

3.3 BALANCED SEARCH TREES

- ▶ 2–3 search trees
- ▶ red–black BSTs (representation)
- ▶ red–black BSTs (operations)
- ▶ context

<https://algs4.cs.princeton.edu>

Symbol table review

implementation	worst case			ordered ops?	key interface	emoji
	search	insert	delete			
sequential search (unordered list)	n	n	n		<code>equals()</code>	
binary search (sorted array)	$\log n$	n	n	✓	<code>compareTo()</code>	
BST	n	n	n	✓	<code>compareTo()</code>	
goal	$\log n$	$\log n$	$\log n$	✓	<code>compareTo()</code>	

Challenge. $O(\log n)$ time in worst case.

optimized for teaching and coding
(introduced in COS 226)

This lecture. 2-3 trees and left-leaning red-black BSTs.

co-invented by Bob Sedgewick in the 1970s

3.3 BALANCED SEARCH TREES

- 2–3 search trees
- red–black BSTs (representation)
- red–black BSTs (operations)
- context



<https://algs4.cs.princeton.edu>

2-3 tree

Each node contains either 1 or 2 keys.

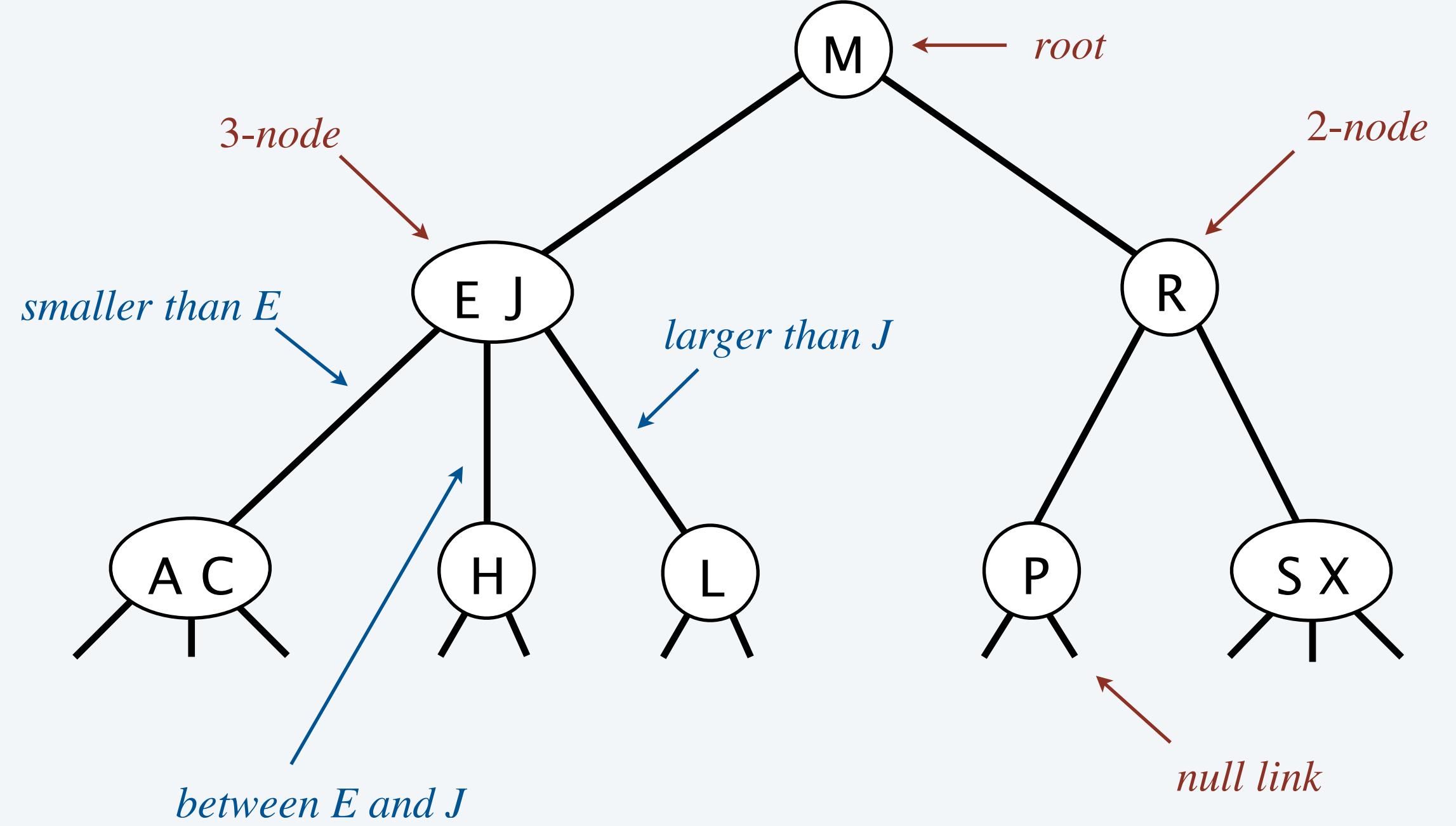
- 2-node: one key, two children.
- 3-node: two keys, three children.

Symmetric order. Inorder traversal yields keys in ascending order.

Perfect balance. Every path from the root to a null link has the same length.

← *data structure invariants*

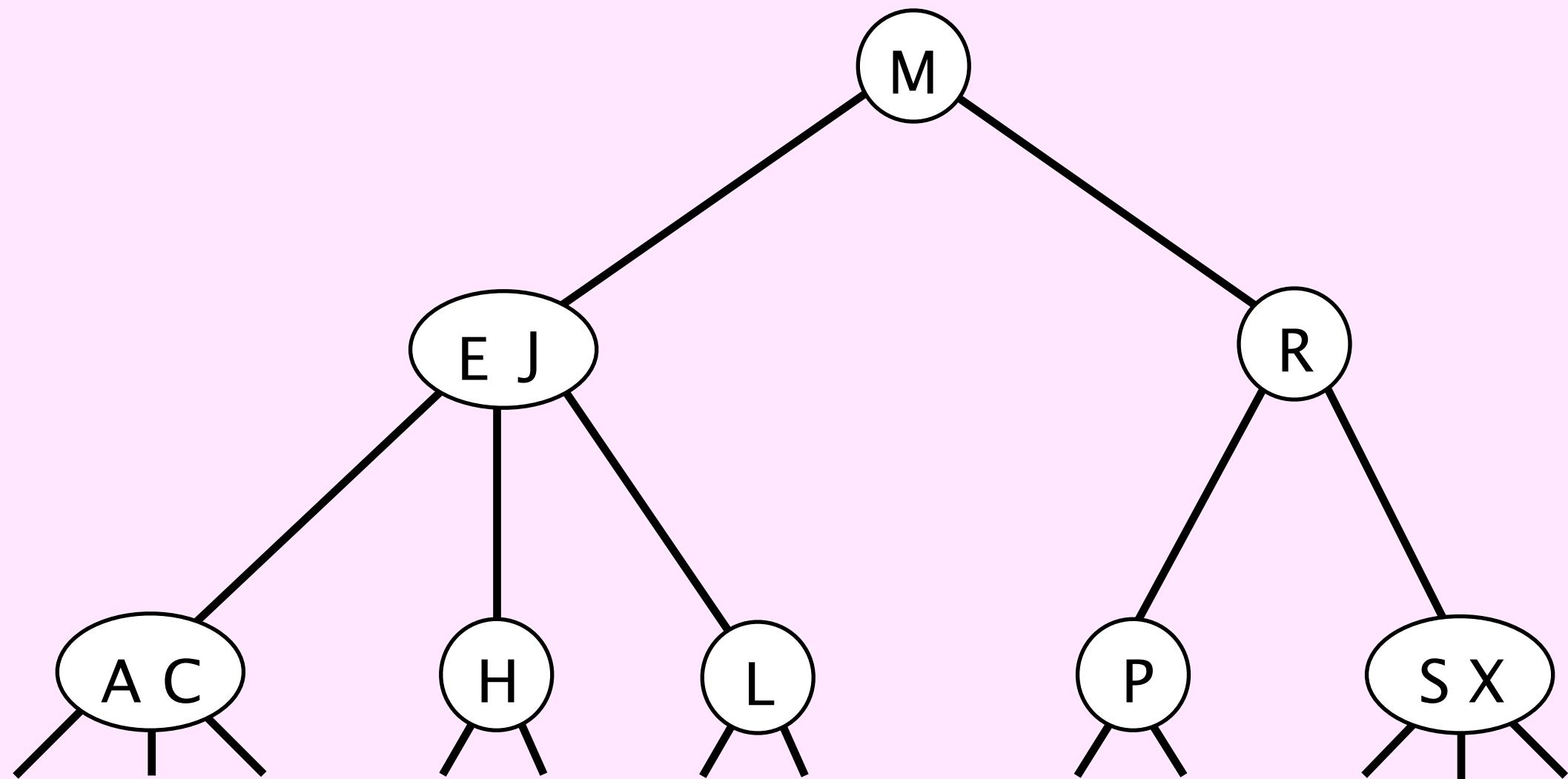
how to maintain ?



Search.

- Compare search key against key(s) in node.
- Find interval containing search key.
- Follow associated link (recursively).

search for H

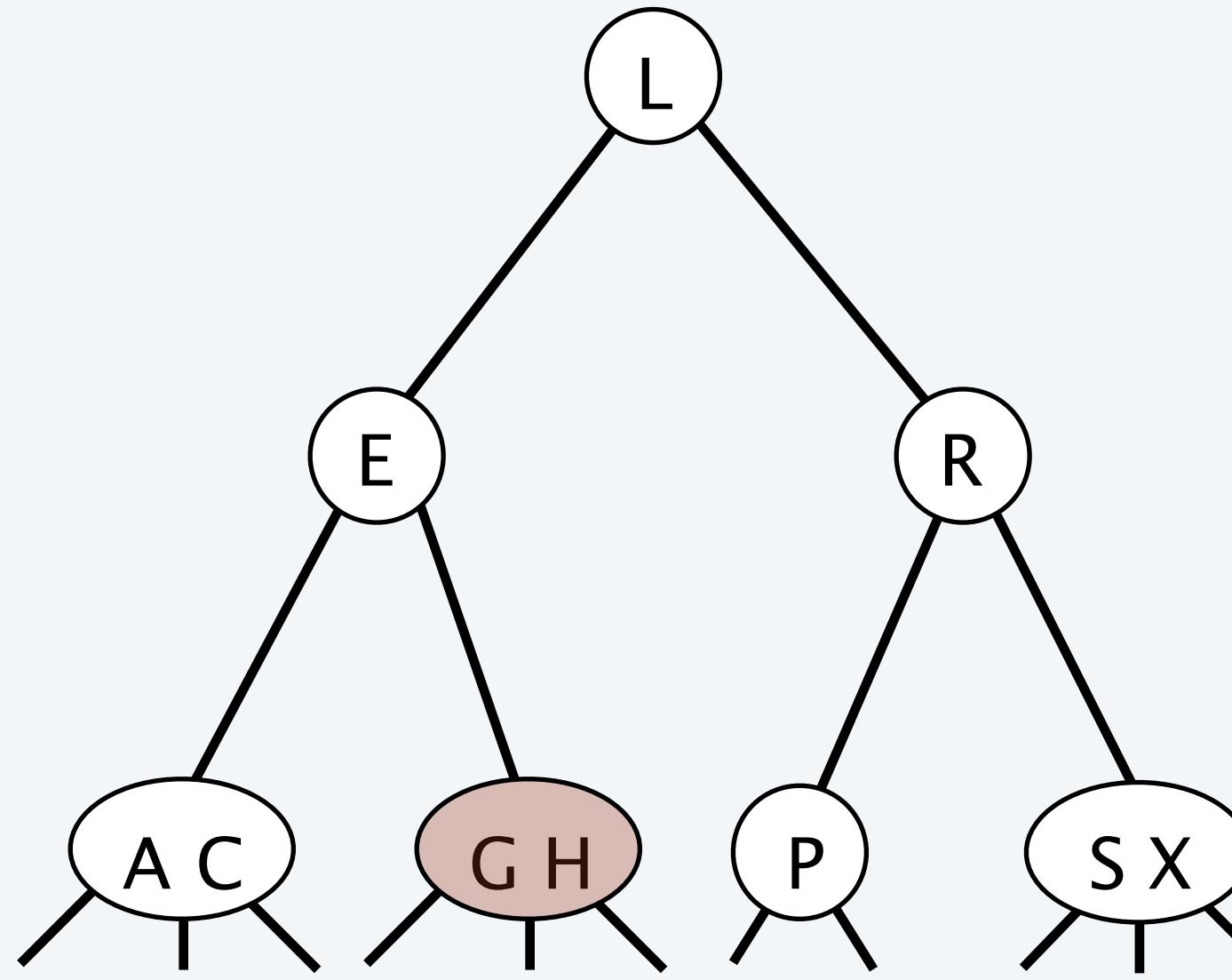


2-3 tree: insertion

Insertion into a 2-node at bottom.

- Add new key to 2-node to create a 3-node.

insert G

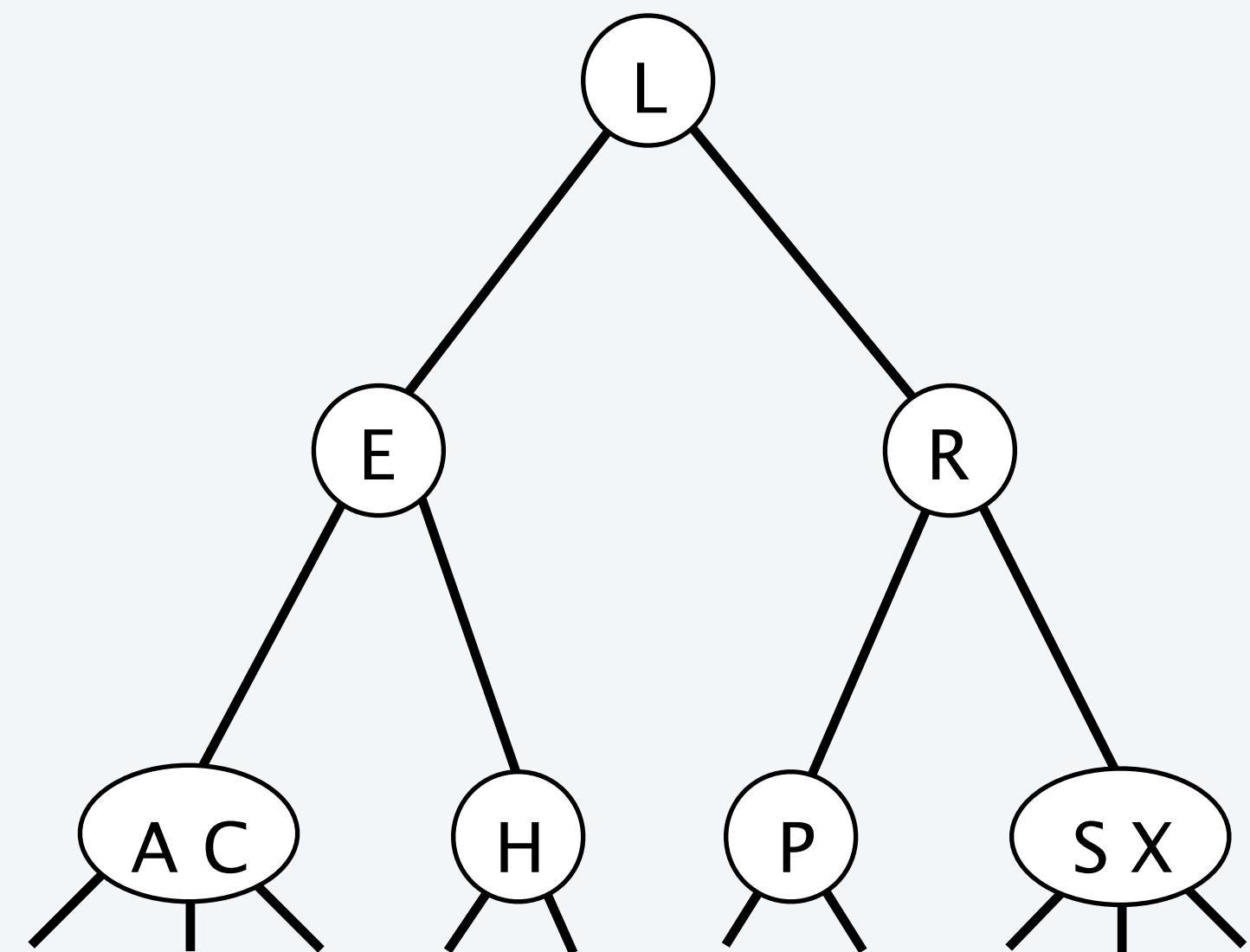
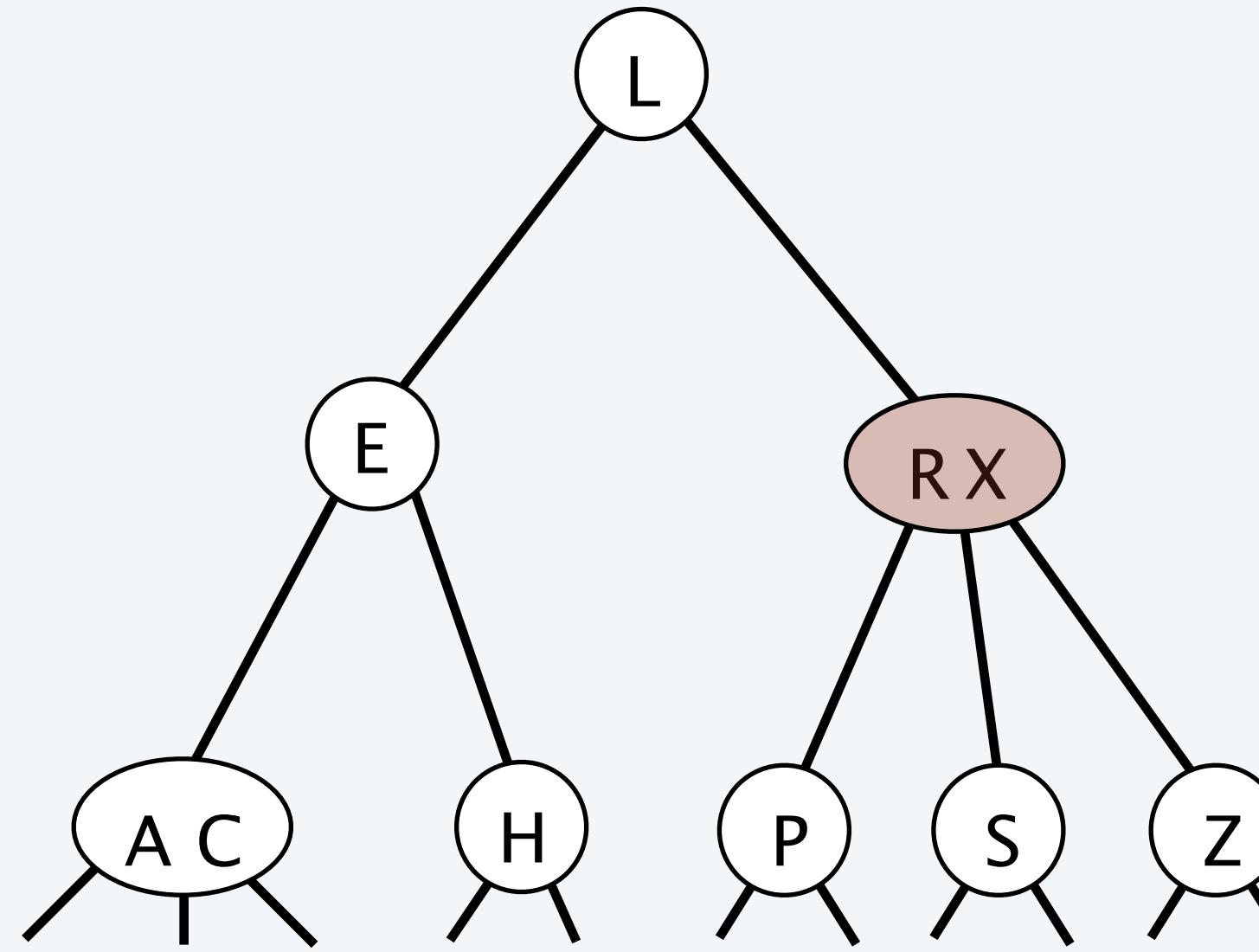


