Xx;

returns root of resulting subtree
(typical call: h = rotateLeft(h))

Invariants. Maintains symmetric order and perfect black balance.

36

Elementary red-black BST operations

Right rotation. Orient a left-leaning red link to (temporarily) lean right.

rotate S right
(before) private Node rotateRight(Node h) {

Node x = h.left;
h.left = x.right;
X.right = h;
x.color = h.color;
h.color = RED;
return Xx;

Invariants. Maintains symmetric order and perfect black balance.

Elementary red-black BST operations

Right rotation. Orient a left-leaning red link to (temporarily) lean right.

rotate S right
(after) private Node rotateRight(Node h) {

Node x = h.left;
h.left = x.right;
X.right = h;
x.color = h.color;
h.color = RED;
return Xx;

Invariants. Maintains symmetric order and perfect black balance.

Balanced search trees: poll 4

Which sequence of elementary operations transforms the LLRB tree at left

to the one at right?

A. Color flip E; left rotate R.
B. Color flip R; left rotate E.
C. Color flip R; left rotate R.

D. Color flip R; right rotate E.

39

Insertion into a LLRB tree

to preserve symmetric order

e Do standard BST leaf insertion and color new link red. «——
and perfect black balance

 Repeat up the tree until color invariants restored:

- only right link red? —> rotate left
right link red
inserting C so rotate left

l (E)

QIS
(A (R

red-black BST

G
(A) IS
o (R

add new
node here

Insertion into a LLRB tree

* Do standard BST leaf insertion and color new link red.

 Repeat up the tree until color invariants restored:

- only right link red? —> rotate left
- two left red links in a row? —> rotate right

- left and right links both red? — flip colors

inserting H two lefts in a row
G so rotate right
l
(Q IS
(A (R

/

add new

node here

right link red

so rotate left
both children red l

so flip colors

!

red-black BST

Insertion into a LLRB tree

* Do standard BST leaf insertion and color new link red.
 Repeat up the tree until color invariants restored:

- only right link red? —> rotate left

- two left red links in a row? —> rotate right

- left and right links both red? — flip colors

inserting P both children red
so flip colors

red so

add new flip colors
node here
two lefts in a row
right link red so rotate right \

so rotate left

red-black BST

45

Red-black BST construction demo

insert SEARCHXMPL

46

Insertion into a LLRB tree: Java implementation

* Do standard BST leaf insertion and color new link red.
 Repeat up the tree until color invariants restored:

- only right link red? —> rotate left

- two left red links in a row? —> rotate right

- left and right links both red? — flip colors

private Node put(Node h, Key key, Value val) {

1f (h == null) return new Node(key, val, RED); < insert at bottom

(and color it red)

int cmp = key.compareTo(h.key) ;

if (cmp < 0) h.left = putCh.left, key, val);
else if (cmp > 0) h.right = putCh.right, key, val);
else h.val = val;

each method that changes
< the tree shape returns
the root of the resulting subtree

if (isRed(h.right) && !isRed(h.left)) h = rotatelLeft(h); ‘

if (isRed(h.left) && isRed(h.left.left)) h = rotateRight(h); < ”?””€F0kv
if (isRed(h.left) && isRed(h.right)) flipColors (h) ; prvartants
return h; T

only a few extra lines of code
guarantees ®O(log n) height A

Insertion into a LLRB tree: visualization

n =255
height =9
average depth = 6.3

; | A" t"“ ‘ "A’N,‘N "“ | “' ‘ " "“ ‘

255 insertions in random order

hhhhhh

c"y "m o Y'?c a"Yo ‘?« o Ym

nnnnnnnnnnnnnnnnnnnnnnnnnnnnn

n
hhhhhhhh

average depth = 6.5

; W MM' @M« WMM WMM
“H‘AHH“

254 insertions in descending order

ST implementations: summary

implementation

sequential search
(unordered list)

binary search
(sorted array)

BST

2-3 trees

red-black BSTs

n n n
log n n n
n n n
log n log n log n
log n log n log n

hidden constant c is small
(£ 2log, n compares)

worst case
ordered key
ops? interface
delete

equals()

compareTo()

compareTo()

compareTo()

compareTo()

).

