A 1 g Or 1 [h 1IMS ROBERT SEDGEWICK | KEVIN WAYNE

2.4 PRIORITY QUEUES

> APlIs
> elementary implementations
> binary heaps

» heapsort

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

2.4 PRIORITY QUEUES

» APls

Algorithms

ROBERT SEDGEWIC K | KEVIN WAYNE

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Collections

A collection is a data type that stores a group of items.

stack PUSH, POP
singly linked list
resizable array
queue ENQUEUE, DEQUEUE
ADD-FIRST, REMOVE-FIRST, doubly linked list
deque .
ADD-LAST, REMOVE-LAST resizable array
priority queue INSERT, DELETE-MAX binary heap
symbol table PuT, GET, DELETE
binary search tree
hash table
set ADD, CONTAINS, DELETE

Priority queue

Collections. Insert and remove items. Which item to remove?

Stack. Remove the item most recently added.
Queue. Remove the item least recently added.

Randomized queue. Remove a random item.

Priority queue. Remove the largest (or smallest) item.

triage in an emergency room
(priority = urgency of wound/illness)

return

operation argument value

insert P
insert Q
insert F

remove max Q
insert X
insert A
insert M

remove max X
insert P
insert L
insert F

remove max P

Max-oriented priority queue API

“bounded type parameter”

/

public class MaxPQ<Key extends Comparable<Key>>

MaxPQ() create an empty priority queue
void 1insert(Key key) inserta key

Key delMax() return and remove a largest key

Note 1. Keys are generic, but must be Comparable.
Note 2. Duplicate keys allowed; de1TMax() removes and returns any largest key.

Performance goal. All ops take O(logn) time; use ®(n) space. < n = # elements in PQ

Min-oriented priority queue API

Analogous to MaxPQ.

public class MinPQ<Key extends Comparable<Key>>

MinPQ() create an empty priority queue
void 1insert(Key key) inserta key

Key delMin() return and remove a smallest key

Warmup client. Sort a stream of integers from standard input.

Priority queue: applications

o Statistics. ' online median in data stream |

« Spam filtering. Bayesian spam filter]

* Graph searching. Dijkstra’s algorithm, Prim’s algorithm]
 Data compression. ' Huffman codes]

* Operating systems. ' load balancing, interrupt handling]
 Computer networks. ' web cache]

 Artificial intelligence. | A* search]

* Discrete optimization. ' bin packing, scheduling]
 Event-driven simulation. ' customers in a line, colliding particles]

G
B .

° L]
..O L]

priority = length of priority = “distance”

riority = event time
best known path to goal board P y

2.4 PRIORITY QUEUES

> elementary implementations

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Priority queue: elementary implementations

Unordered list. Store keys in a singly linked list.

33 ——| 44 —— 22 +—— 11 +—— 55 — 44 '—— aull

first

Performance. INSERT takes ®(1) time; DELETE-MAX takes ®(n) time.

Priority queue: elementary implementations

Ordered array. Store keys in an array in ascending (or descending) order.

ordered array implementation of a MaxPQ

10

Priority queues: poll 1 7

What are the worst-case running times for INSERT and DELETE-MAX, respectively,

in a MAXPQ implemented with an ordered array ?

N\

ignore array resizing

A. ©O(1)and B(n)
B. ©(1)and ®(logn)
C. O(ogn)and B(1)

D. ©®)and (1)

ordered array implementation of a MaxPQ

11

Priority queue: implementations cost summary

Elementary implementations. Either INSERT or DELETE-MAX takes ®(n) time.

implementation INSERT DELETE-MAX

unordered list O(1) On)
ordered array O(n) O(1)
goal O(log n) O(log n)

worst-case running time for MaxPQ with n keys

Challenge. Implement both INSERT and DELETE-MAX efficiently.

Solution. “Somewhat-ordered” array.

2.4 PRIORITY QUEUES

Algorithms » binary heaps

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Complete binary tree

Binary tree. Empty or node with links to two disjoint binary trees (left and right subtrees).