2-3 tree: insertion

Insertion into a 3-node at bottom.

- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node into parent.
- Repeat up the tree, as necessary.
- If you reach the root and it's a 4-node, split it into three 2-nodes.

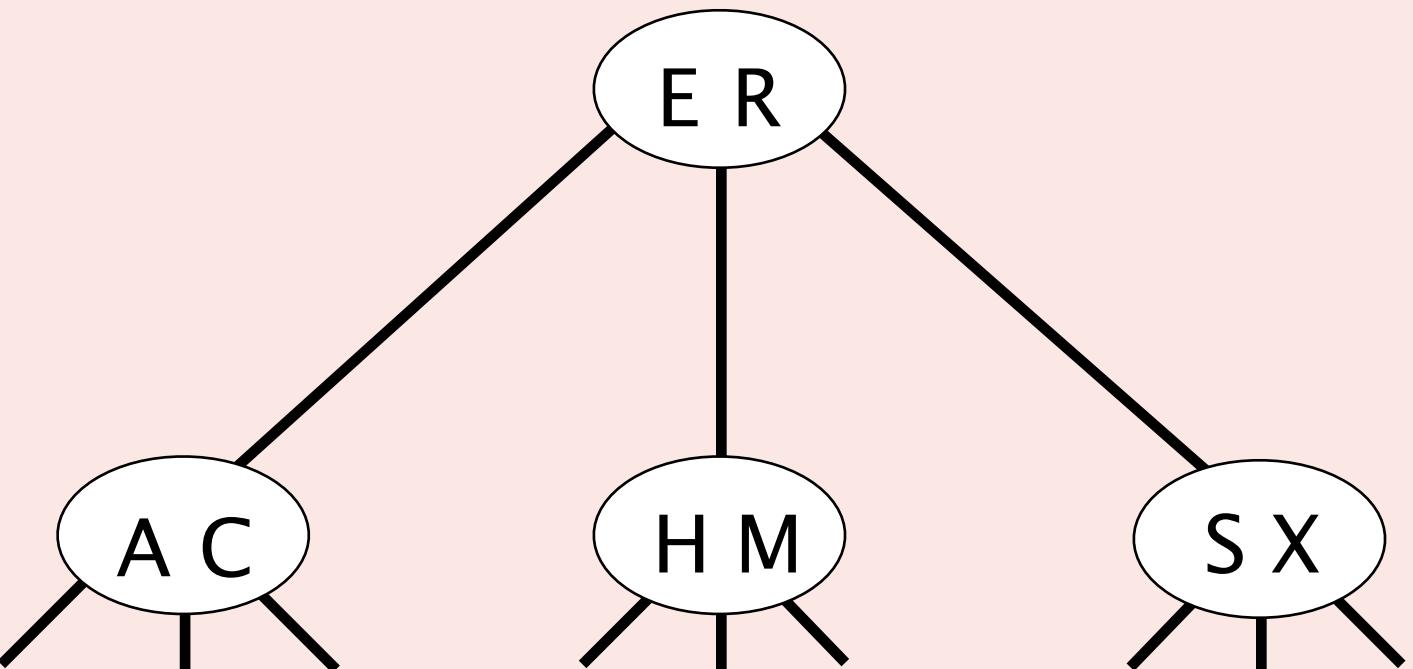
insert Z



Suppose that you insert P into the following 2-3 tree.

What will be the root of the resulting 2-3 tree?

- A. E
- B. E R
- C. M
- D. P
- E. R

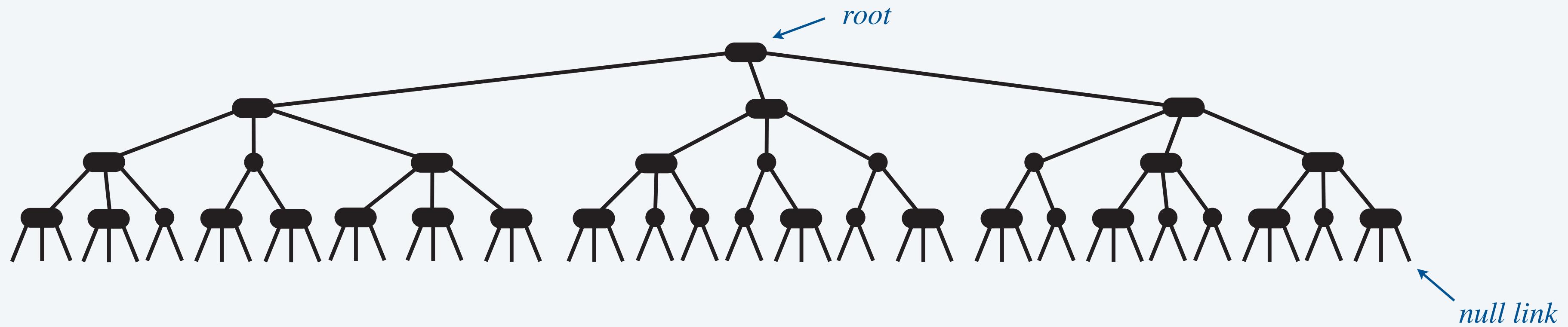


What is the **maximum** height of a 2-3 tree containing n keys?

- A. $\sim \log_3 n$
- B. $\sim \log_2 n$
- C. $\sim 2 \log_2 n$
- D. $\sim n$

2-3 tree: performance

Perfect balance. Every path from the root to a null link has the same length.



Key property. The height of a 2-3 tree containing n keys is $\Theta(\log n)$.

- Min: $\sim \log_3 n \approx 0.631 \log_2 n$. [all 3-nodes]
- Max: $\sim \log_2 n$. [all 2-nodes]
- Between 18 and 30 for $n = 1$ billion keys.

Bottom line. Both search and insert take $\Theta(\log n)$ time in the worst case.

ST implementations: summary

implementation	worst case			ordered ops?	key interface	emoji
	search	insert	delete			
sequential search (unordered list)	n	n	n		<code>equals()</code>	
binary search (sorted array)	$\log n$	n	n	✓	<code>compareTo()</code>	
BST	n	n	n	✓	<code>compareTo()</code>	
2-3 trees	$\log n$	$\log n$	$\log n$	✓	<code>compareTo()</code>	

*but hidden constant c is large
(depends upon implementation)*

2-3 tree: implementation?

Direct implementation is complicated, because:

- Maintaining multiple node types is cumbersome.
- Might need two compares to move one level down tree.
- Need to move back up the tree to split 4-nodes.
- Large number of cases for splitting.

fantasy code

```
public void put(Key key, Value val) {  
    Node x = root;  
    while (!x.isLeafNode())  
        x = x.getTheCorrectChild(key);  
    x.squeezeKeyIntoNode(key, val);  
    while (x.is4Node())  
        x = x.split4NodeIntoParent();  
}
```

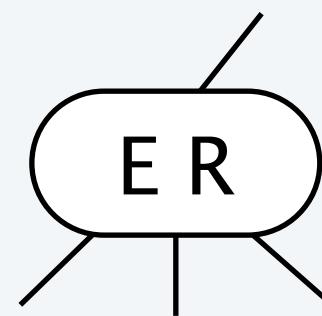

Bottom line. Could do it (see COS 326!), but there's a better way.

3.3 BALANCED SEARCH TREES

- ▶ 2–3 search trees
- ▶ red–black BSTs (representation)
- ▶ red–black BSTs (operations)
- ▶ context

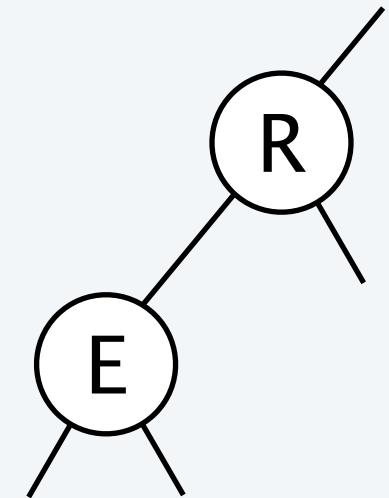
How to implement 2-3 trees as binary search trees?

Challenge. How to represent a 3 node?



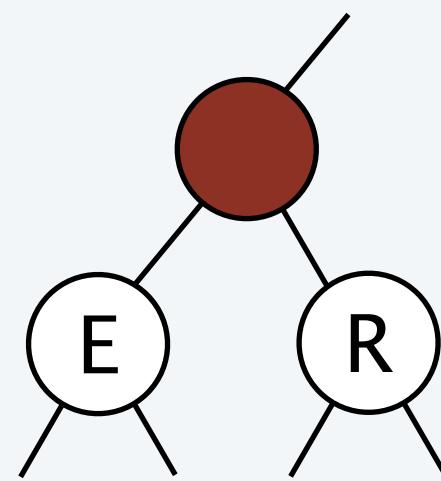
Approach 1. Two BST nodes.

- No way to tell a 3-node from two 2-nodes.
- Can't (uniquely) map from BST back to 2-3 tree.



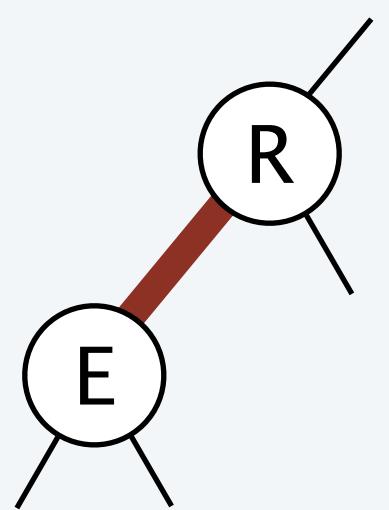
Approach 2. Two BST nodes, plus red “glue” node.

- Wastes space for extra node.
- Messy code.



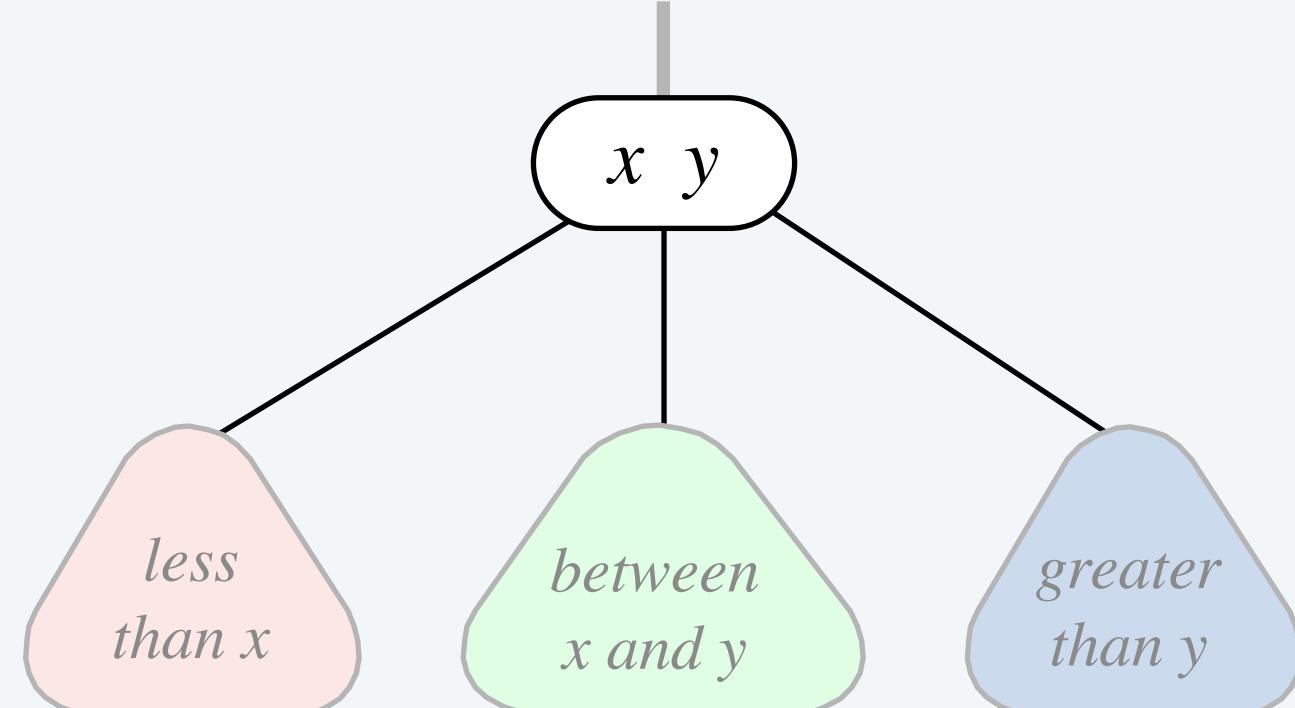
Approach 3. Two BST nodes, with red “glue” link.

- Widely used in practice.
- Arbitrary restriction: red links lean left.

