
ROBERT SEDGEWICK | KEVIN WAYNE

F O U R T H E D I T I O N

Algorithms

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

Last updated on 9/30/25 8:59  AM

3.2 BINARY SEARCH TREES

‣ BSTs

‣ iteration

‣ ordered operations

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

3.2 BINARY SEARCH TREES

‣ BSTs

‣ iteration

‣ ordered operations

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Binary search trees

Definition. A BST is a binary tree in symmetric order.
 
A binary tree is either:

・Empty.

・A node with links to two disjoint binary trees— 
the left subtree and the right subtree.

 
 
 
Symmetric order. Each node has a key that is:

・Strictly larger than all keys in its left subtree.

・Strictly smaller than all keys in its right subtree.

・[Duplicate keys not permitted.]

3

right child
of root

a left link

a subtree

root

null links

Anatomy of a binary tree

value
associated

with R

parent of A and R

left link
of E

keys smaller than E keys larger than E

key

A
C

E

H
R

S
X

9

Anatomy of a binary search tree

Binary search trees: poll 1

Which of the following properties hold? 

A. If a binary tree is max-heap ordered, then it is symmetrically ordered.

B. If a binary tree is symmetrically ordered, then it is max-heap ordered.

C. Both A and B.

D. Neither A nor B.

4

heap ordered
(but not symmetrically ordered)

symmetrically ordered
(but not heap ordered)

max key

max keymin key

A CR H

ES

X

R XA E

SC

H

Binary search tree demo

Search. If less, go left; if greater, go right; if equal, search hit.

5

successful search for H

X

RA

C H

E

S

M

Binary search tree demo

Insert. If less, go left; if greater, go right; if null, insert.

6

X

RA

C H

E

S

M

insert G

G

Java representation. A BST holds a reference to a root Node.

A Node is composed of four fields:

・A Key and a Value.

・A reference to the left and right subtree.

BST representation in Java

7

smaller keys larger keys

Key and Value are generic types; Key is Comparable

private class Node {

 public Node(Key key, Value val) {
 this.key = key;
 this.val = val;
 }
}

private Key key;
private Value val;
private Node left, right;

Binary search tree

BST with smaller keys BST with larger keys

key val

BST

Node
left right

binary search tree

BST implementation (skeleton)

8

public class BST<Key extends Comparable<Key>, Value> {

 private class Node
 { /* see previous slide */ }

 public void put(Key key, Value val)
 { /* see slide in this section */ }

 public Value get(Key key)
 { /* see next slide */ }

 public Iterable<Key> keys()
 { /* see slides in next section */ }

 public void delete(Key key)
 { /* see textbook */ }

}

private Node root; root of BST

BST search: Java implementation

Get. Return value corresponding to given key, or null if no such key.
 
 
 
 
 
 
 
 
 
 
 
 
 
Cost. Number of compares = 1 + depth of deepest node reached.

9

 public Value get(Key key) {
 Node x = root;
 while (x != null) {
 int cmp = key.compareTo(x.key);
 if (cmp < 0) x = x.left;
 else if (cmp > 0) x = x.right;
 else return x.val;
 }
 return null;
 }

X

RA

C H

E

S

M

depth of H = 3

BST insert

Put. Associate value with key.

・Search for key in BST.

・Case 1: Key in BST reset value.

・Case 2: Key not in BST add new node.
 
 
 
 
 
 
 
 
 
 
 
Cost. Number of compares = 1 + depth of deepest node reached.

⟹
⟹

10

 public void put(Key key, Value val) {
 root = put(root, key, val);
 }

 private Node put(Node x, Key key, Value val) {
 if (x == null) return new Node(key, val);
 int cmp = key.compareTo(x.key);
 if (cmp < 0) x.left = put(x.left, key, val);
 else if (cmp > 0) x.right = put(x.right, key, val);
 else x.val = val;
 return x;
 }

private Node put(Node x, Key key, Value val) {
 if (x == null) return new Node(key, val);
 int cmp = key.compareTo(x.key);
 if (cmp < 0) x.left = put(x.left, key, val);
 else if (cmp > 0) x.right = put(x.right, key, val);
 else x.val = val;
 return x;
} Warning: concise but tricky code!

