A 1 g Or 1 [h 1IMS ROBERT SEDGEWICK | KEVIN WAYNE

3.2 BINARY SEARCH TREES

» BSTs

» iteration

» ordered operations

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

3.2 BINARY SEARCH TREES

» BSTs

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Binary search trees

Definition. A BST is a binary tree in symmetric order.

A binary tree is either:
 Empty.
* A node with links to two disjoint binary trees—

the left subtree and the right subtree.

Symmetric order. Each node has a key that is:
 Strictly larger than all keys in its left subtree.
« Strictly smaller than all keys in its right subtree.

* [Duplicate keys not permitted.]

root
a left link /
b N
a suvtree
\ \
% right child
w/ of root
null links
parent of A and R Yoy
left link
OfE \
Q @ J T~ value
@ m associated
with R

/ \

keys smaller than E keys larger than E

Binary search trees: poll 1

Which of the following properties hold?

A. If a binary tree is max-heap ordered, then it is symmetrically ordered.
B. If a binary tree is symmetrically ordered, then it is max-heap ordered.
C. Both A and B.

D. Neither A nor B.

Binary search tree demo

Search. If less, go left; if greater, go right; if equal, search hit.

successful search for H

Binary search tree demo

Insert. If less, go left; if greater, go right; if nu11, insert.

insert G

BST representation in Java

Java representation. A BST holds a reference to a root Node.

A Node is composed of four fields:

A Key and a Value.

* A reference to the left and right subtree.

/ \

smaller keys larger keys

private class Node {

private Key key;
private Value val;
private Node left, right;

public Node(Key key, Value val) {
this.key = key;
this.val = val;

Key and Value are generic types; Key is Comparable

BST

Node——| key val
left | right

X

BST with smaller keys BST with larger keys

binary search tree

BST implementation (skeleton)

public class BST<Key extends Comparable<Key>, Value> 1{

private Node root; < root of BST

private class Node

{ ¥

public void put(Key key, Value val)
{ ¥

public Value get(Key key)
{ ¥

public Iterable<Key> keys()
{ }

public void delete(Key key)
{ ¥

BST search: Java implementation

Get. Return value corresponding to given key, or nul1 if no such key.

public Value get(Key key) {
Node x = root;
while (x != null) {
int cmp = key.compareTo(x.key) ;
if (cmp < 0) x = x.left;
else 1f (cmp > 0) x = x.right;
else return x.val;

1 depth of H =3

return null;

Cost. Number of compares = 1 + depth of deepest node reached.

BST insert

Put. Associate value with key.
* Search for key in BST.
« Case 1: Key in BST — reset value.
 Case 2: Key not in BST =— add new node.

public void put(Key key, Value val) {
root = put(root, key, val);

private Node put(Node x, Key key, Value val) {

if (x == null) return new Node(key, val):
int cmp = key.compareTo(x.key);
if (cmp < 0) x.left = put(x.left, key, val);

else 1f (cmp > 0) x.right = put(x.right, key, val);
else x.val = val;

return X;
} A Warning: concise but tricky code!

Cost. Number of compares = 1 + depth of deepest node reached.

inserting L

search for L ends 7
at this null link

create new node —- @
N
/

reset links
on the way up

insertion into a BST

10

Tree shape

 Many BSTs correspond to same set of keys.

 Number of compares for search/insert = 1 + depth of deepest node reached.

best case

typical case worst case

height between log, n and n — 1

Bottom line. Tree shape depends on order of insertion.

11

BST insertion: random order visualization

Ex. Insert 255 keys in random order.

n =255

height = 13
average depth = 7.3
Ilgn = 8.0

12

Binary search trees: poll 2

Suppose that you insert n distinct keys in uniformly random order into a BST.
What is the expected height of the resulting BST?

A. ~log,n
B. ~2Inn (1,
C. ~ 431107 Inn height Q @
o OSRCINC
. ~ E n
: G Q
. ~ N
(L)

13

ST implementations: performance summary

worst case typical case

implementation

sequential search

(unordered list) i n n
binary search I |
(ordered array) o n ogn
BST 7 " log 1

Why not shuffle to ensure
a (probabilistic) guarantee
of O(log n) time a la quicksort ?

n

log n

operations
onh keys

equals()

compareTo()

compareTo()

14

3.2 BINARY SEARCH TREES

» iteration

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Binary search trees: poll 3

In which order does traverse(root) print the keys in the BST?

private void traverse(Node x) {
1f (X == null) return;
traverse(x. left);
StdOut.printin(x.key) ;
traverse(x.right);

A.. ACEHMRSX
B. SEACRHMX
C. CAMHRENXS

D. SEXARCHWM

root

16

Inorder traversal

1norder(S)
1norder(E)
1norder (A)
print A e
1norder (C)
print C
done C G
done A
print E

1norder(R) Q e
inorder(H)

print H
inorder (M)

print M C) (H

done M
done H

print R (t!’
done R
done E
print S
1norder (X)
print X
done X
done S

output ACEHMRSX

Inorder traversal

 Traverse left subtree.
 Enqueue key.