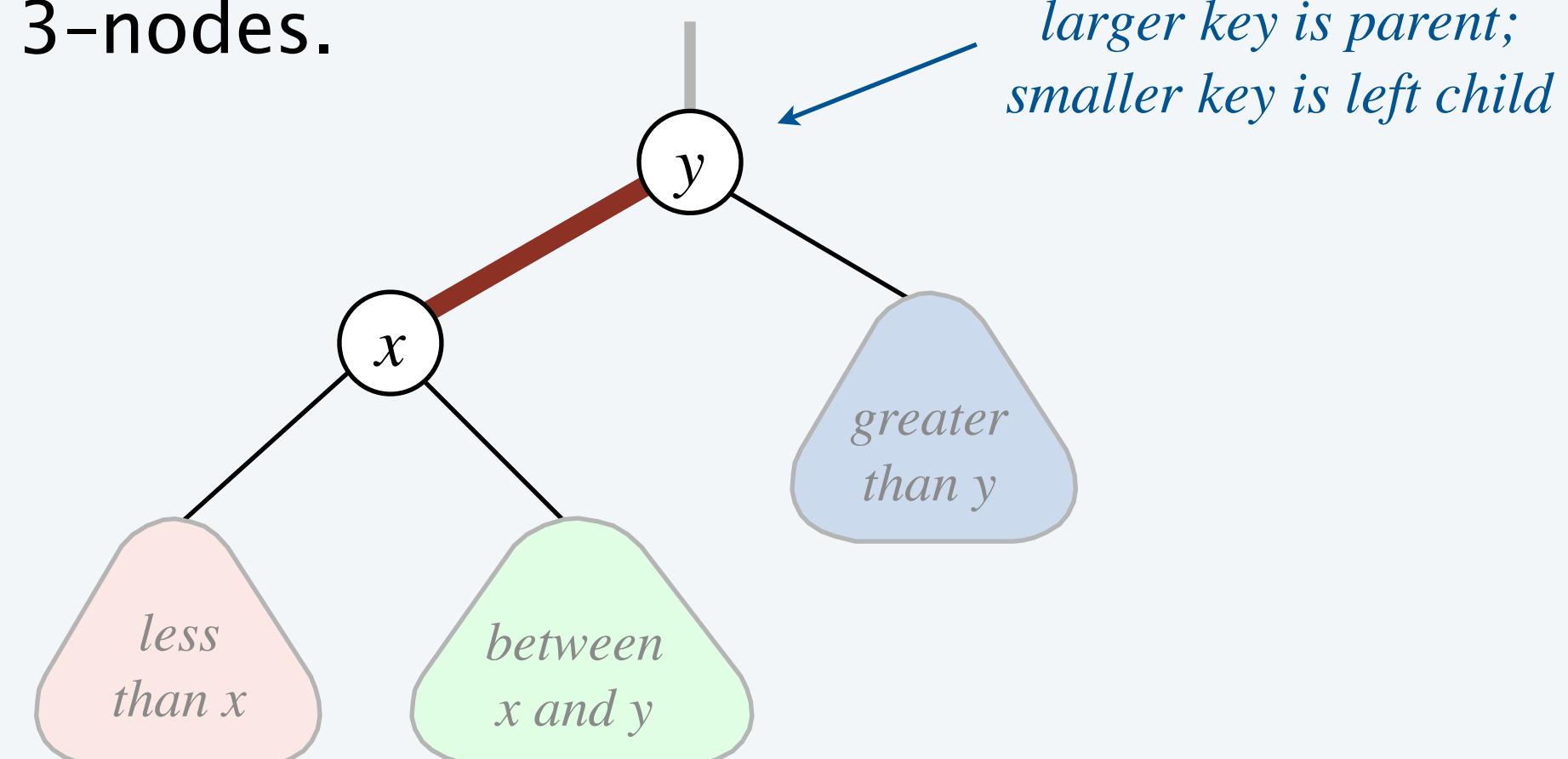


Left-leaning red-black BSTs

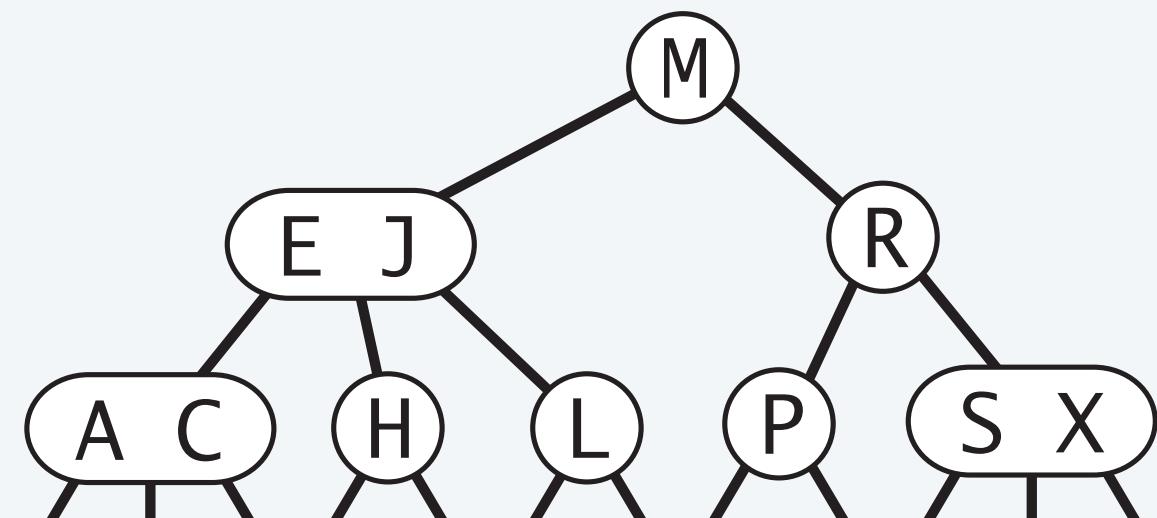
1. Represent 2-3 tree as a BST.
2. Use “internal” left-leaning red links as “glue” for 3-nodes.



3-node in a 2-3 tree

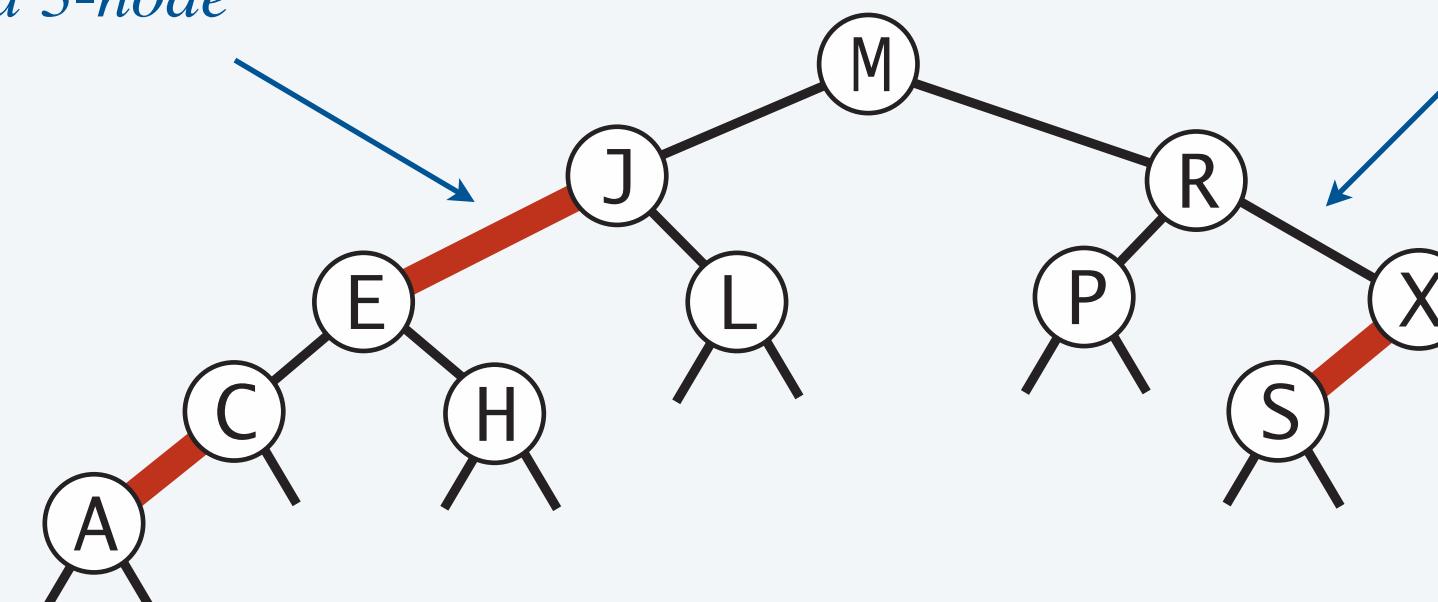


two nodes in the corresponding red-black BST



2-3 tree

red link “glues together”
the two BST nodes
that correspond to a 3-node

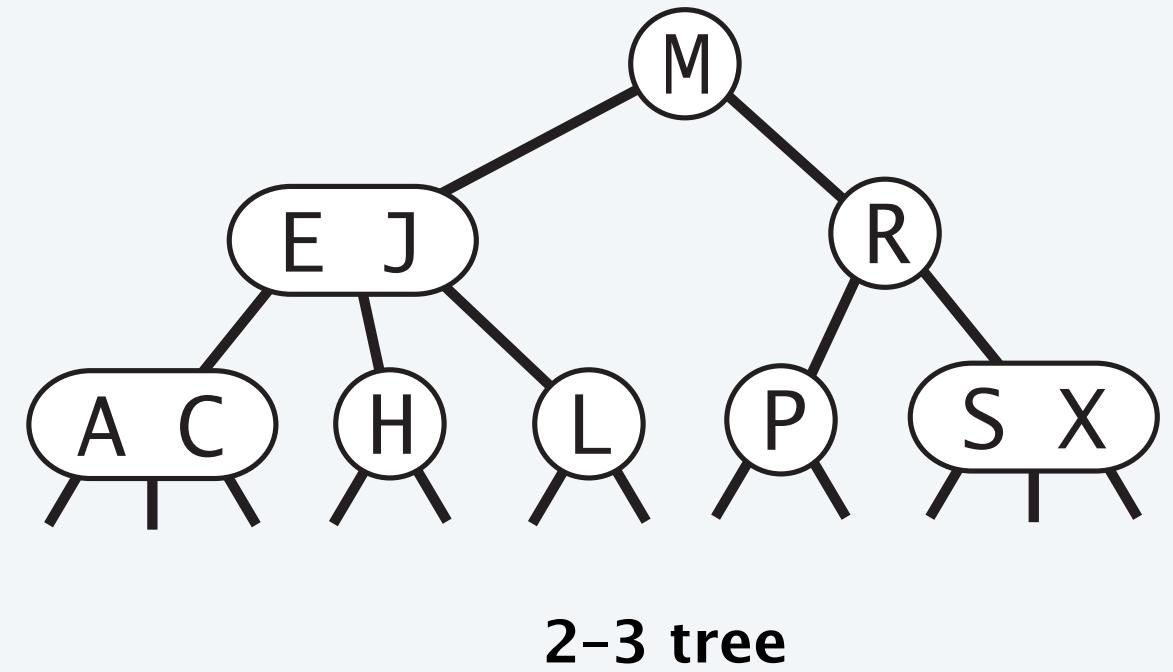
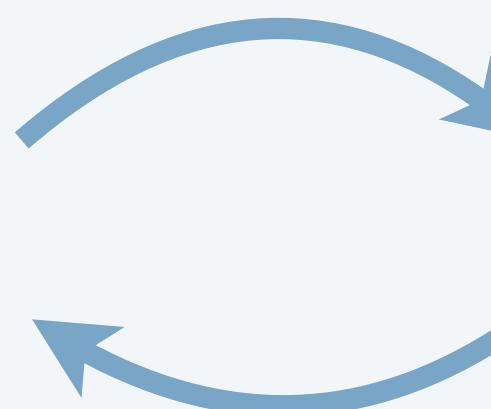
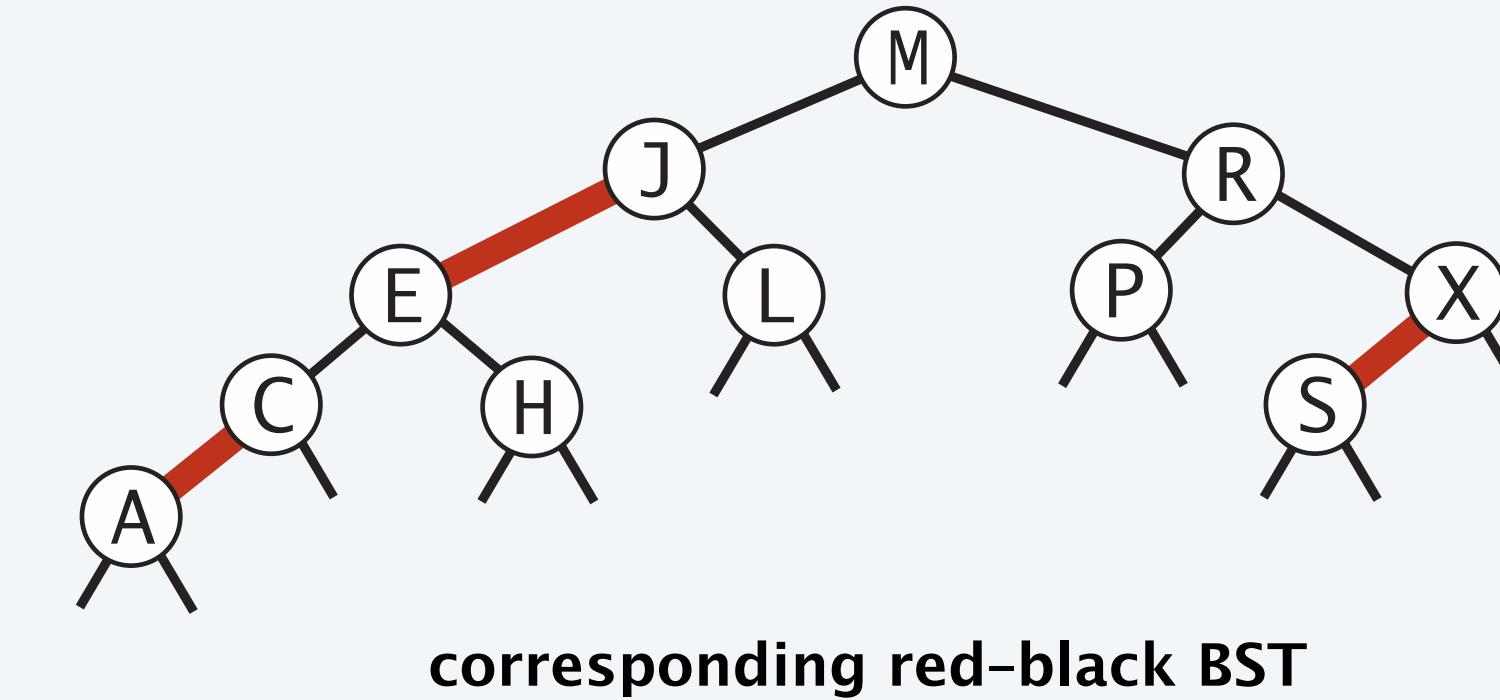


corresponding red-black BST

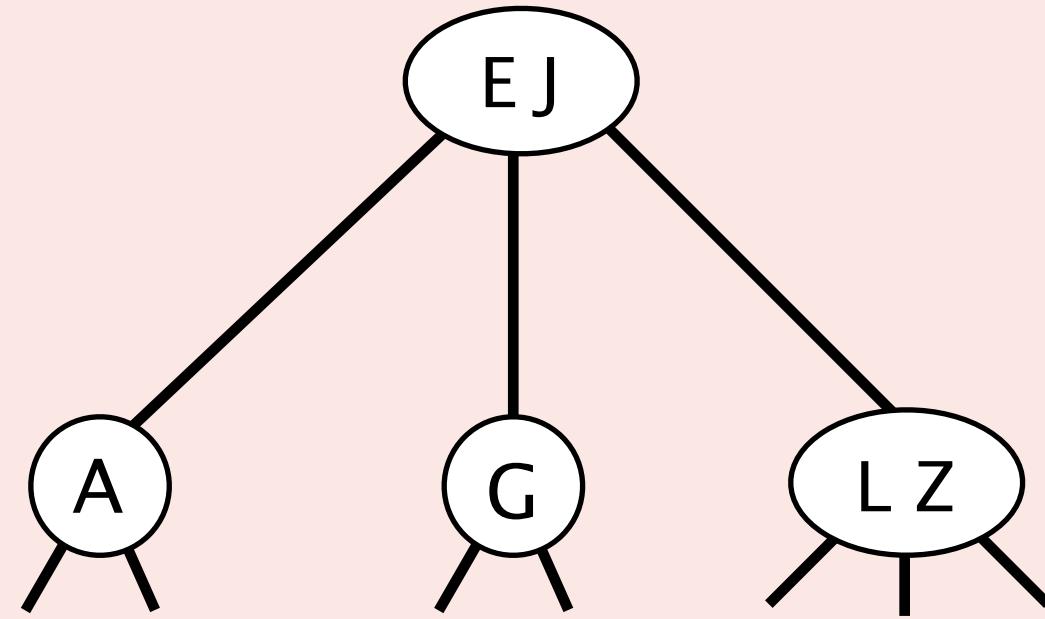
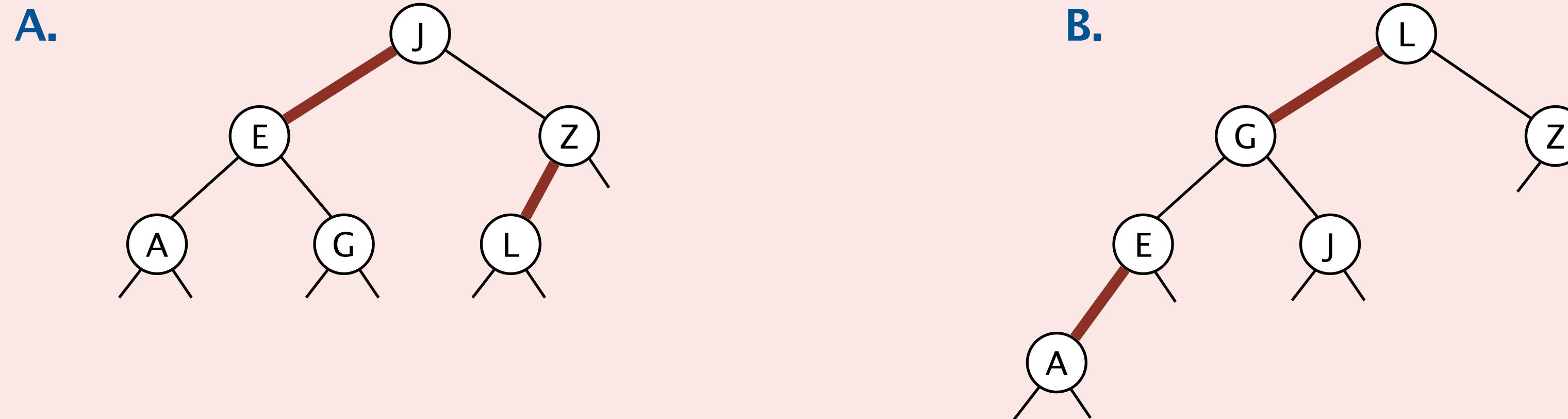
black links are identical to those
in corresponding 2-3 tree

Left-leaning red-black BSTs

Key property. 1-1 correspondence between 2-3 trees and LLRB trees.