search for L ends
at this null link

reset links
on the way up

create new node

A
C

E

H
M

P

R

S
X

A
C

E

H

L

M
P

R

S
X

A
C

E

H

L
M

P

R

S
X

Insertion into a BST

inserting L

insertion into a BST

search for L ends
at this null link

reset links
on the way up

create new node

A
C

E

H
M

P

R

S
X

A
C

E

H

L

M
P

R

S
X

A
C

E

H

L
M

P

R

S
X

Insertion into a BST

inserting L

search for L ends
at this null link

reset links
on the way up

create new node

A
C

E

H
M

P

R

S
X

A
C

E

H

L

M
P

R

S
X

A
C

E

H

L
M

P

R

S
X

Insertion into a BST

inserting L

Tree shape

・Many BSTs correspond to same set of keys.

・Number of compares for search/insert = 1 + depth of deepest node reached.
 
 
 
 
 
 
 
 
 
 
 
 
Bottom line. Tree shape depends on order of insertion.

11

A

H

S
R

X

C
E

X
S

R
C

E

H

A

A
C

E

H
R

S
X

BST possibilities

best case

typical case

worst case

A

H

S
R

X

C
E

X
S

R
C

E

H

A

A
C

E

H
R

S
X

BST possibilities

best case

typical case

worst case

A

H

S
R

X

C
E

X
S

R
C

E

H

A

A
C

E

H
R

S
X

BST possibilities

best case

typical case

worst case

height between and log2 n n − 1

BST insertion: random order visualization

Ex. Insert 255 keys in random order.

12

Binary search trees: poll 2

Suppose that you insert distinct keys in uniformly random order into a BST.  
What is the expected height of the resulting BST?  

A.

B.

C.

D.

E.

n

∼ log2 n

∼ 2 ln n

∼ 4.31107 ln n

∼ 1
2 n

∼ n

13

A

D

H

O

P

T

U

C

YE I

M

L

S
height

unique solution on [2, ∞)
to the equation x ln (2e / x) = 1

How Tall is a Tree?

Bruce Reed
CNRS, Paris, France

reed@moka.ccr.jussieu.fr

ABSTRACT
Let H~ be the height of a random binary search tree on n
nodes. We show that there exists constants a = 4.31107.. .
and/3 = 1.95.. . such that E(H~) = c~logn - / 3 1 o g l o g n +
O(1), We also show that Var(H~) = O(1).

Categories and Subject Descriptors
E.2 [Data S t ruc tu res] : Trees

1. THE RESULTS
A binary search tree is a binary tree to each node of which
we have associated a key; these keys axe drawn from some
totally ordered set and the key at v cannot be larger than
the key at its right child nor smaller than the key at its left
child. Given a binary search tree T and a new key k, we
insert k into T by traversing the tree starting at the root
and inserting k into the first empty position at which we
arrive. We traverse the tree by moving to the left child of the
current node if k is smaller than the current key and moving
to the right child otherwise. Given some permutation of
a set of keys, we construct a binary search tree from this
permutation by inserting them in the given order into an
initially empty tree.
The height Hn of a random binary search tree T,~ on n
nodes, constructed in this manner starting from a random
equiprobable permutation of 1 , . . . , n, is known to be close
to a l o g n where a = 4.31107... is the unique solution on
[2, ~) of the equation a log((2e)/a) = 1 (here and elsewhere,
log is the natural logarithm). First, Pittel[10] showed that
H,~/log n --~ 3' almost surely as n --+ c~ for some positive
constant 7. This constant was known not to exceed c~ [11],
and Devroye[3] showed that "7 = a, as a consequence of the
fact that E(Hn) ~ c~logn. Robson[12] has found that Hn
does not vary much from experiment to experiment, and
seems to have a fixed range of width not depending upon n.
Devroye and Reed[5] proved that Var(Hn) = O((log log n)2),
but this does not quite confirm Robson's findings. It is the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
STOC 2000 Portland Oregon USA
Copyright ACM 2000 1-58113-184-4/00/5...$5.00

3 purpose of this note to prove that for /3 -- ½ + ~ , we
have:

THEOREM 1. E(H~) = ~ l o g n - / 3 1 o g l o g n + O(1) and
Var(Hn) = O(1) .