* Traverse right subtree. add items to a collection that is Tterable

and return that collection

public Iterable<Key> keys() { //////

Queue<Key> queue = new Queue<Key>() ;
inorder(root, queue) ;
return queue;

private void 1norder(Node x, Queue<Key> queue) {
it (x == null) return;
inorder(x.left, queue);
queue.enqueue(x.key);
inorder(x.right, queue);

Property. Inorder traversal of a BST yields keys in ascending order.

BST

key

val

Teft

right

/

BST with smaller keys

smaller keys, in order

N

BST with larger keys

key larger keys, in order

™~

all keys, in order

18

Inorder traversal: running time

)

Property. Inorder traversal of a binary tree with n nodes takes ®(n) time (and no compares).
Pf. It takes ®(1) time per node in BST.

19

Level-order traversal

Level-order traversal of a binary tree.
* Process root.
* Process children of root, from left to right.

* Process grandchildren of root, from left to right.

level-order traversal: SETARCHM

20

Level-order traversal

Q1. How to compute level-order traversal of a binary tree in ®(n) time?

level-order traversal: SETARCHM

21

Level-order traversal

Q2. Given the level-order traversal of a BST, how to (uniquely) reconstruct?

EX. /g /E(7'4 A K ¢ H M needed for PrairieLearn quizzes

22

3.2 BINARY SEARCH TREES

Algorithms » ordered operations

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Minimum and maximum

Minimum. Smallest key in BST.

Maximum. Largest key in BST.

Q. How to find the min / max?

A. Go down left / right spine.

S ——

running time proportional to
depth of node in BST
(but O compares)

24

Floor and ceiling

Floor. Largest key in BST < query key.

Ceiling. Smallest key in BST > query key.

floor(G)

celling(T)

25

Computing the floor

Floor. Largest key in BST < query key.

Ceiling. Smallest key in BST > query key.

Key idea.
 To compute floor(key) or ceiling(key), search for key.
 Both floor(key) and ceiling(key) are on search path.

 Moreover, as you go down search path, any candidates get better and better.

floor(G)
celling(T)

26

Computing the floor: Java implementation

Invariant 1. The floor is either champ or in subtree rooted at x.

Invariant 2. Node x is in the right subtree of node containing champ. <« assuming champ is not null

champ must be floor key in node x is too large
(floor can’t be in right subtree of x)

public Key floor(Key key) {
return floor(root, key, null);

private Key floor(Node x, Key /key, Key champ) { Zﬁ;
1f (x == null) return champ;
int cmp = key.compareTo(x.key) ;
if (cmp < 0) return floor(x.left, key, champ);
else 1f (cmp > 0) return floor(x.right, key, x.key);
else return x.key; 1
}
key is in BST key in node x is a candidate for floor key in node x is better candidate than champ

(floor can’t be in left subtree of x) (because x is in the right subtree of champ)

BST:

ordered symbol table operations summary

sequential

binary

search search ol

search O(n) O(log n) O(h)
insert / delete O(n) O(n) O(h)
min | max O(n) O(1) O(h)
floor / ceiling O(n) O(log n) O(h)
rank O(n) O(log n) O(h)
select O(n) O(1) O(h)

worst-case running time of ordered symbol table operations

h = height of BST

ST implementations: summary

worst case
: : key
implementation :
interface
search
n

sequential search

(unordered list) n equals()

binary search

(sorted array) log n n \'4 compareTo()
BST n n 4 compareTo()
red-black BST (log n] [log n J v compareTo()

next lecture: BST whose height is guarantee to be ©(log n)

29

Credits

iImage source license
Inorder Traversal in a BST Silicon Valley S4ES5
Binary Tree Daniel Stori

Lecture Slides © Copyright 2025 Robert Sedgewick and Kevin Wayne

https://www.hbo.com/silicon-valley
http://Binary%20Tree%20Daniel%20Stori%20https://turnoff.us/geek/binary-tree/

A final thought

Dad, dad, |ook
at that tree!l

I s 0101
o?osq,ou.“oooo' : ﬂ 01910
ol genoreriiuiii
\ o “..oooo'(;.ol
°|'°I°l°“° CO”‘
.OOIO|I°l00°|°|o
Qo' 11010]

o
O'll
60010100010 01
lotrotinrigot1el
0||‘l|OOO°°| I logo
OIOI°O'O|o|O|°O\ T 0

3100|q,m00”'\‘

28:52
oooo-Ogg

o
S -

-—0000

| 0090 oo,
1019106098632 2.

o
10l01910.10001d%
8”,'0!0
BRI R
ol

0%9z=
o 1« D
seo-<o

-
o .

i
'
oCl
ol
ol

-0
O~

It's just a . @ 8 8105518 5 & Siiea0e
eo 0%00 ey
1 20'0 0
tree) Son LR '

1 o ,0l0"0|°°°”
0 0 /10101110
0 ‘OO'O\OO‘lOIh |'°. &) 0 °|||O)°l'\
0/ 000! 108, 9§ : 11000101010
1oV) o 0« 1910 oo 100
l.l ol °) ‘°|‘|°.°||°” "'
e 1 0110101010775
'°l°|o|om|ol°\
010109,
P s 0

Daniel Stor: {(turnoff. us}

https://turnoff.us/geek/binary-tree/