Which LLRB tree corresponds to the following 2-3 tree?



- C. Both A and B.
- D. Neither A nor B.

An equivalent definition of LLRB trees (without reference to 2-3 trees)

binary tree, symmetric order

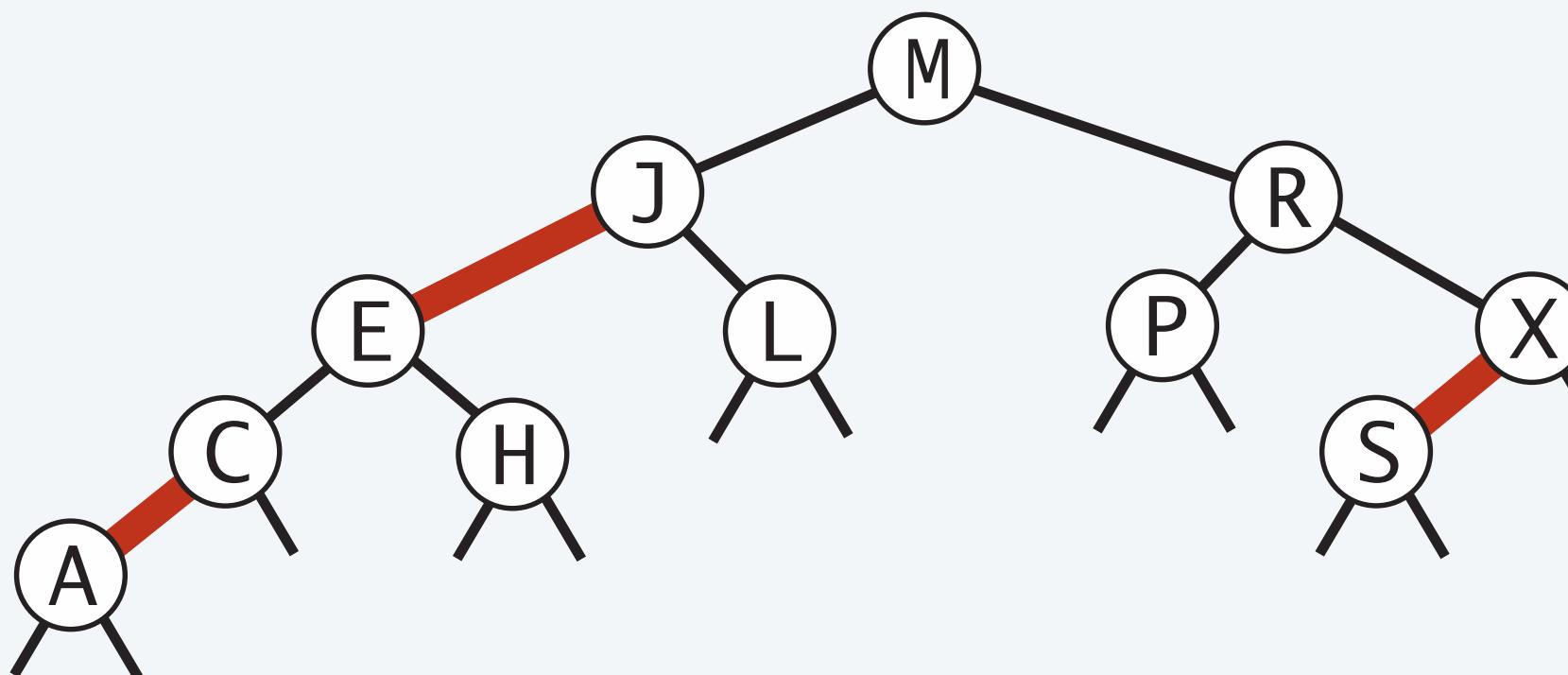
color invariants

perfect black balance invariant

black height

Def. A **left-leaning red-black BST** is a BST such that:

- No node has two red links connected to it.
- Red links lean left.
- Every path from root to a null link has the same number of black links.

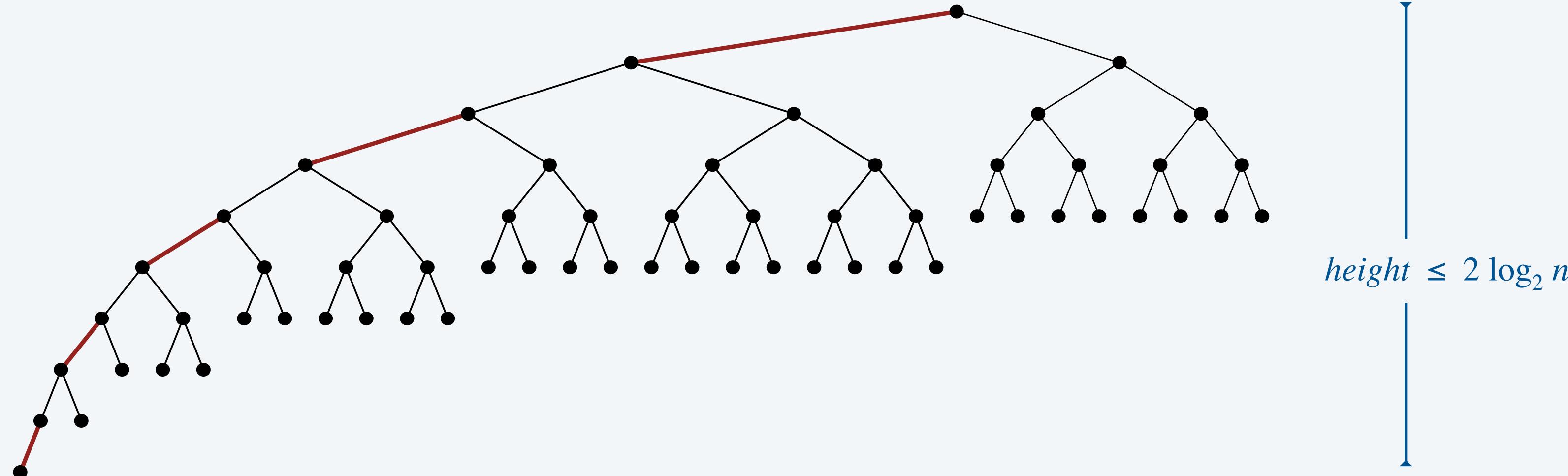


Balance in LLRB trees

Proposition. Height of LLRB tree is $\leq 2 \log_2 n$.

Pf.

- Black height = height of corresponding 2-3 tree $\leq \log_2 n$.
- Never two red links in a row.
 \Rightarrow height of LLRB tree $\leq (2 \times \text{black height}) + 1$
 $\leq 2 \log_2 n + 1$.
- [A more careful argument shows height $\leq 2 \log_2 n$.]



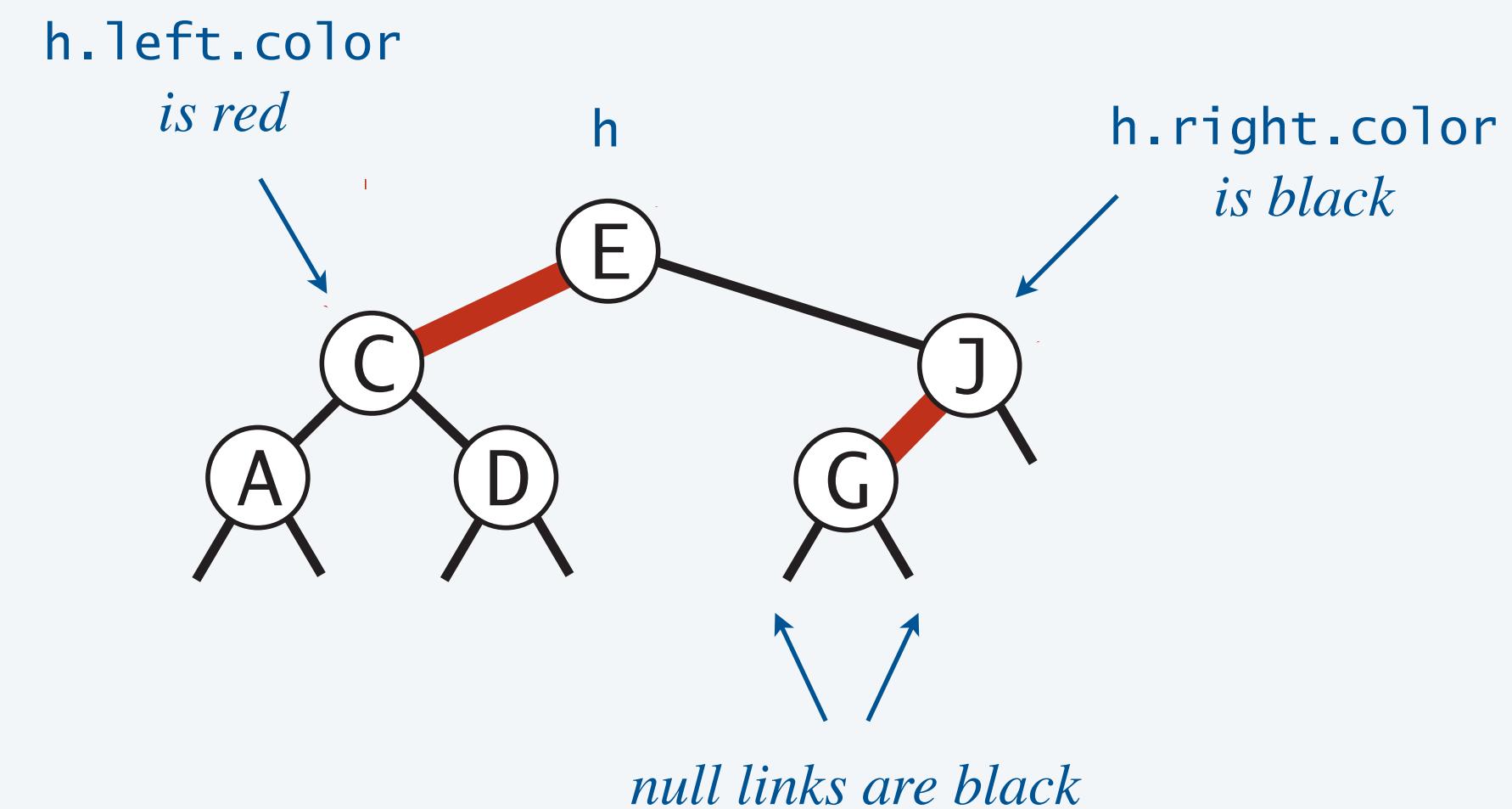
Red-black BST representation

Each node (except root) is pointed to by precisely one link (from its parent) \Rightarrow
can encode color of links in child nodes.

```
private static final boolean RED  = true;
private static final boolean BLACK = false;

private class Node {
    private Key key;
    private Value val;
    private Node left, right;
    private boolean color;  ← color of parent link
}

private boolean isRed(Node h) {
    if (h == null) return false;
    return h.color == RED;  ← by convention,
}                                null links are black
```

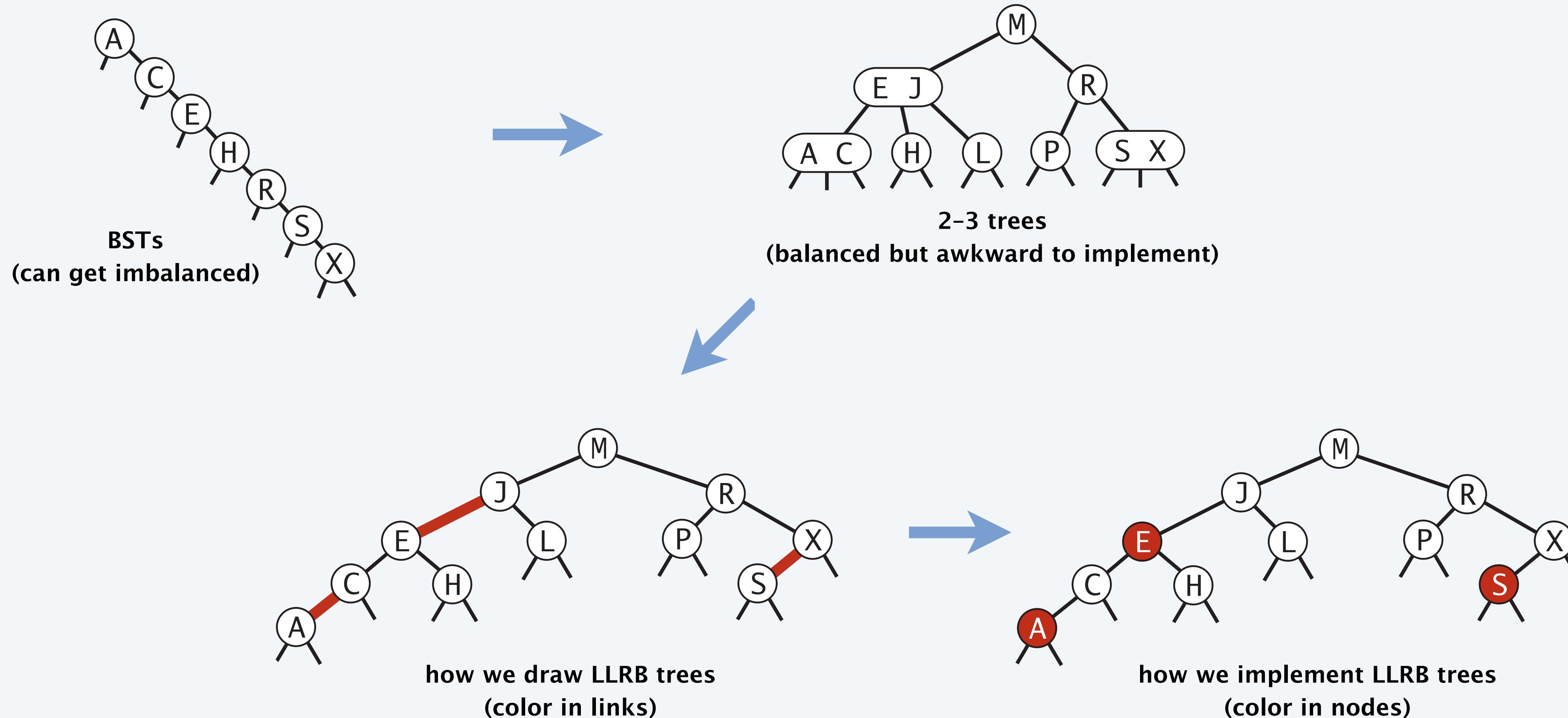


The red-black tree song (by Sean Sandys)

3.3 BALANCED SEARCH TREES

- ▶ 2-3 search trees
- ▶ red-black BSTs (representation)
- ▶ red-black BSTs (operations)
- ▶ context

Review: the road to LLRB trees

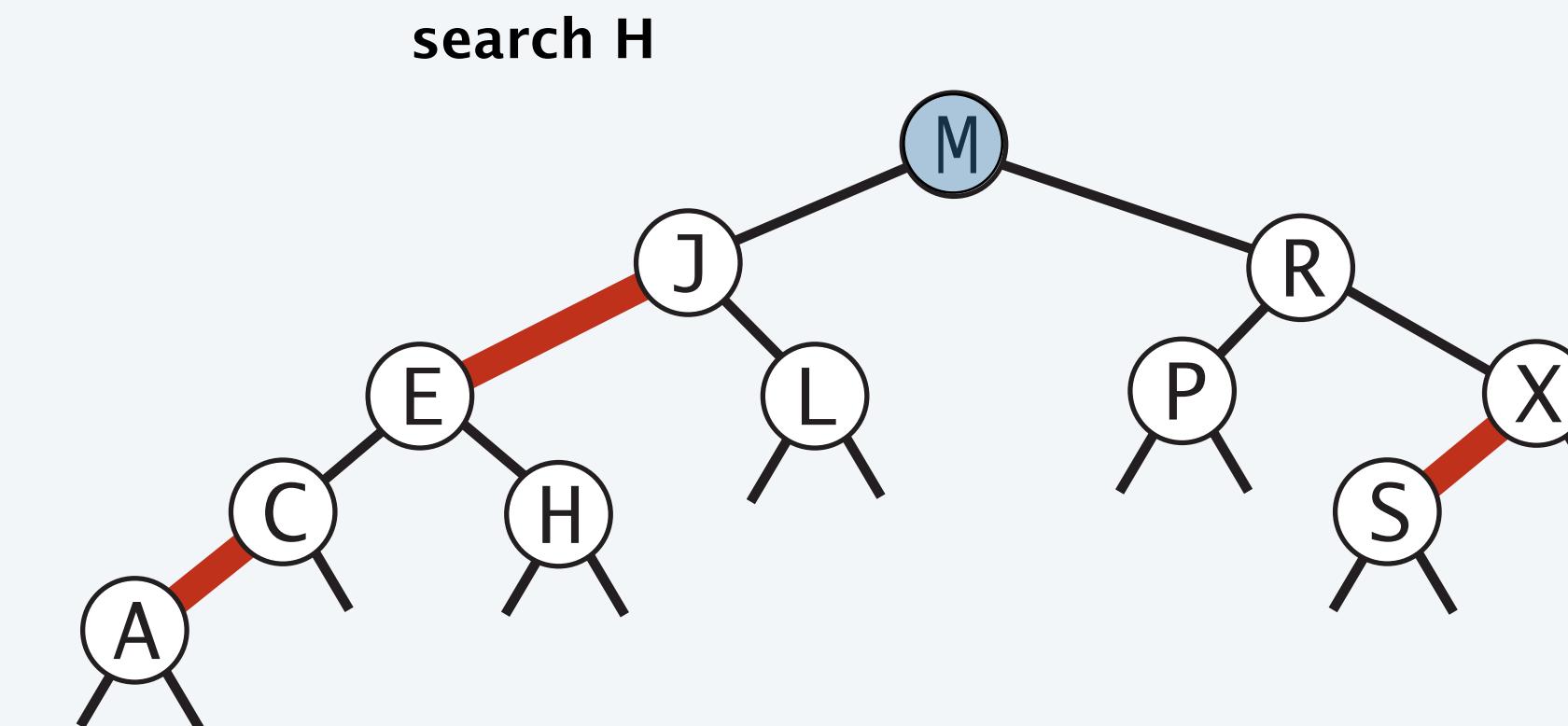


Search in a red-black BST

Observation. Red-black BSTs are BSTs \implies search is the same as for BSTs (ignore color).