:)o

0

)

51

3.3 BALANCED SEARCH TREES

Algorithms

» context

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Balanced search trees in the wild

Red-black BSTs are widely used as system symbol tables.
 Java: java.util.TreeMap, java.util.TreeSet.
e C++ STL: std:map, std:set.
* Linux kernel: CFQ I/O scheduler, VMAS, Tinux/rbtree.h.

Other balanced BSTs. AVL trees, splay trees, randomized BSTs, rank-balanced BSTs,

o
o/ \0 0/‘\0 o/.\o
/\ /\ \ /\ /\ N\
© © o o ®© o o o o o
\ /\ /\
o o o L

B-trees (and cousins) are widely used for file systems and databases.

a

ORACLE
S DATABASE

53

Industry story 1: red-black BSTs

Telephone company contracted with database provider to build a

real-time database to store customer information.

Database implementation.
 Red-black BST.

« Exceeding height limit of 80 triggered error-recovery process.

AN

should support up to 2% keys

Database crashed.

* Main cause = height bound exceeded!

 Telephone company sues database provider.
* Legal testimony:

“ If implemented properly, the height of a red—black BST

with n keys is at most 2 log,n.” — expert witness

I 3 2+

54

Industry story 2: red-black BSTs

' Celestine Omin @
&" @cyberomin < Follow > V
| was just asked to balance a Binary Search

Tree by JFK's airport immigration. Welcome
to America.

8:26 AM - 26 Feb 2017 from Manhattan, NY

8,025 Retweets 7,087 Likes @ & ‘ Q e g ,!, & @ 'g

» Celestine Omin & @cyberomin - 26 Feb 2017 v

| was too tired to even think of a BST solution. | have e been travelling for 23hrs.
But | was also asked about 10 CS questions.

Q 8 11 164 Q) 244

» Celestine Omin & @cyberomin - 26 Feb 2017 v

sad thing is, if | didn't give the Wikipedia definition for these questions, it was
considered a wrong answetr.

QO 19 10 324) 703

Simon Sharwood @ssharwood - 26 Feb 2017 v
Replying to @cyberomin

seriously? am reporter for @theregister and would love to know more about your
experience

QO 2 T 22) 171

https:/ /twitter.com/cyberomin/status/835888786462625792

https://twitter.com/cyberomin/status/835888786462625792

Credits

media

source

license

Technological Wizard
Red—Black Tree Song
Red—-Black Tree Song Video
Gavel
Redacted Document
Celestine Omin

Real-World Coding Interview

Adobe Stock

Sean Sandys

U. Washington CSE Band

Adobe Stock

Wikimedia

Twitter

Forrest Brazeal

Education [icense

by author

Education [icense

public domain

Lecture Slides © Copyright 2025 Robert Sedgewick and Kevin Wayne

https://stock.adobe.com/images/technological-wizard-casting-spells-with-code-vektor-illustation/737949448
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://forum.hardware.fr/hfr/Programmation/Algo/black-tree-song-sujet_29042_1.htm
http://gsc-history.cs.washington.edu/2002-2003/orientation/
https://stock.adobe.com/images/colorful-fresh-fruits-totem/518287
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://commons.wikimedia.org/wiki/File:Aclu-v-ashcroft-redacted.jpg
https://wiki.creativecommons.org/wiki/public_domain
http://Celestine%20Omin%20Twitter%20https://twitter.com/cyberomin/status/835888786462625792
https://medium.com/@kmadhu00/hiring-in-tech-is-broken-535f3e62c40a

A final thought

CloudPleasers by Forrest Brazeal

© 2016 forrestbrazeal.com

"We want our interviewees to solve real-world problems. So while you

balance this binary search tree, I'll be changing the requirements, imposing
arbitrary deadlines and auditing you for regulatory compliance."