R e m a r k By the definition of a, /3 = 3~ 7"g~" The first defi-
nition given is more suggestive of why this value is correct,
as we will see.
For more information on random binary search trees, one
may consult [6],[7], [1], [2], [9], [4], and [8].
R e m a r k After I announced these results, Drmota(unpublished)
developed an alternative proof of the fact that Var(Hn) =
O(1) using completely different techniques. As our two
proofs illuminate different aspects of the problem, we have
decided to submit the journal versions to the same journal
and asked that they be published side by side.

2. A MODEL
If we construct a binary search tree from a permutation
of 1, ..., n and i is the first key in the permutation then:
i appears at the root of the tree, the tree rooted at the
left child of i contains the keys 1, ..., i - 1 and its shape
depends only on the order in which these keys appear in
the permutation, mad the tree rooted at the right child of i
contains the keys i + 1, ..., n and its shape depends only on
the order in which these keys appear in the permutation.
From this observation, one deduces that Hn is also the num-
ber of levels of recursion required when Vazfilla Quicksort
(i.e. the version of Quicksort in which the first element in
the permuation is chosen as the pivot) is applied to a random
permutation of 1, ..., n.
Our observation also allows us to construct Tn from the top
down. To ease our exposition, we think of T,~ as a labelling
of a subtree of T~, the complete infinite binary tree.
We will expose the key associated with each node t of T~.
To underscore the relationship with Quicksort, we refer to
the key at t as the pivot at t. Suppose then that we have
exposed the pivots for some of the nodes forming a subtree
of Too, rooted at the root of T~. Suppose further that for
some node t of T~¢, all of the ancestors of t are in T,~ and
we have chosen their pivots. Then, these choices determine
the set of keys Kt which will appear at the (possibly empty)
subtree of T,~ rooted at t, but will have no effect on the order
in which we expect the keys in Kt to appear. Indeed each
permutation of Kt is equally likely. Thus, each of the keys
in Kt will be equally likely to be the pivot. We let nt be
the number of keys in this set and specify the pivot at t by

479

How Tall is a Tree?

Bruce Reed
CNRS, Paris, France

reed@moka.ccr.jussieu.fr

ABSTRACT
Let H~ be the height of a random binary search tree on n
nodes. We show that there exists constants a = 4.31107.. .
and/3 = 1.95.. . such that E(H~) = c~logn - / 3 1 o g l o g n +
O(1), We also show that Var(H~) = O(1).

Categories and Subject Descriptors
E.2 [Data S t ruc tu res] : Trees

1. THE RESULTS
A binary search tree is a binary tree to each node of which
we have associated a key; these keys axe drawn from some
totally ordered set and the key at v cannot be larger than
the key at its right child nor smaller than the key at its left
child. Given a binary search tree T and a new key k, we
insert k into T by traversing the tree starting at the root
and inserting k into the first empty position at which we
arrive. We traverse the tree by moving to the left child of the
current node if k is smaller than the current key and moving
to the right child otherwise. Given some permutation of
a set of keys, we construct a binary search tree from this
permutation by inserting them in the given order into an
initially empty tree.
The height Hn of a random binary search tree T,~ on n
nodes, constructed in this manner starting from a random
equiprobable permutation of 1 , . . . , n, is known to be close
to a l o g n where a = 4.31107... is the unique solution on
[2, ~) of the equation a log((2e)/a) = 1 (here and elsewhere,
log is the natural logarithm). First, Pittel[10] showed that
H,~/log n --~ 3' almost surely as n --+ c~ for some positive
constant 7. This constant was known not to exceed c~ [11],
and Devroye[3] showed that "7 = a, as a consequence of the
fact that E(Hn) ~ c~logn. Robson[12] has found that Hn
does not vary much from experiment to experiment, and
seems to have a fixed range of width not depending upon n.
Devroye and Reed[5] proved that Var(Hn) = O((log log n)2),
but this does not quite confirm Robson's findings. It is the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
STOC 2000 Portland Oregon USA
Copyright ACM 2000 1-58113-184-4/00/5...$5.00

3 purpose of this note to prove that for /3 -- ½ + ~ , we
have:

THEOREM 1. E(H~) = ~ l o g n - / 3 1 o g l o g n + O(1) and
Var(Hn) = O(1) .