*but runs faster
(because of better balance)*

```
public Value get(Key key) {  
    Node x = root;  
    while (x != null) {  
        int cmp = key.compareTo(x.key);  
        if      (cmp < 0) x = x.left;  
        else if (cmp > 0) x = x.right;  
        else return x.val;  
    }  
    return null;  
}
```



Remark. Many other operations (iteration, floor, rank, selection) are also identical.

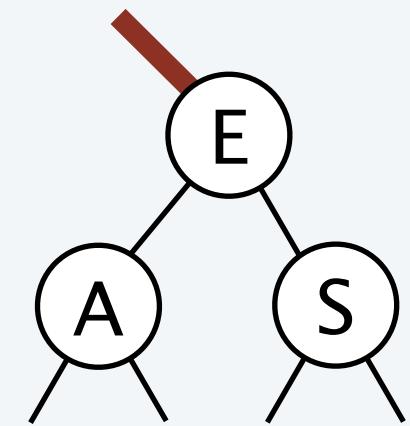
Insertion into a LLRB tree: overview

Basic strategy. Maintain 1-1 correspondence with 2-3 trees.

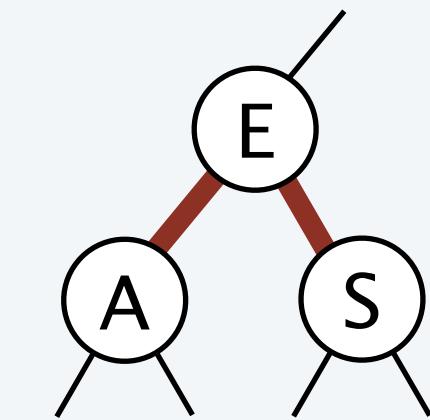
During LLRB insertion, always maintain these two structural invariants:

- Symmetric order.
- Perfect black balance.
- [but may temporarily violate color invariants]

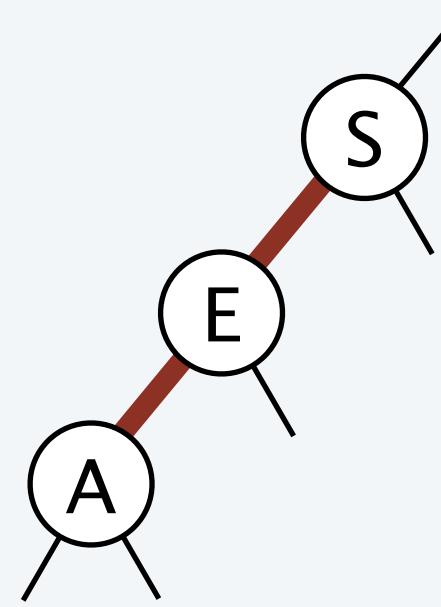
Example violations of color invariants:



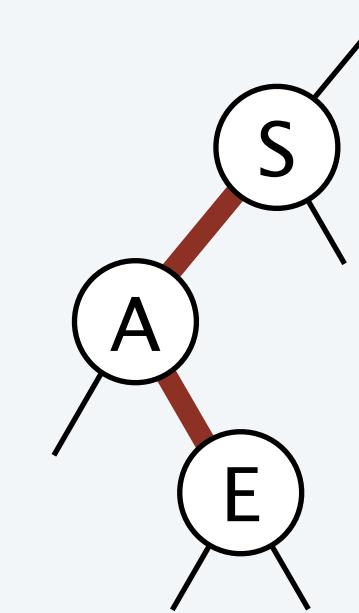
right-leaning
red link



two red children
(a temporary 4-node)



left-left red
(a temporary 4-node)

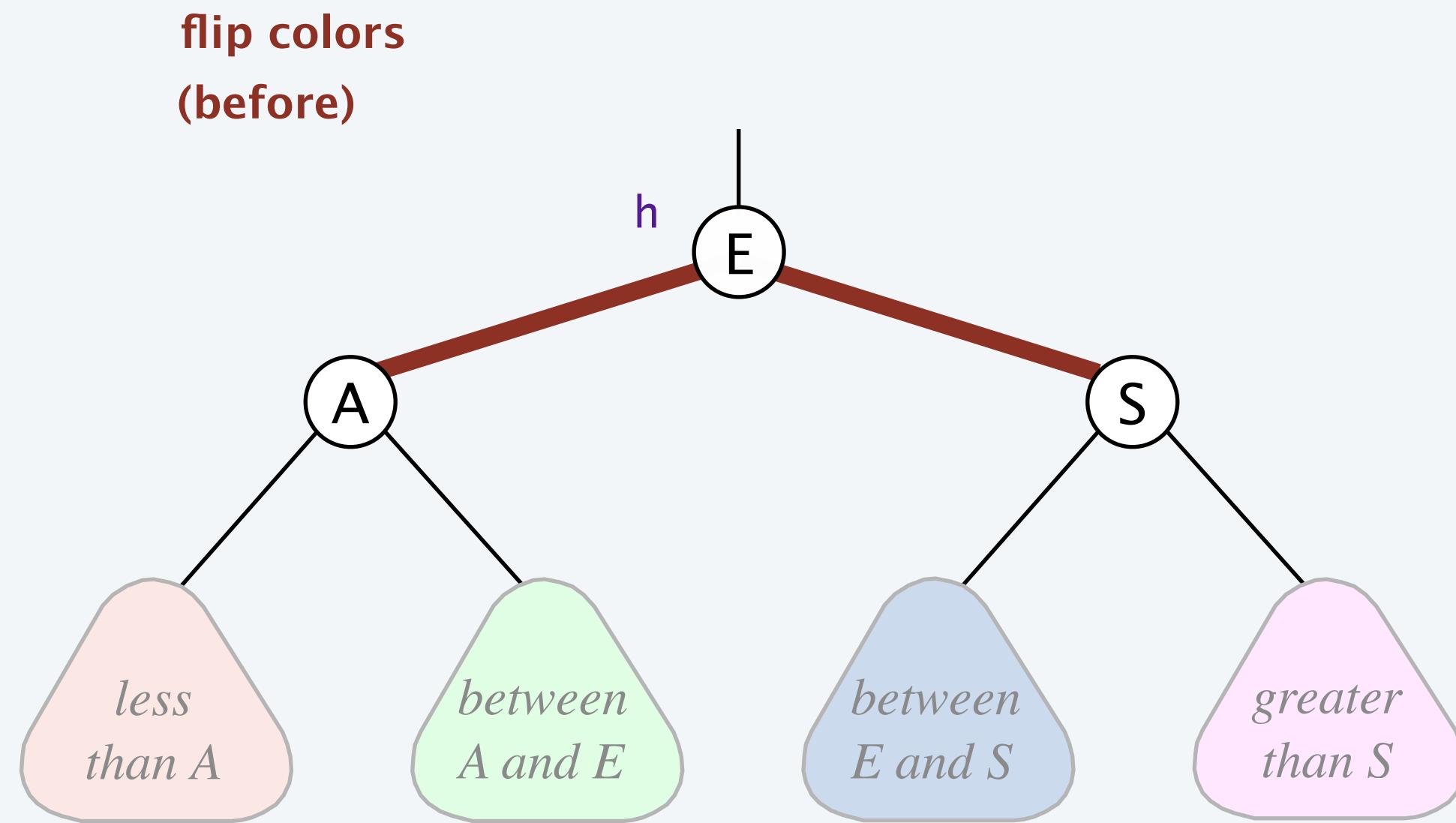


left-right red
(a temporary 4-node)

To restore color invariants: perform **color flips** and **rotations**.

Elementary red-black BST operations

Color flip. Recolor to split a (temporary) 4-node.

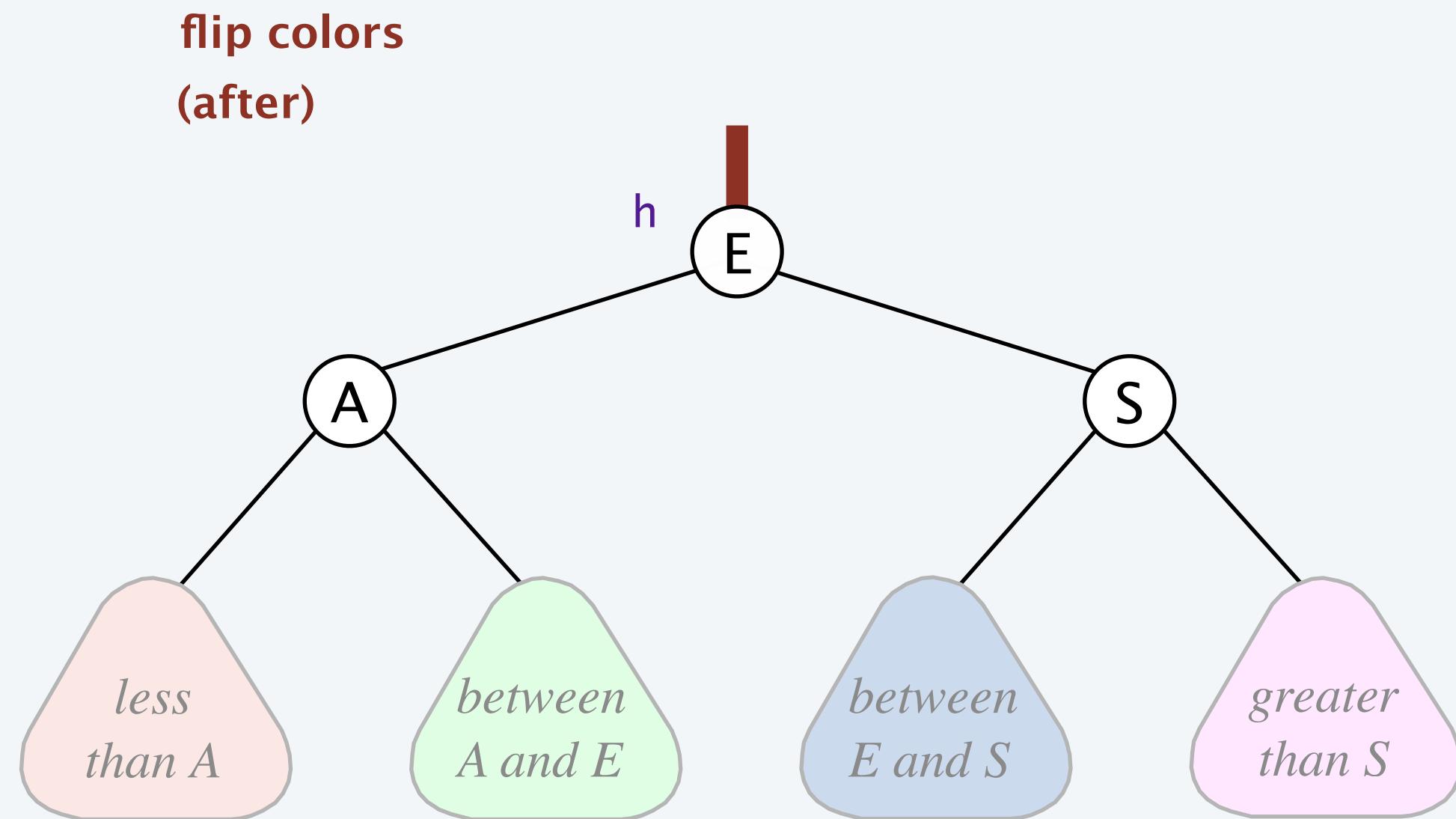


```
private void flipColors(Node h) {  
    assert !isRed(h);  
    assert isRed(h.left);  
    assert isRed(h.right);  
    h.color = RED;  
    h.left.color = BLACK;  
    h.right.color = BLACK;  
}
```

Invariants. Maintains symmetric order and perfect black balance.

Elementary red-black BST operations

Color flip. Recolor to split a (temporary) 4-node.



```
private void flipColors(Node h) {  
    assert !isRed(h);  
    assert isRed(h.left);  
    assert isRed(h.right);  
    h.color = RED;  
    h.left.color = BLACK;  
    h.right.color = BLACK;  
}
```

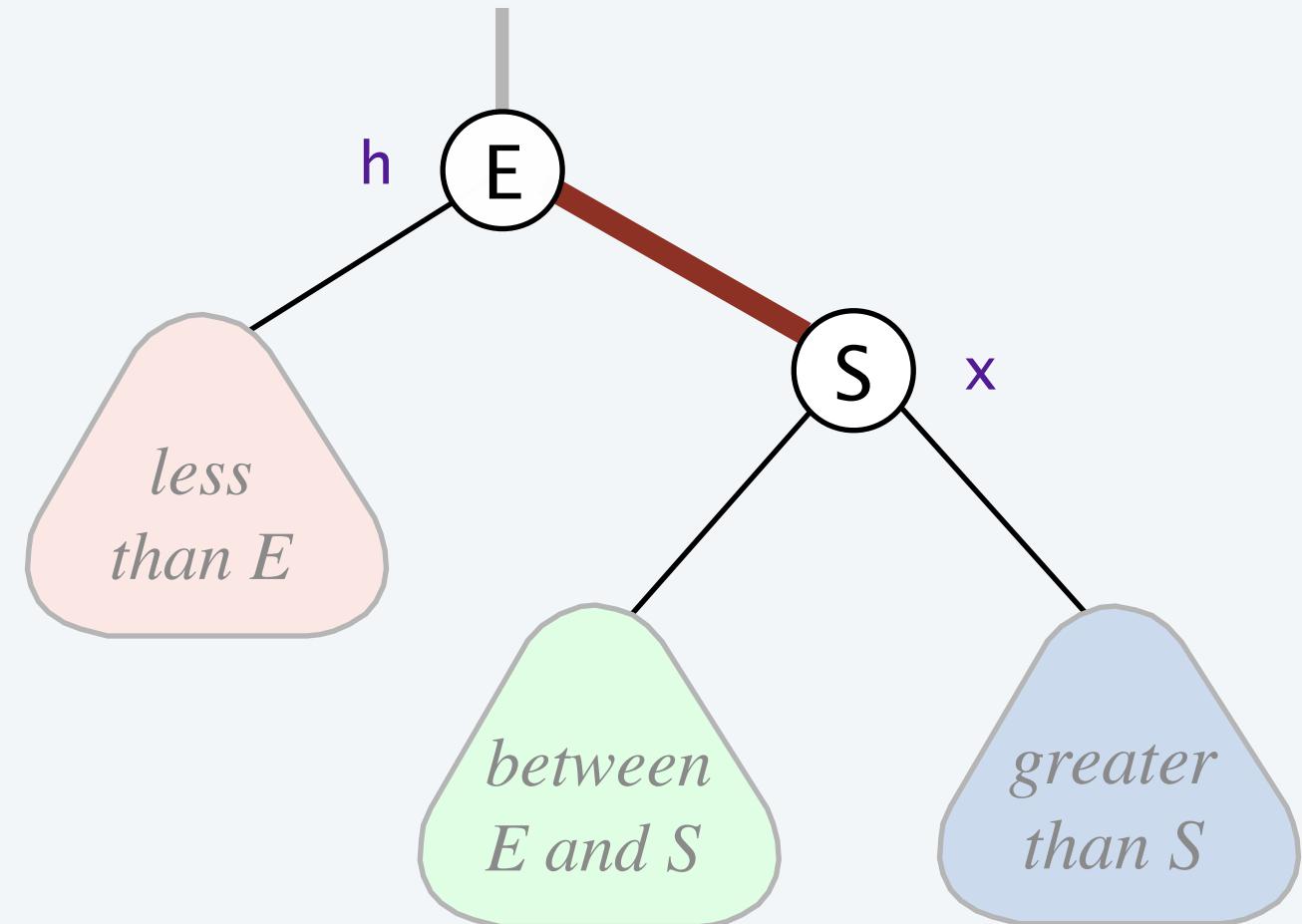
Invariants. Maintains symmetric order and perfect black balance.