Complete tree. Every level (except possibly the last) is completely filled;

the last level is filled from left to right.

complete binary tree
(n = 16 nodes, height = 4)

Property. Height of complete binary tree with n nodes is | log,n |.

Pf. As you successively add nodes, height increases (by 1) only when n is a power of 2.

14

Priority queues: poll 2

Which is your favorite tree?

Sycamore

Weirwood

15

A complete binary tree in nature (of height 4)

16

Binary heap: representation

Binary heap. Array representation of a heap-ordered complete binary tree.

Heap-ordered tree.
» Keys in nodes.

* Child’s key no larger than parent’s key. 1 °

Array representation. 2 e 3 e
* Indices start at 1. 4 G 5 m 6 Q 7 e

e Take nodes in level order.

8 9 10 11
* No explicit links! G 0 Q @

17

Priority queues: poll 3

Consider the node at index k in a binary heap. Which Java expression produces

the index of its parent?

A. (k-1) /2

B. Kk / 2 (T
C. (k+1) /2 (s ' (R)

D. 2 * k 4 5 6 7

18

Binary heap: properties

Proposition. Largest key is at index 1, which corresponds to root of binary tree.

Proposition. Can use array indices to move up or down tree.

» Parent of key at index k is at index k / 2.

* Children of key at index k are at indices 2*k and 2%k + 1.

19

Binary heap demo

Insertion. Create new node at end of bottom level, then swim it up.

Deletion of the maximum. Exchange key in root node with key in last node, then sink it down.

heap ordered

20

Binary heap: promotion

Scenario. Key in node becomes larger than key in parent’s node.

To eliminate the violation:
 Exchange key in child node with key in parent node.

» Repeat until heap order restored.

private void swim(int k) {
while (k > 1 && less(k/2, k)) {

exch(k, k/2);
k = k/2; M
¥

} parent of node at k is at k/?2

violates heap order

@ (larger key than parent)

21

Binary heap: insertion

Algorithm. Create new node at end of bottom level; then, swim it up.

Cost. At most | + log, n compares.

public void insert(Key x) {

pgl++n] = X;
swim(n) ;

- add key to heap
violates heap order

22

Binary heap: demotion

Scenario. Key in node becomes smaller than one (or both) of keys in childrens’ nodes.

n n u u] ()
To eliminate the violation: / why not smaller child

 Exchange key in parent node with key in larger child’s node.

» Repeat until heap order restored.

private voild sink(int k) { children of node at k violates heap order
' . (smaller than a child)
while (2*k <= n) { are at 2%k and 2*k+1 0
int jJ = 2%k; / / 2@ (R
1f (3 < n & less(3, j+1)) Q 5 @ Q
J++;
1f (!less(k, j)) break; G o
exch(k, j); ’\ (T)
k =733 j is now the index : e
} of the larger child G 5 Q Q

23

Binary heap: deletion of the maximum

Algorithm. Exchange key in root node with key in last node, then sink it down.

Cost. At most 2log, n compares.

remove the maximum
~— key to remove

(S (R
public Key delMax() { m G Q 0

hange k
Key max = pqll]; G e G @ ~— ith oot
exch(l, n--); ol

1
sink(1); (H) = reap ord

heap order
pqln+l] = null; < prevent loitering 9 e
return max;
} oG 2 S
G 0 O T . remove node
from heap

sink down

24

Binary heap: Java implementation

public class MaxPQ<Key extends Comparable<Key>> {
private Key[] a;:
private int n;

public MaxPQ(int capacity) {

a = (Key[]) new Comparable[capacity+1]: « fixed capacity
} (for simplicity)
public void 1nsert(Key key)
public Key deTMax()) PQ ops
private void swim(int k) s P .
orivate void sink(int k)) eap helper functions
private boolean less(int 1, 1nt j) {

return al[i1].compareTo(alj]) < O;
¥ < array helper functions

private void exch(int 1, i1nt j)
{ Key temp = ali]; ali] = aljl; aljl = temp; }

https://algs4.cs.princeton.edu/24pq/MaxPQ.java.html

Priority queue: implementations cost summary

Goal. Implement both INSERT and DELETE-MAX in ®(logn) time.

implementation INSERT DELETE-MAX

unordered list O(1) O(n) O(n)
ordered array O(n) O(1) O(1)
goal @)(log n)) C@(log n)) O(1)

worst-case running time for MaxPQ with n keys

26

Binary heap: considerations

Underflow and overflow.
* Underflow: throw exception if deleting from empty PQ.