R e m a r k By the definition of a, /3 = 3~ 7"g~" The first defi-
nition given is more suggestive of why this value is correct,
as we will see.
For more information on random binary search trees, one
may consult [6],[7], [1], [2], [9], [4], and [8].
R e m a r k After I announced these results, Drmota(unpublished)
developed an alternative proof of the fact that Var(Hn) =
O(1) using completely different techniques. As our two
proofs illuminate different aspects of the problem, we have
decided to submit the journal versions to the same journal
and asked that they be published side by side.

2. A MODEL
If we construct a binary search tree from a permutation
of 1, ..., n and i is the first key in the permutation then:
i appears at the root of the tree, the tree rooted at the
left child of i contains the keys 1, ..., i - 1 and its shape
depends only on the order in which these keys appear in
the permutation, mad the tree rooted at the right child of i
contains the keys i + 1, ..., n and its shape depends only on
the order in which these keys appear in the permutation.
From this observation, one deduces that Hn is also the num-
ber of levels of recursion required when Vazfilla Quicksort
(i.e. the version of Quicksort in which the first element in
the permuation is chosen as the pivot) is applied to a random
permutation of 1, ..., n.
Our observation also allows us to construct Tn from the top
down. To ease our exposition, we think of T,~ as a labelling
of a subtree of T~, the complete infinite binary tree.
We will expose the key associated with each node t of T~.
To underscore the relationship with Quicksort, we refer to
the key at t as the pivot at t. Suppose then that we have
exposed the pivots for some of the nodes forming a subtree
of Too, rooted at the root of T~. Suppose further that for
some node t of T~¢, all of the ancestors of t are in T,~ and
we have chosen their pivots. Then, these choices determine
the set of keys Kt which will appear at the (possibly empty)
subtree of T,~ rooted at t, but will have no effect on the order
in which we expect the keys in Kt to appear. Indeed each
permutation of Kt is equally likely. Thus, each of the keys
in Kt will be equally likely to be the pivot. We let nt be
the number of keys in this set and specify the pivot at t by

479

best-case height

expected depth of node

worst-case height

ST implementations: performance summary

14

implementation
worst case typical case

operations
on keys

search insert search hit insert

sequential search
(unordered list) n n n n equals()

binary search
(ordered array) log n n log n n compareTo()

BST n n log n log n compareTo()

Why not shuffle to ensure
a (probabilistic) guarantee

of time à la quicksort ?O(log n)

3.2 BINARY SEARCH TREES

‣ BSTs

‣ iteration

‣ ordered operations

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Binary search trees: poll 3

In which order does traverse(root) print the keys in the BST?
 
 
 
 
 
 
 

A. A C E H M R S X

B. S E A C R H M X

C. C A M H R E X S

D. S E X A R C H M

16

private void traverse(Node x) {
 if (x == null) return;
 traverse(x.left);
 StdOut.println(x.key);
 traverse(x.right);
}

A
C

E

H
M

R

S
X

root

inorder

preorder

postorder

level order

Inorder traversal

17

output: A C E H M R S X

 print M

 inorder(C)
 print C
 done C

 inorder(A)

inorder(S)
 inorder(E)

 print A

 done A
 print E
 inorder(R)
 inorder(H)
 print H
 inorder(M)

 done M
 done H
 print R
 done R
 done E
 print S
 inorder(X)
 print X
 done X
 done S

X

RA

C H

E

S

M

Inorder traversal

key

key

val

BST with smaller keys

smaller keys, in order larger keys, in order

all keys, in order

BST with larger keys

left right

BST

・Traverse left subtree.

・Enqueue key.

・Traverse right subtree.

Property. Inorder traversal of a BST yields keys in ascending order.

Binary search tree

BST with smaller keys BST with larger keys

key val

BST

Node
left right

18

 public Iterable<Key> keys() {
 Queue<Key> queue = new Queue<Key>();
 inorder(root, queue);
 return queue;
 }

private void inorder(Node x, Queue<Key> queue) {
 if (x == null) return;
 inorder(x.left, queue);
 queue.enqueue(x.key);
 inorder(x.right, queue);
}

add items to a collection that is Iterable
and return that collection

Inorder traversal: running time

Property. Inorder traversal of a binary tree with nodes takes time (and no compares).
Pf. It takes time per node in BST.
 

n Θ(n)
Θ(1)

19

Level-order traversal

Level-order traversal of a binary tree.