Elementary red-black BST operations

Left rotation. Orient a (temporarily) right-leaning red link to lean left.

rotate E left

(before)

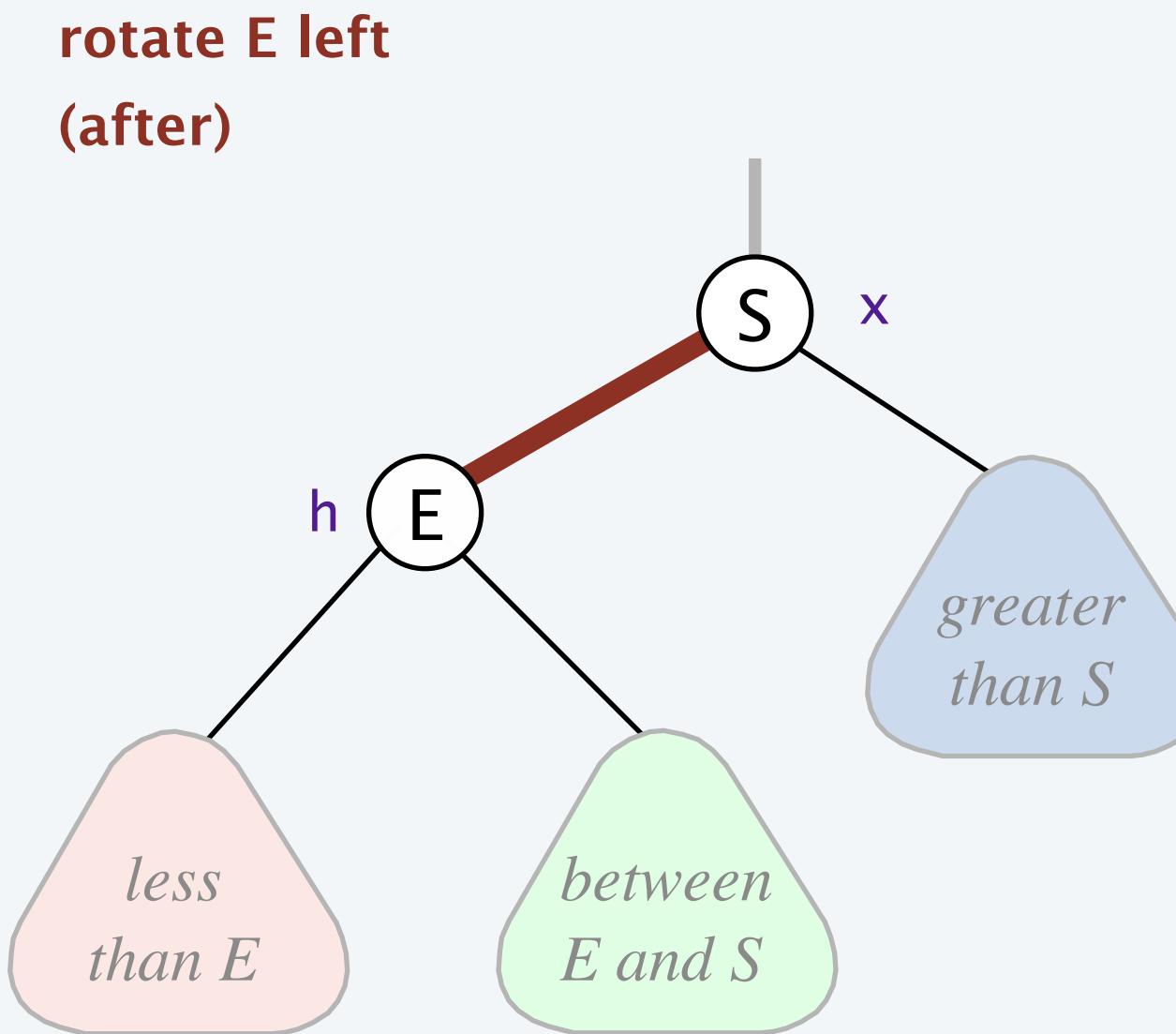


```
private Node rotateLeft(Node h) {  
    assert !isRed(h.left);  
    assert isRed(h.right);  
    Node x = h.right;  
    h.right = x.left;  
    x.left = h;  
    x.color = h.color;  
    h.color = RED;  
    return x;  
}
```

Invariants. Maintains symmetric order and perfect black balance.

Elementary red-black BST operations

Left rotation. Orient a (temporarily) right-leaning red link to lean left.



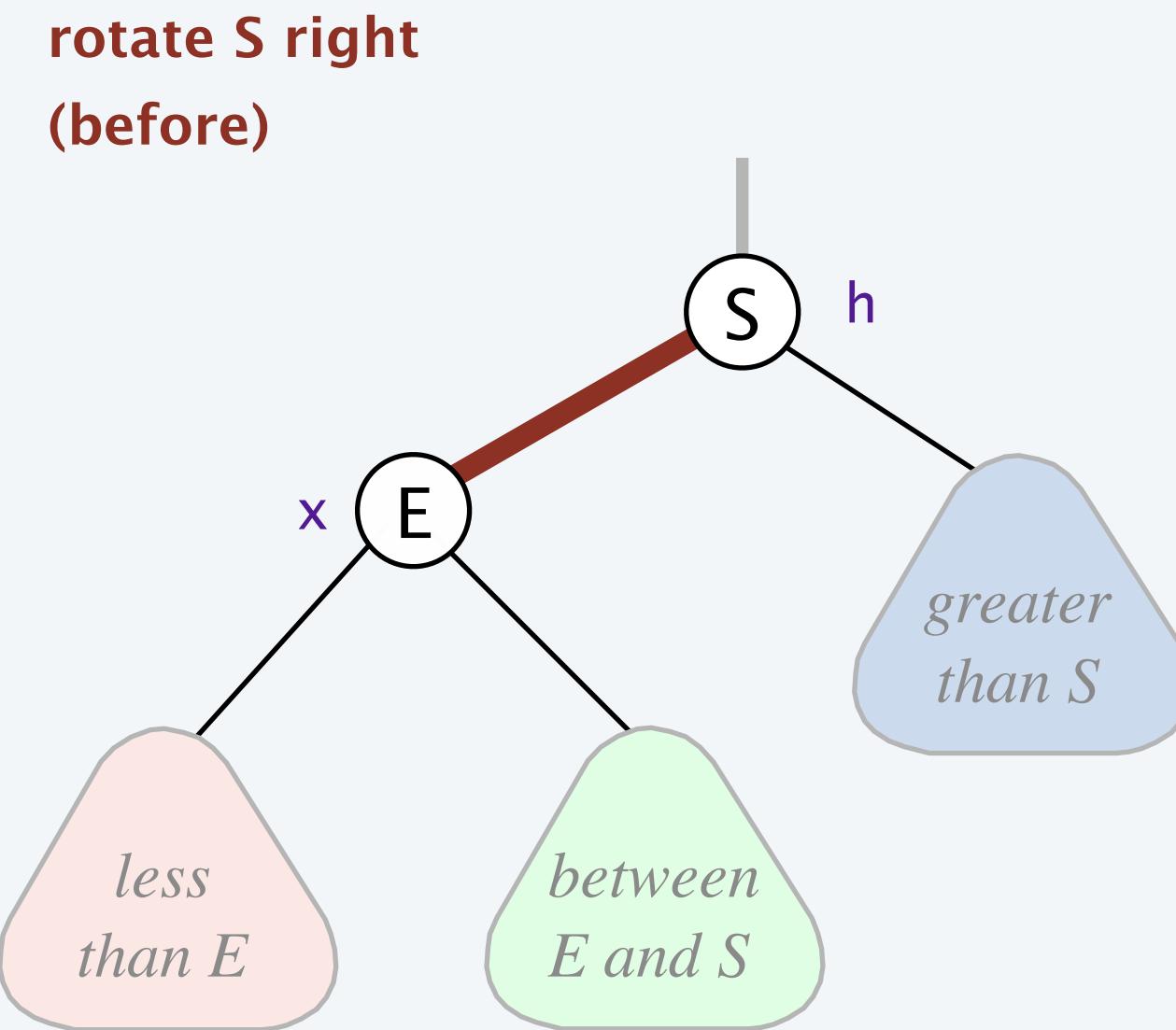
```
private Node rotateLeft(Node h) {  
    assert !isRed(h.left);  
    assert isRed(h.right);  
    Node x = h.right;  
    h.right = x.left;  
    x.left = h;  
    x.color = h.color;  
    h.color = RED;  
    return x;  
}
```

*returns root of resulting subtree
(typical call: h = rotateLeft(h))*

Invariants. Maintains symmetric order and perfect black balance.

Elementary red-black BST operations

Right rotation. Orient a left-leaning red link to (temporarily) lean right.



```
private Node rotateRight(Node h) {  
    assert isRed(h.left);  
    assert !isRed(h.right);  
    Node x = h.left;  
    h.left = x.right;  
    x.right = h;  
    x.color = h.color;  
    h.color = RED;  
    return x;  
}
```

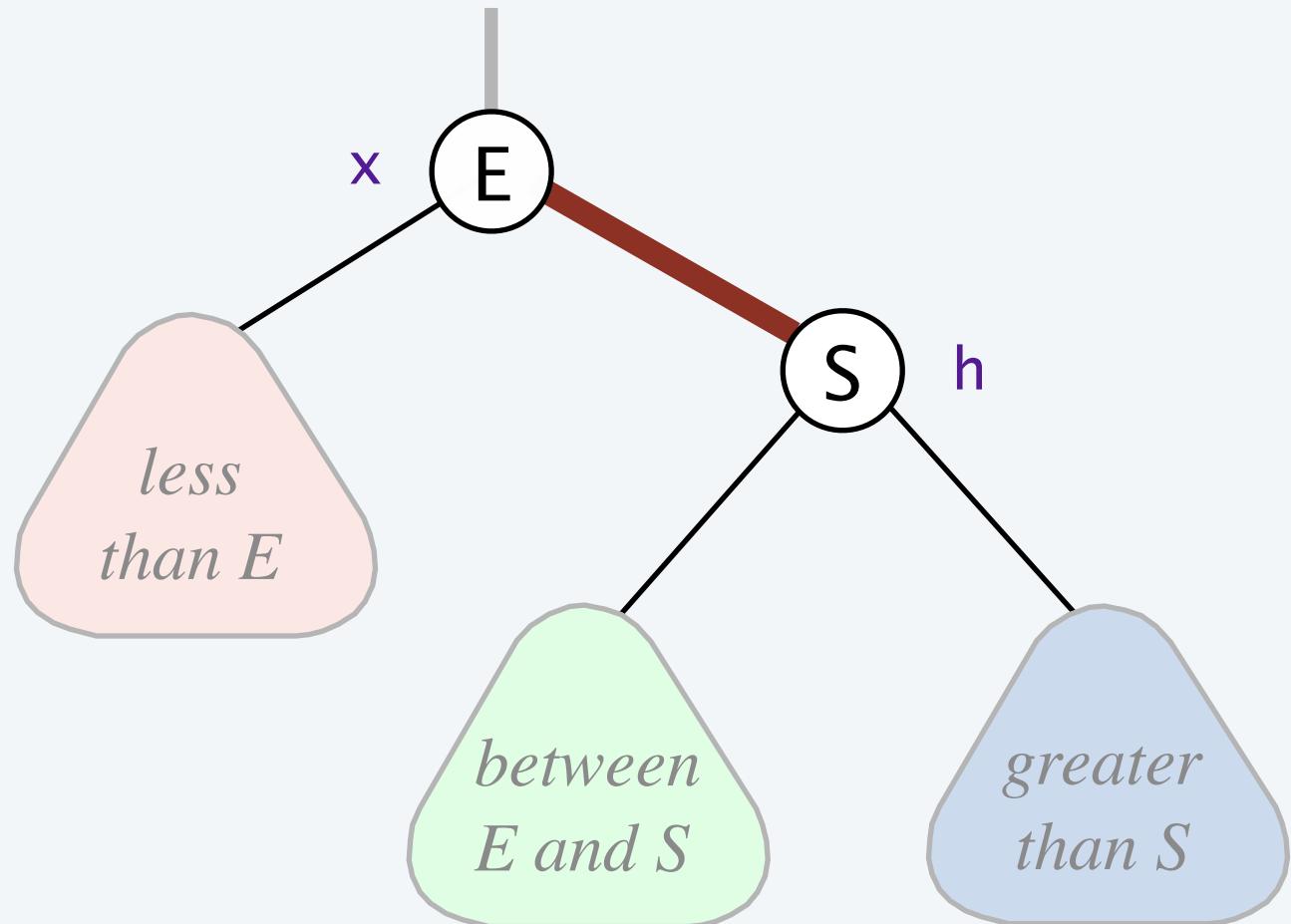
Invariants. Maintains symmetric order and perfect black balance.

Elementary red-black BST operations

Right rotation. Orient a left-leaning red link to (temporarily) lean right.

rotate S right

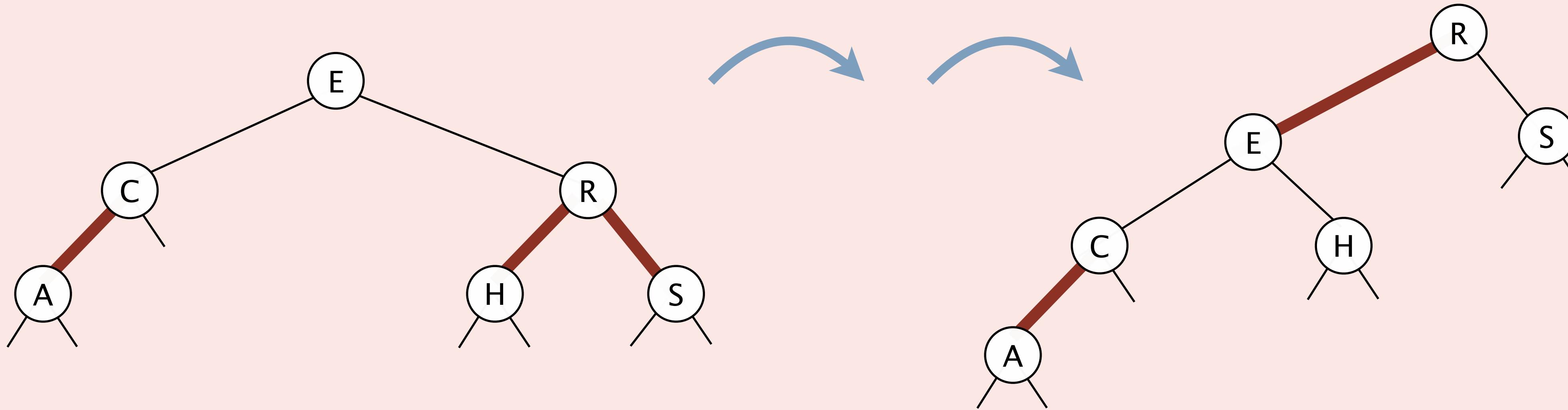
(after)



```
private Node rotateRight(Node h) {  
    assert isRed(h.left);  
    assert !isRed(h.right);  
    Node x = h.left;  
    h.left = x.right;  
    x.right = h;  
    x.color = h.color;  
    h.color = RED;  
    return x;  
}
```

Invariants. Maintains symmetric order and perfect black balance.

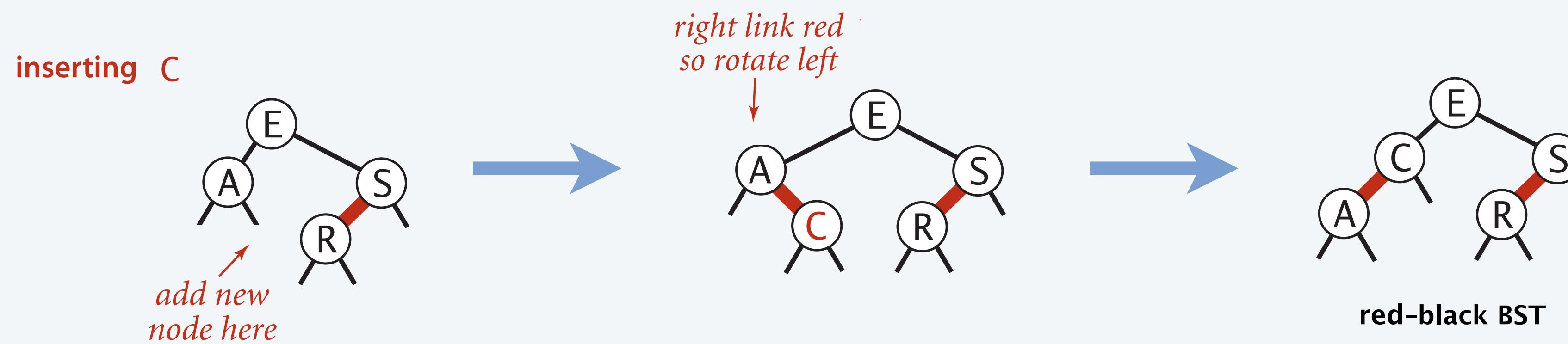
Which sequence of elementary operations transforms the LLRB tree at left to the one at right?