* Overflow: add no-arg constructor and use a resizable array.

\

Minimum-oriented priority queue. leads to O(log n) amortized time per op
(how to make worst case?)

 Replace Tess() with greater().

* Implement greater().

Other heap operations.

 Remove an arbltrary element. can implement efficiently with sink() and swim()

* Change the priority of an element. | stay tuned for Prim / Dijkstra]

Immutability of keys.

« Assumption: client does not change keys while they’re on the PQ.

» Best practice: use immutable keys.

N

immutable in Java: String, Integer, Double, ...

27

Priority queue with DELETE-RANDOM

Goal. Design an efficient data structure to support the following API:

* |[NSERT: insert a key.
* DELETE-MAX: return and remove a largest key.
e SAMPLE: return a random key.

 DELETE-RANDOM: return and remove a random key.

28

Multiway heaps

Multiway heaps.
« Complete d-way tree.

* Child’s key no larger than parent’s key.

Property. Height of complete d-way tree on n nodes is ~ log,n.
Property. Children of key at index k at indices 3k — 1, 3k, and 3k + 1; parent at index [(k+ 1)/ 3].

23 24 25

3-way heap

32

Priority queues: poll 5

In the worst case, how many compares to INSERT and DELETE-MAX

in a d-way heap as function of both n and d ?

A. i logdn and ~ lOgdn

B. ~log,n and ~ dlog,n

C. ~dlog,n and ~log,n

D. ~dlog;n and ~dlog,n G @ G

()

O O

33

Priority queue: implementation cost summary

implementation INSERT DELETE-MAX “

unordered list (1) O(n) O(n)
ordered array O(n) O(1) O(1)
binary heap O(log n) O(log n) O(1)
d-ary heap O(log, n) ©(d log, n) O(1) «——— sweetspor: d=4
O(1) O(log n) O(1) «—— seeCOS 423
impossible O(1) O(1) O(1) <«—— whyimpossible ?

worst-case running time for MaxPQ with n keys T amortized

2.4 PRIORITY QUEUES

Algorithms

» heapsort

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Priority queues: poll 6

Which of the following are properties of this sorting algorithm?

public void sort(String[] a) {
int n = a.length;
MinPQ<String> pgq = new MinPQ<String>();

for (int i = 0; i < n; i++)
pq.insert(ali]);

for (int 1 = 0; 1 < n; 1++)
ali] pq.delMin();

A. O(nlogn) compares in the worst case.
B. In-place.
C. Stable.

D. All of the above.

36

Heapsort

Basic plan for in-place sort.
* View input array as a complete binary tree. <——— we’ll assume 1-indexed for now
* Phase 1 (heap construction): build a max-oriented heap.

* Phase 2 (sortdown): repeatedly remove the maximum key. <«—— aversion of selection sort

keys in arbitrary order build max heap sorted result
(in place) (in place)
1
A
°E > E
4 L 5 M 6 O / P

37

Heapsort: top-down heap construction

Phase 1 (top-down heap construction).

* View input array as complete binary tree.

* |nsert keys into a max heap, one at a time.

before inserting X

swim(6)

max heap untouched

after inserting X

max heap

untouched

38

Heapsort: sortdown

Phase 2 (sortdown).
* Remove the maximum, one at a time.