・Process root.

・Process children of root, from left to right.

・Process grandchildren of root, from left to right.

・…

M
20

level-order traversal:

T

RA

C H

E

S

M

S E T A R C H

Level-order traversal

Q1. How to compute level-order traversal of a binary tree in time?Θ(n)

queue.enqueue(root);
while (!queue.isEmpty()) {
 Node x = queue.dequeue();
 if (x != null) {
 StdOut.println(x.item);
 queue.enqueue(x.left);
 queue.enqueue(x.right);
 }
}

21

Mlevel-order traversal:

T

RA

C H

E

S

M

S E T A R C H

S

Level-order traversal

Q2. Given the level-order traversal of a BST, how to (uniquely) reconstruct?

Ex. S E T A R C H M

E

22

T

RA

C H

M

needed for PrairieLearn quizzes

3.2 BINARY SEARCH TREES

‣ BSTs

‣ iteration

‣ ordered operations

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Minimum and maximum

Minimum. Smallest key in BST.
Maximum. Largest key in BST.
 
Q. How to find the min / max?
A. Go down left / right spine.

24

Examples of BST order queries

A
C

E

H
M

R

S
X

min()
max()

max()

min()

running time proportional to
depth of node in BST

(but 0 compares)

Floor and ceiling

Floor. Largest key in BST query key.  
Ceiling. Smallest key in BST query key.

≤
≥

25

Examples of BST order queries

A
C

E

H
M

R

S
X

min()
max()

floor(I)

floor(G)
ceiling(T)

Computing the floor

Floor. Largest key in BST query key.  
Ceiling. Smallest key in BST query key.
 
Key idea.

・To compute floor(key) or ceiling(key), search for key.

・Both floor(key) and ceiling(key) are on search path.

・Moreover, as you go down search path, any candidates get better and better.

≤
≥

26

Examples of BST order queries

A
C

E

H
M

R

S
X

min()
max()ceiling(T)

floor(G)

floor(I)

Computing the floor: Java implementation

Invariant 1. The floor is either champ or in subtree rooted at x.
Invariant 2. Node x is in the right subtree of node containing champ.

27

public Key floor(Key key) {
 return floor(root, key, null);
}

private Key floor(Node x, Key key, Key champ) {
 if (x == null) return champ;
 int cmp = key.compareTo(x.key);
 if (cmp < 0) return floor(x.left, key, champ);
 else if (cmp > 0) return floor(x.right, key, x.key);
 else return x.key;
}

key in node x is too large
(floor can’t be in right subtree of x)

key in node x is a candidate for floor
(floor can’t be in left subtree of x)

key in node x is better candidate than champ
(because x is in the right subtree of champ)

Examples of BST order queries

A
C

E

H
M

R

S
X

min()
max()

key is in BST

champ must be floor

assuming champ is not null

BST: ordered symbol table operations summary

28

h = height of BST

worst-case running time of ordered symbol table operations

sequential  
search

binary 
search BST

search Θ(n) Θ(log n) Θ(h)

insert / delete Θ(n) Θ(n) Θ(h)

min / max Θ(n) Θ(1) Θ(h)

floor / ceiling Θ(n) Θ(log n) Θ(h)

rank Θ(n) Θ(log n) Θ(h)

select Θ(n) Θ(1) Θ(h)

ST implementations: summary

implementation

worst case
ordered

ops?
key

interface
search insert

sequential search 
(unordered list) n n equals()

binary search 
(sorted array) log n n ✔ compareTo()

BST n n ✔ compareTo()

red-black BST log n log n ✔ compareTo()

29

next lecture: BST whose height is guarantee to be Θ(log n)

Lecture Slides © Copyright 2025 Robert Sedgewick and Kevin Wayne

Credits

image source license

Inorder Traversal in a BST Silicon Valley S4E5

Binary Tree Daniel Stori

https://www.hbo.com/silicon-valley
http://Binary%20Tree%20Daniel%20Stori%20https://turnoff.us/geek/binary-tree/

A final thought

31

https://turnoff.us/geek/binary-tree/