- A. Color flip E; left rotate R.
- B. Color flip R; left rotate E.
- C. Color flip R; left rotate R.
- D. Color flip R; right rotate E.

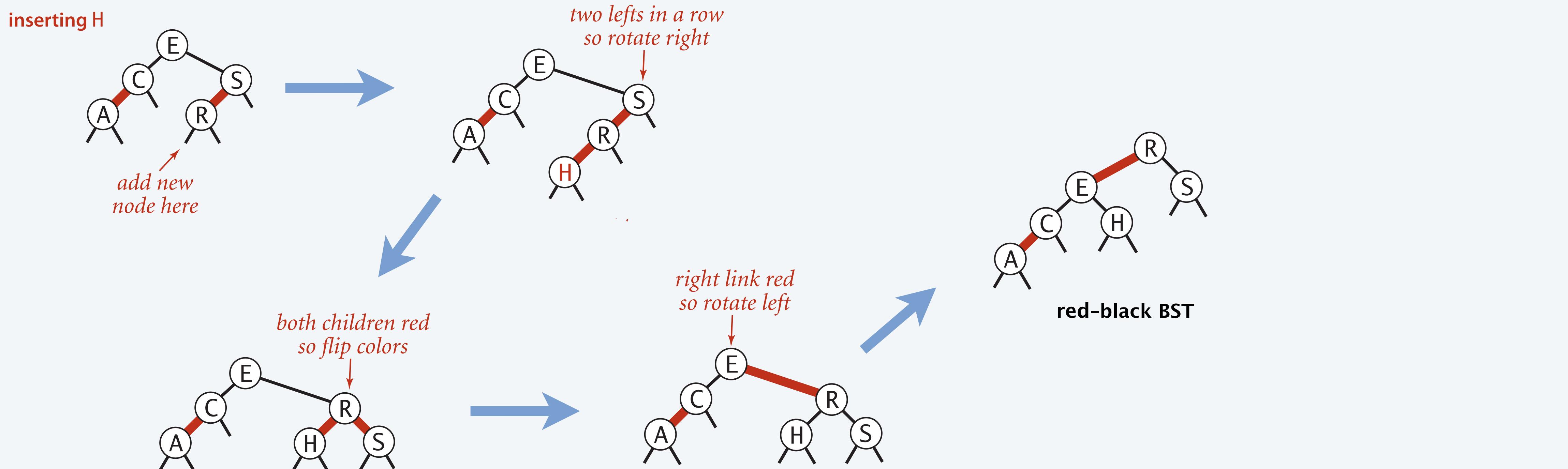
Insertion into a LLRB tree

- Do standard BST leaf insertion and color new link red. ← *to preserve symmetric order and perfect black balance*
- Repeat up the tree until color invariants restored:
 - only right link red? ⇒ rotate left



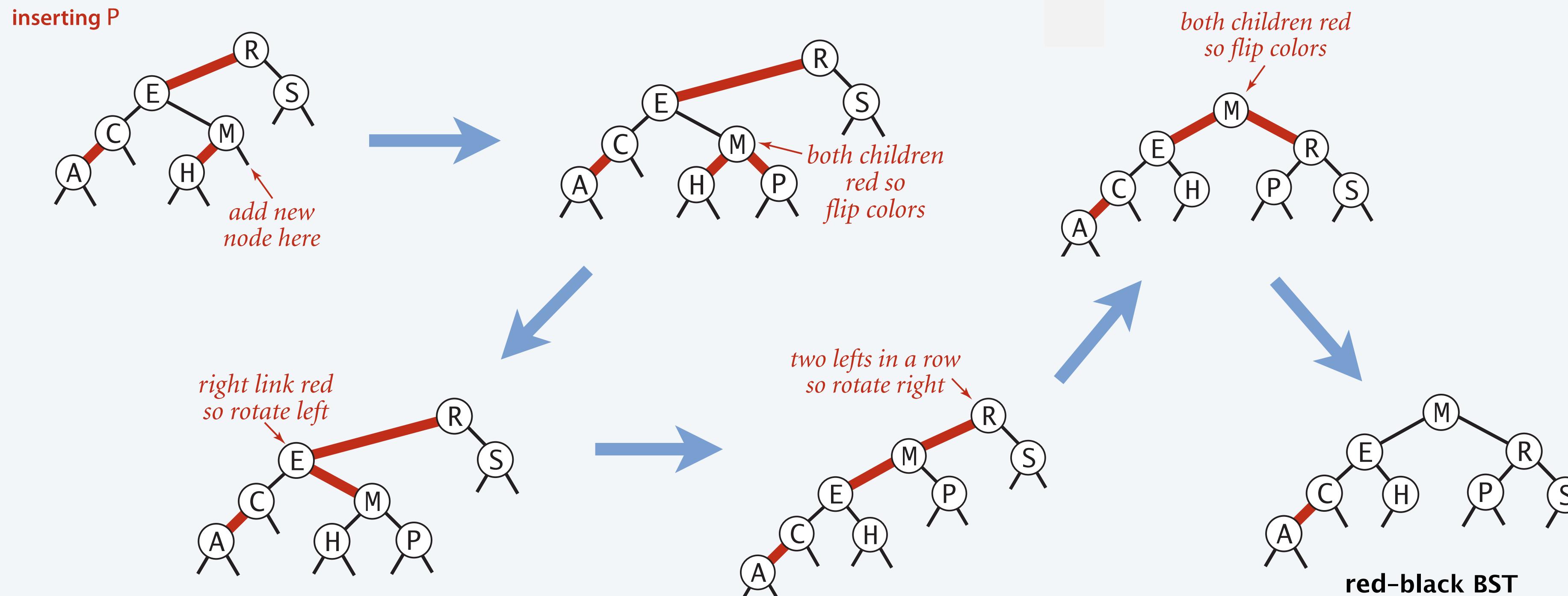
Insertion into a LLRB tree

- Do standard BST leaf insertion and color new link red.
- Repeat up the tree until color invariants restored:
 - only right link red? \Rightarrow rotate left
 - two left red links in a row? \Rightarrow rotate right
 - left and right links both red? \Rightarrow flip colors



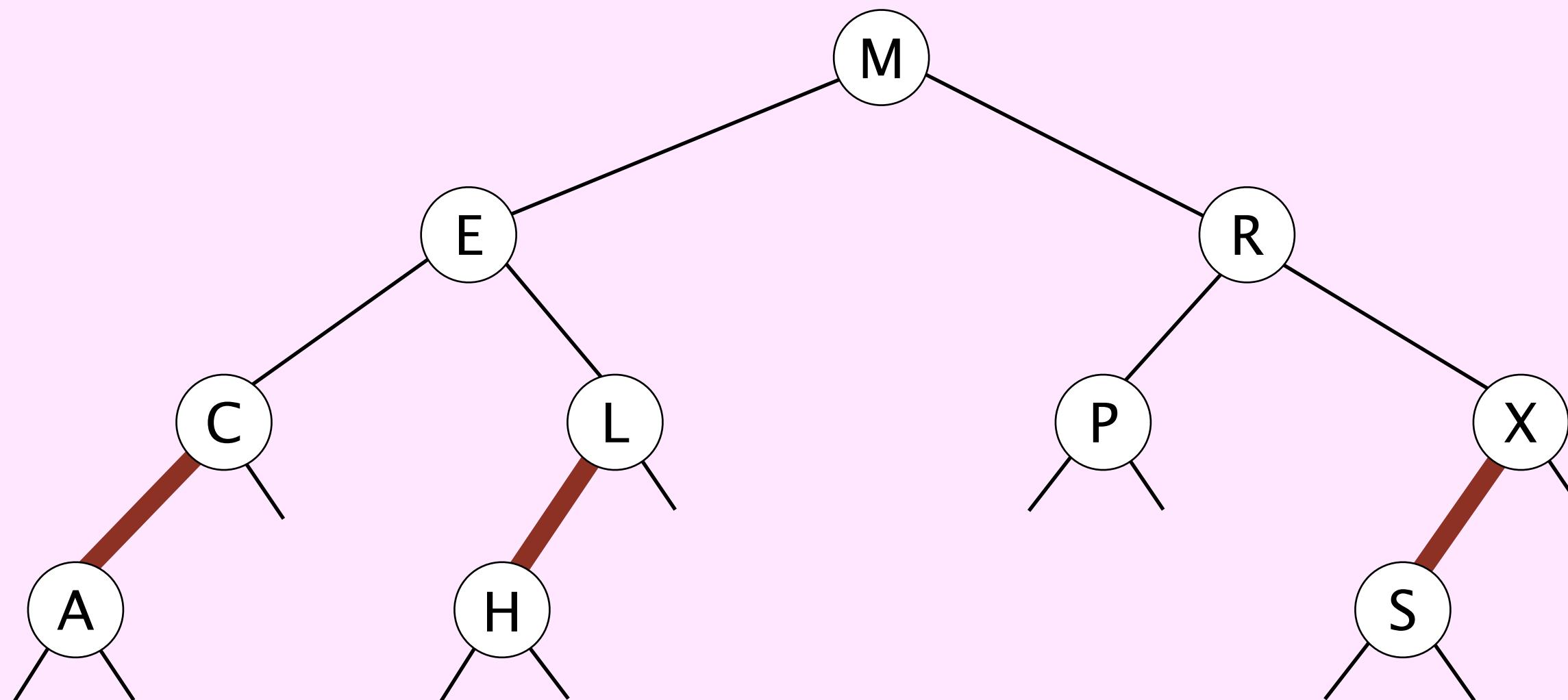
Insertion into a LLRB tree

- Do standard BST leaf insertion and color new link red.
- Repeat up the tree until color invariants restored:
 - only right link red? \Rightarrow rotate left
 - two left red links in a row? \Rightarrow rotate right
 - left and right links both red? \Rightarrow flip colors



Red-black BST construction demo

insert S E A R C H X M P L

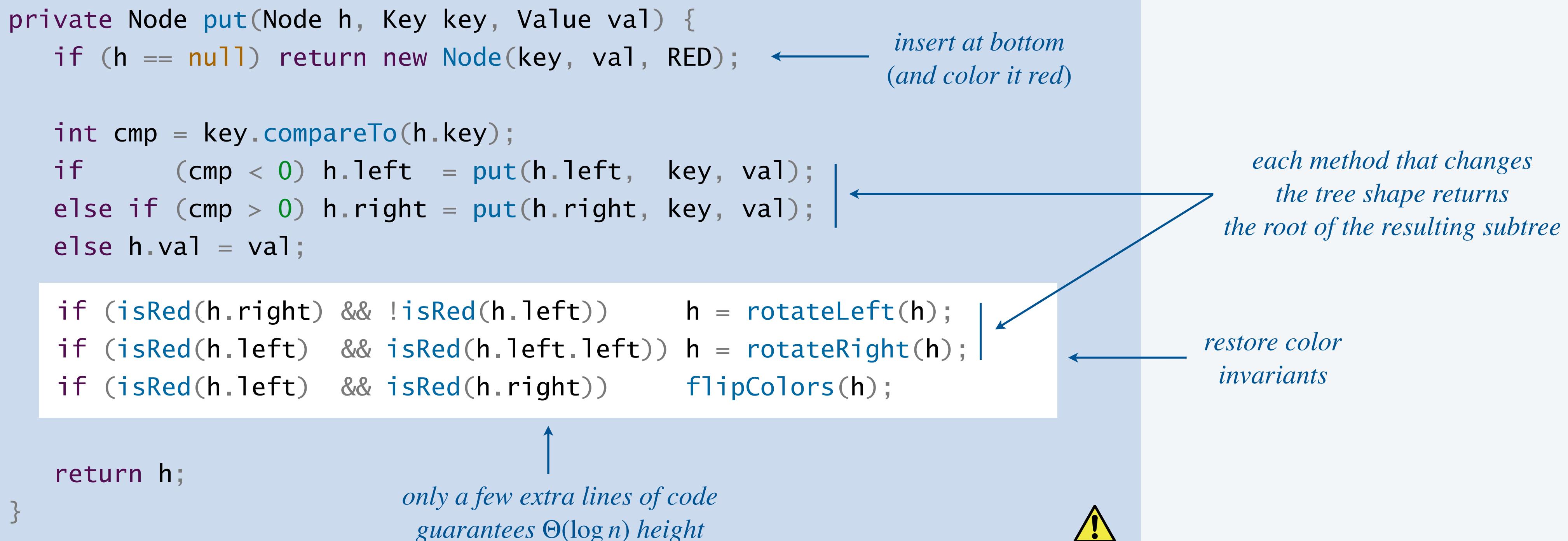


Insertion into a LLRB tree: Java implementation

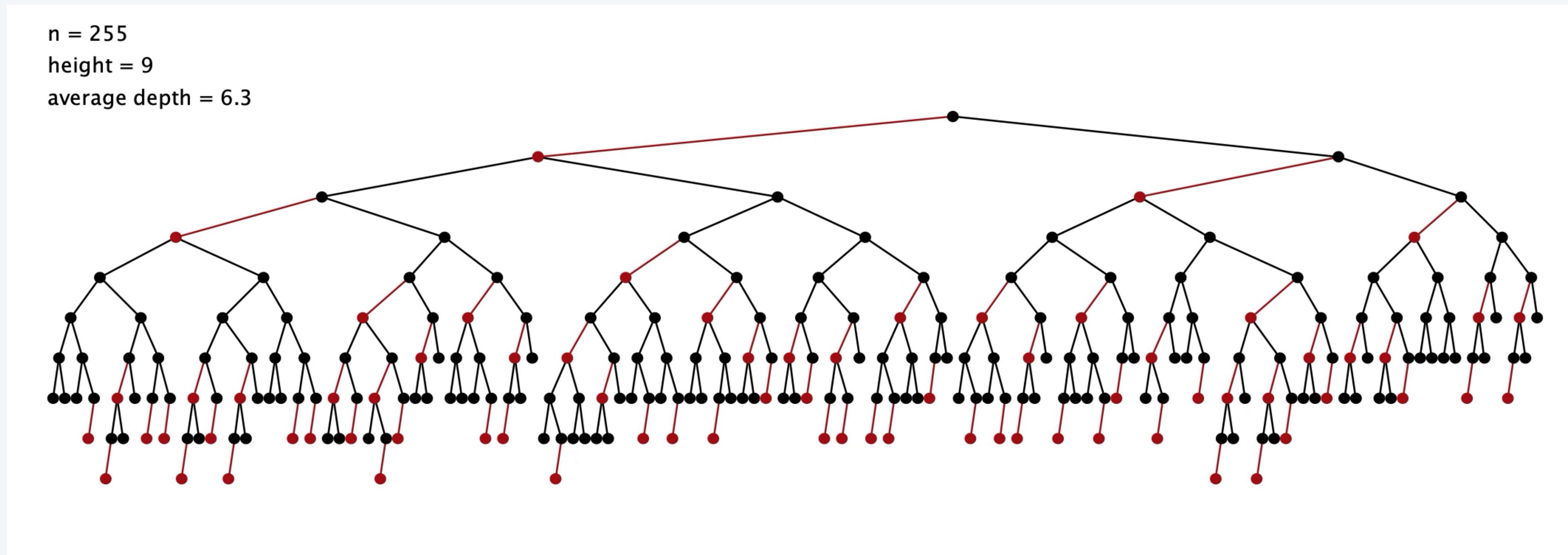
- Do standard BST leaf insertion and color new link red.
- Repeat up the tree until color invariants restored:
 - only right link red? \Rightarrow rotate left
 - two left red links in a row? \Rightarrow rotate right
 - left and right links both red? \Rightarrow flip colors

```
private Node put(Node h, Key key, Value val) {  
    if (h == null) return new Node(key, val, RED); ← insert at bottom  
(and color it red)  
    int cmp = key.compareTo(h.key);  
    if (cmp < 0) h.left = put(h.left, key, val);  
    else if (cmp > 0) h.right = put(h.right, key, val);  
    else h.val = val;  
  
    if (isRed(h.right) && !isRed(h.left)) h = rotateLeft(h);  
    if (isRed(h.left) && isRed(h.left.left)) h = rotateRight(h);  
    if (isRed(h.left) && isRed(h.right)) flipColors(h); ← restore color  
invariants  
  
    return h; ← only a few extra lines of code  
guarantees  $\Theta(\log n)$  height  
}
```

each method that changes
the tree shape returns
the root of the resulting subtree