* Leave in array (instead of nulling out).

before deleting P

exch(1, 7)
sink(1)

1 2 3 4 5 6 /

A
N— AN J
v Y

max heap final sorted order

after deleting P

1 3 4 6
E A E P
~ — N
max heap final sorted order

39

Heapsort: Java implementation

public class HeapTopDown {

public static void sort(Comparable[] a) {

int n = a.length;
for (int k = 1; k <= n; k++)
swim(a, k);

int k = n;

while (k > 1) {
exch(a, 1, k--);
sink(a, 1, k);

private

{

private

{

private

{

private

{

static void sink(Comparable[] a, 1nt k, 1nt n)

¥

static void swim(Comparable|[] a, 1nt k)

¥

but make static
(and pass arguments a[] and n)

static boolean less(Comparable[] a, int 1, 1nt j)

¥

static void exch(Object[] a, int 1, 1nt j)

} but convert from 1-based
indexing to 0-base indexing

40

https://algs4.cs.princeton.edu/24pq/HeapTopDown.java.html

Heapsort: mathematical analysis

Proposition. Heapsort uses only ®(1) extra space.

Proposition. Heapsort makes < 3nlog,n compares (and < 2nlog,n exchanges).
« Top-down heap construction: < nlog,n compares (and exchanges).

« Sortdown: < 2nlog,n compares (and < nlog,n exchanges).

Bottom-up heap construction. Successively building larger heap from smaller ones.

Proposition. Makes < 2n compares (and < n exchanges).

goal: T-node heap ~,

3-node heap \ /// \\\\\ / 3-node heap

7

41

Heapsort: context

Significance. In-place sorting algorithm with ®(nlog n) worst-case running time.
 Mergesort: no, ®(n) extra space. <«— in-place merge possible; not practical
. QUiCkSOI’tZ no, @(nz) time In worst case. «<— O(nlogn) worst-case possible for quicksort,

H t | but not practical
° eapsort. yes!

Bottom line. Heapsort is optimal for both time and space, but:
* |Inner loop longer than quicksort’s.
* Not stable.

42

Introsort

Goal. As fast as quicksort in practice; in place; ®(nlogn) worst case.

Introsort.
 Run quicksort.
« Cutoff to heapsort if function-call stack depth exceeds 2 log, n.

« Cutoff to insertion sort for n < 16.

N

THE c++
STANDARD Microsoft® 1
TEMPLATE N E T

LIBRARY

FJ. PLAUGER
ALEXANDER A. STEPANQV
MENG LEE
DAVID R. MUSSER

In the wild. C++ STL, Microsoft .NET Framework, Go.

43

Sorting algorithms: summary

inplace? stable? typical remarks

selection v s 12 15 n? s n? n exchanges

use for small n

v \'4 1/ 172 14 12
" An 2 or partially ordered
1 :
v Y% nlog,n nlog, n nlog, n O(n log n) guarantee,
stable
v n nlog,n nlog,n improves n.iei."gesort
when pre-existing order
v nlog, n 2 ln n 1 2 O(n log n) probc.zbilistic.guarantee;
fastest in practice
' icksort
3-way quick v " 2 nln n Y 2 improves ?ulc sor
when duplicate keys
v 3In on 10g2 n 2n 10g2 n O(n 10g n) guarantee,
in-place
4 4 n nlog,n nlog,n holy sorting grail

number of compares to sort an array of n elements (tilde notation)

Credits

image source license
Emergency Room Triage unknown
Car GPS Adobe Stock Education License
Joshua Trees Adobe Stock Education License
Sycamore Trees Alexey Sergeev by author
Weirwood Tree AziKun's Anime
East African Doum Palm Shlomit Pinter by author
The Peter Principle Sketchplanations CCBY-NC40
Computer and Supercomputer New York Times

Lecture Slides © Copyright 2025 Robert Sedgewick and Kevin Wayne

https://stock.adobe.com/images/navigation-system-gps-3d/35938601
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/purple-and-blue-sunrise-joshua-tree-national-park/306220316
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://www.asergeev.com/pictures/archives/compress/2007/580/05.htm
https://www.etsy.com/listing/1759768501/got-weirwood-tree-the-wall-three-dragons
https://shlomitpinter.wixsite.com/shlomit
https://sketchplanations.com/the-peter-principle
https://creativecommons.org/licenses/by-nc/4.0/
https://www.nytimes.com/interactive/2021/09/03/climate/bitcoin-carbon-footprint-electricity.html

A final thought