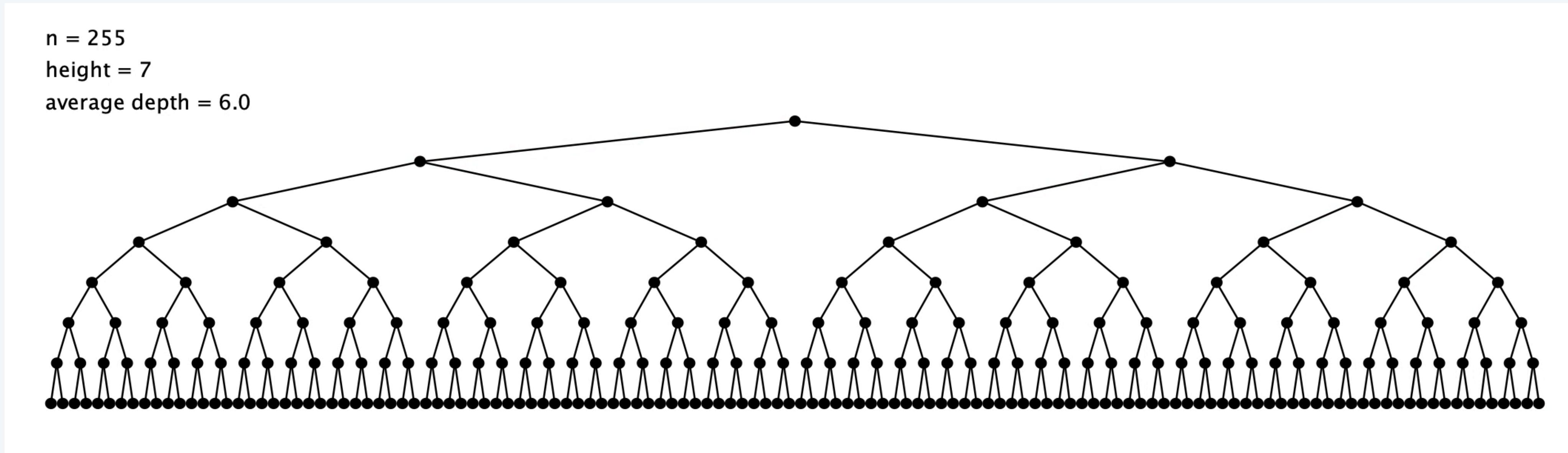


Insertion into a LLRB tree: visualization



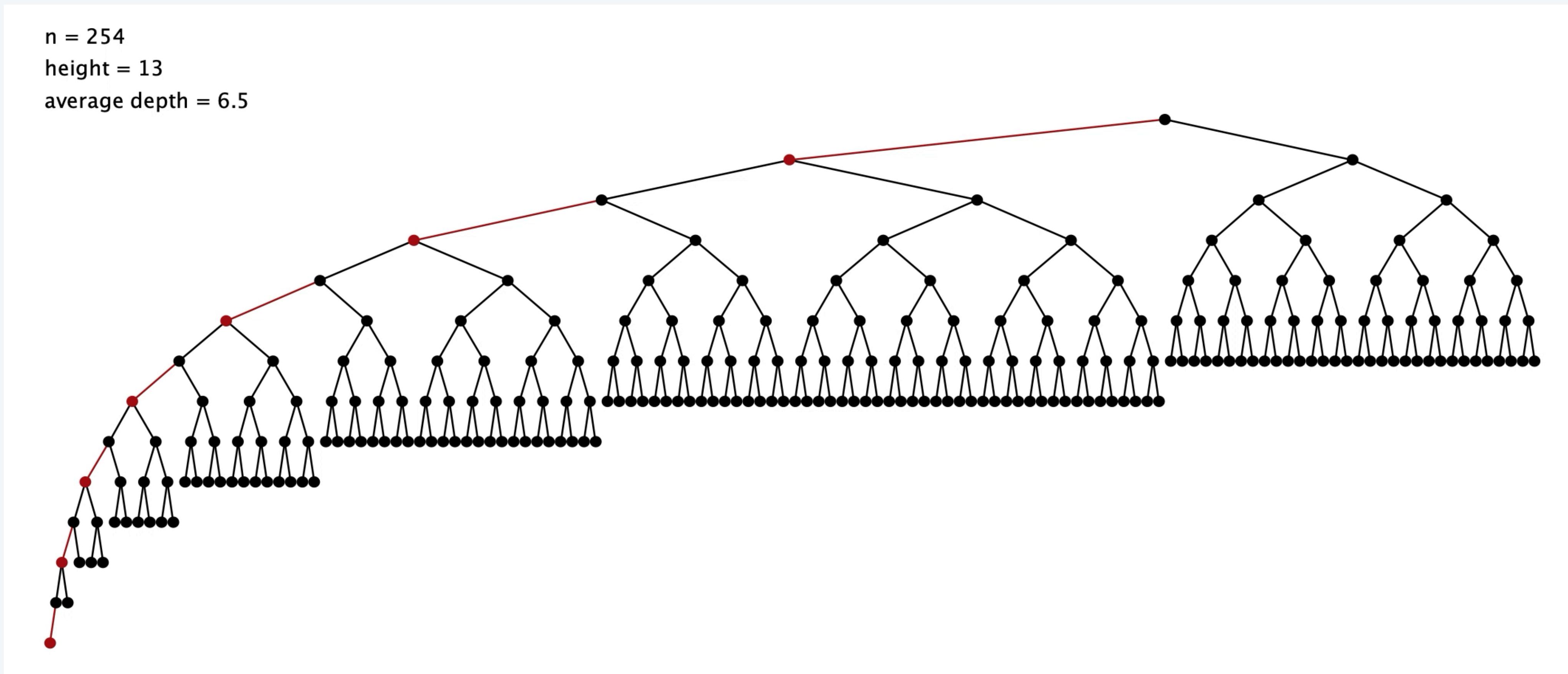
255 insertions in random order

Insertion into a LLRB tree: visualization



255 insertions in ascending order

Insertion into a LLRB tree: visualization



254 insertions in descending order

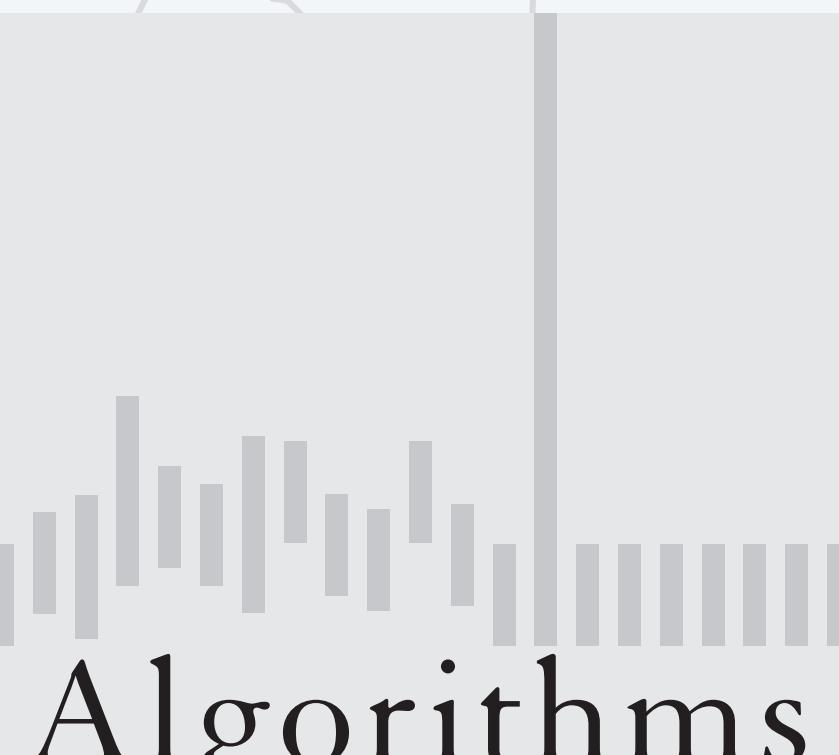
ST implementations: summary

implementation	worst case			ordered ops?	key interface	emoji
	search	insert	delete			
sequential search (unordered list)	n	n	n		<code>equals()</code>	
binary search (sorted array)	$\log n$	n	n	✓	<code>compareTo()</code>	
BST	n	n	n	✓	<code>compareTo()</code>	
2-3 trees	$\log n$	$\log n$	$\log n$	✓	<code>compareTo()</code>	
red-black BSTs	$\log n$	$\log n$	$\log n$	✓	<code>compareTo()</code>	

*hidden constant c is small
($\leq 2 \log_2 n$ compares)*

3.3 BALANCED SEARCH TREES

- ▶ 2-3 search trees
- ▶ red-black BSTs (representation)
- ▶ red-black BSTs (operations)
- ▶ context



ROBERT SEDGEWICK | KEVIN WAYNE

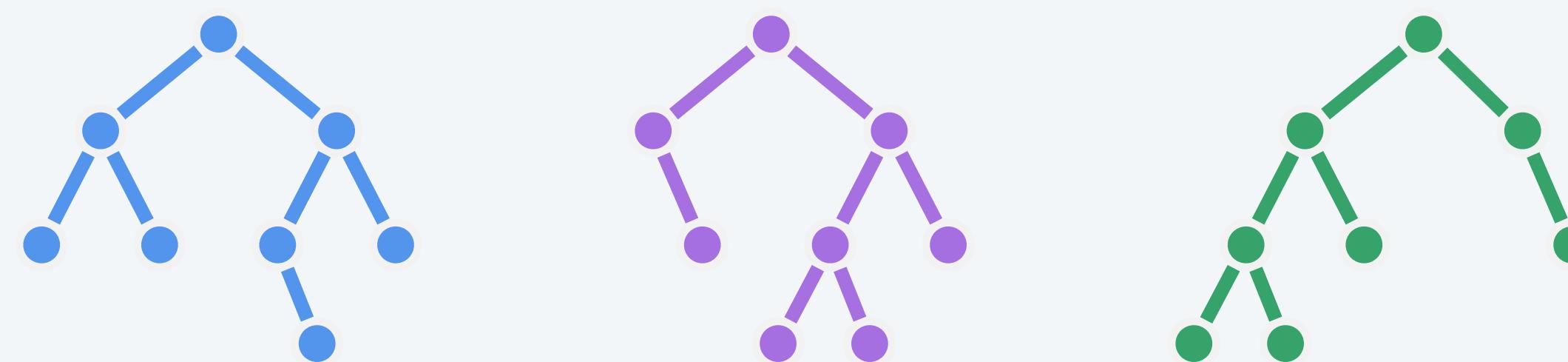
<https://algs4.cs.princeton.edu>

Balanced search trees in the wild

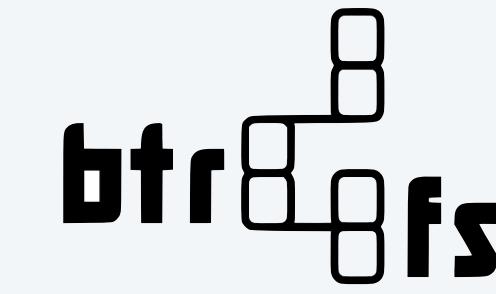
Red-black BSTs are widely used as system symbol tables.

- Java: `java.util.TreeMap`, `java.util.TreeSet`.
- C++ STL: `std::map`, `std::set`.
- Linux kernel: CFQ I/O scheduler, VMAs, `linux/rbtree.h`.

Other balanced BSTs. AVL trees, splay trees, randomized BSTs, rank-balanced BSTs, ...



B-trees (and cousins) are widely used for file systems and databases.



Industry story 1: red-black BSTs

Telephone company contracted with database provider to build a real-time database to store customer information.

Database implementation.

- Red-black BST.
- Exceeding height limit of 80 triggered error-recovery process.

should support up to 2^{40} keys

Database crashed.

- Main cause = height bound exceeded!
- Telephone company sues database provider.
- Legal testimony:

“If implemented properly, the height of a red-black BST with n keys is at most $2 \log_2 n$.” — expert witness

Industry story 2: red-black BSTs

 Celestine Omin
@cyberomin

[Follow](#)

I was just asked to balance a Binary Search Tree by JFK's airport immigration. Welcome to America.

8:26 AM - 26 Feb 2017 from [Manhattan, NY](#)

8,025 Retweets 7,087 Likes

 Celestine Omin @cyberomin · 26 Feb 2017
I was too tired to even think of a BST solution. I have been travelling for 23hrs. But I was also asked about 10 CS questions.

 8 164 244

 Celestine Omin @cyberomin · 26 Feb 2017
sad thing is, if I didn't give the Wikipedia definition for these questions, it was considered a wrong answer.

 19 324 703

 Simon Sharwood @ssharwood · 26 Feb 2017
Replying to @cyberomin
seriously? am reporter for [@theresister](#) and would love to know more about your experience

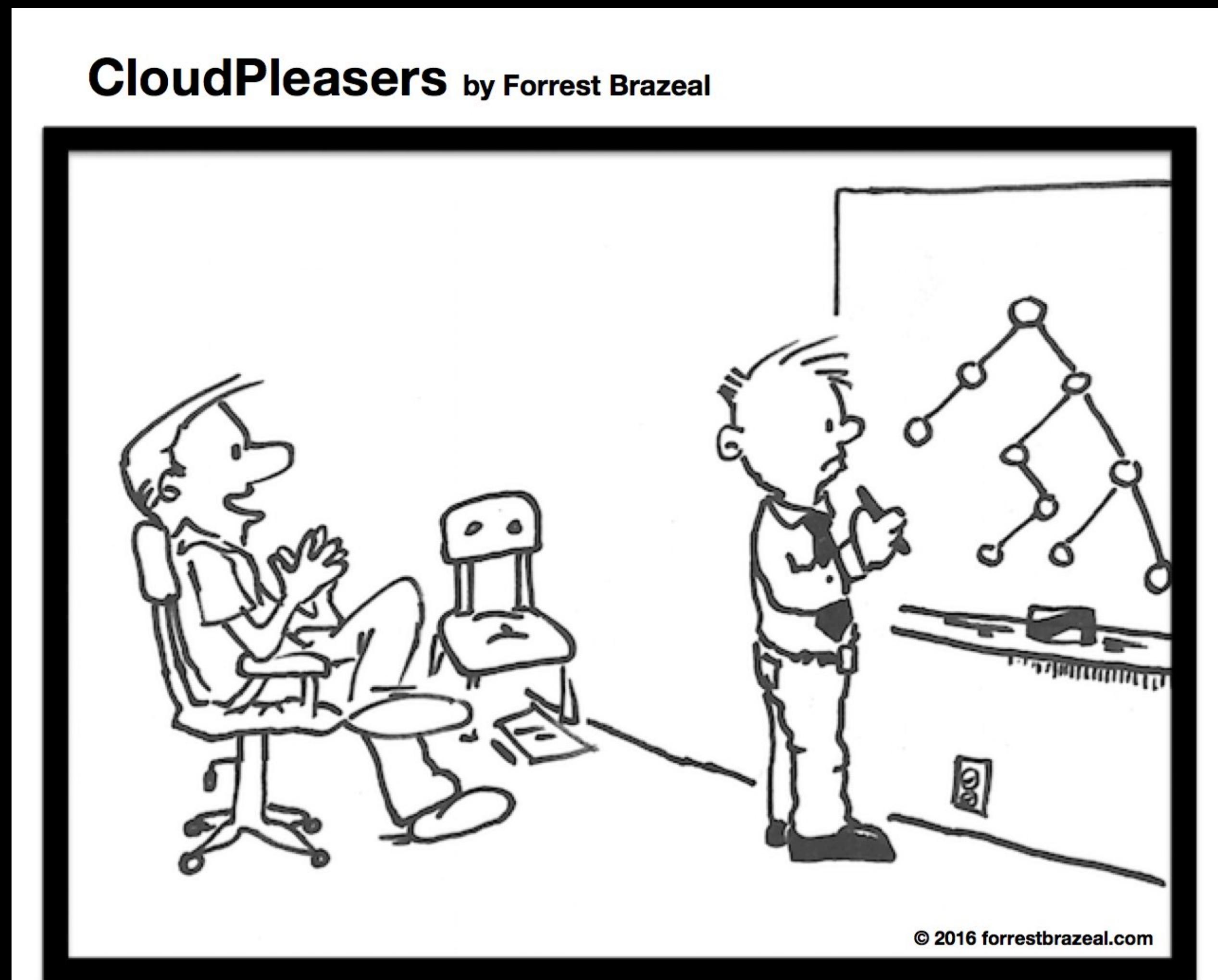
 2 22 171

<https://twitter.com/cyberomin/status/835888786462625792>

Credits

media	source	license
<i>Technological Wizard</i>	Adobe Stock	Education License
<i>Red-Black Tree Song</i>	Sean Sandys	by author
<i>Red-Black Tree Song Video</i>	U. Washington CSE Band	
<i>Gavel</i>	Adobe Stock	Education License
<i>Redacted Document</i>	Wikimedia	public domain
<i>Celestine Omin</i>	Twitter	
<i>Real-World Coding Interview</i>	Forrest Brazeal	

A final thought



"We want our interviewees to solve real-world problems. So while you balance this binary search tree, I'll be changing the requirements, imposing arbitrary deadlines and auditing you for regulatory compliance."