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A collection is a data type that stores a group of items.

data type core operations data structure

stack PUSH, POP
singly linked list
resizable array

queue ENQUEUE, DEQUEUE

deque
ADD-FIRST, REMOVE-FIRST, 
ADD-LAST, REMOVE-LAST

doubly linked list
resizable array

priority queue INSERT, DELETE-MAX binary heap

symbol table PUT, GET, DELETE
binary search tree

hash table
set ADD, CONTAINS, DELETE

Collections

3



Priority queue

Collections.  Insert and remove items. Which item to remove? 
 
Stack.  Remove the item most recently added.  
Queue.  Remove the item least recently added. 
Randomized queue.  Remove a random item. 
 
Priority queue.  Remove the largest (or smallest) item.
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P          1     P                        P
Q          2     P  Q                     P  Q
E          3     P  Q  E                  E  P  Q  
      Q    2     P  E                     E  P
X          3     P  E  X                  E  P  X
A          4     P  E  X  A               A  E  P  X
M          5     P  E  X  A  M            A  E  M  P  X
      X    4     P  E  M  A               A  E  M  P
P          5     P  E  M  A  P            A  E  M  P  P
L          6     P  E  M  A  P  L         A  E  L  M  P  P
E          7     P  E  M  A  P  L  E      A  E  E  L  M  P  P
      P    6     E  M  A  P  L  E         A  E  E  L  M  P   

insert
insert
insert

remove max
insert
insert
insert

remove max
insert
insert
insert

remove max

operation  argument
return
value

contents
(unordered)

contents
(ordered)size

A sequence of operations on a priority queue

triage in an emergency room 
(priority = urgency of wound/illness)



Max-oriented priority queue API

Note 1.  Keys are generic, but must be Comparable. 
Note 2.  Duplicate keys allowed; delMax() removes and returns any largest key. 
Performance goal.  All ops take  time; use  space.O(log n) Θ(n)
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“bounded type parameter”

public class MaxPQ<Key extends Comparable<Key>>

MaxPQ() create an empty priority queue

void insert(Key key) insert a key

Key delMax() return and remove a largest key

Key max() return a largest key

boolean isEmpty() is the priority queue empty?

int size() number of keys in the priority queue

n = # elements in PQ



Min-oriented priority queue API

Analogous to MaxPQ.  
 
 
 
 
 
 
 
 
 
 
 
 

Warmup client.  Sort a stream of integers from standard input.
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public class MinPQ<Key extends Comparable<Key>>

MinPQ() create an empty priority queue

void insert(Key key) insert a key

Key delMin() return and remove a smallest key

Key min() return a smallest key

boolean isEmpty() is the priority queue empty?

int size() number of keys in the priority queue



Priority queue:  applications

・Statistics.   [ online median in data stream ] 

・Spam filtering.  [ Bayesian spam filter ] 

・Graph searching.  [ Dijkstra’s algorithm, Prim’s algorithm ] 

・Data compression.  [ Huffman codes ] 

・Operating systems.  [ load balancing, interrupt handling ] 

・Computer networks.  [ web cache ] 

・Artificial intelligence.  [ A* search ] 

・Discrete optimization.  [ bin packing, scheduling ] 

・Event-driven simulation. [ customers in a line, colliding particles ]

7

priority = length of
best known path

priority = event time
priority = “distance”

to goal board
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Priority queue:  elementary implementations

Unordered list.  Store keys in a singly linked list. 
 
 
 
 
 
 
 
 
 
 
 
Performance.  INSERT takes  time; DELETE-MAX takes  time.Θ(1) Θ(n)
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first

44 22 11 55 44 null33

DELETE-MAX in a singly linked list



Priority queue:  elementary implementations

Ordered array.  Store keys in an array in ascending (or descending) order. 

10

0 1 2 3 4 5 6 7 8 9 10

11 22 33 44 44 55 99

ordered array implementation of a MaxPQ

 n

a[]



Priority queues:  poll 1

What are the worst-case running times for INSERT and DELETE-MAX, respectively,  
in a MAXPQ implemented with an ordered array ?

A.  and  

B.  and  

C.  and  

D.  and 

Θ(1) Θ(n)

Θ(1) Θ(log n)

Θ(log n) Θ(1)

Θ(n) Θ(1)
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ignore array resizing

0 1 2 3 4 5 6 7 8 9 10

11 22 33 44 44 55 99

ordered array implementation of a MaxPQ

 n

a[]



Priority queue:  implementations cost summary

Elementary implementations.  Either INSERT or DELETE-MAX takes  time.  
 
 
 
 
 
 
 
 
 
 
 
 

Challenge.  Implement both INSERT and DELETE-MAX efficiently. 
Solution.  “Somewhat-ordered” array.

Θ(n)
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implementation INSERT DELETE-MAX

unordered list Θ(1) Θ(n)

ordered array Θ(n) Θ(1)

goal Θ(log n) Θ(log n)

worst-case running time for MaxPQ with n keys
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Complete binary tree

Binary tree.  Empty or node with links to two disjoint binary trees (left and right subtrees). 

Complete tree.  Every level (except possibly the last) is completely filled;  
the last level is filled from left to right. 
 
 
 
 
 
 
 
 
 
 
Property.  Height of complete binary tree with  nodes is . 
Pf.  As you successively add nodes, height increases (by ) only when  is a power of .

n ⌊ log2 n ⌋
1 n 2

14

(n = 16 nodes, height = 4)
complete binary tree

floor function: 
largest integer ≤ log2 n



Priority queues:  poll 2

Which is your favorite tree?
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Joshua

A.

B.

Sycamore

East African Doum Palm

C.

Weirwood

D.



A complete binary tree in nature (of height 4)
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Binary heap:  representation

Binary heap.  Array representation of a heap-ordered complete binary tree. 
 
Heap-ordered tree. 

・Keys in nodes. 

・Child’s key no larger than parent’s key. 
 
Array representation. 

・Indices start at . 

・Take nodes in level order. 

・No explicit links!

1
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– T S R P N O A E I H Ga[]



Priority queues:  poll 3

Consider the node at index k in a binary heap.  Which Java expression produces  
the index of its parent?  

A.  (k - 1) / 2 

B.  k / 2 

C.  (k + 1) / 2 

D.  2 * k
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0 1 2 3 4 5 6 7 8 9 10 11

– T S R P N O A E I H Ga[]

1

2 3

4 5 6 7

8 9 10 11

R

N O AP

E I H

S

T

G

if used 0-based
indexing



Binary heap:  properties

Proposition.  Largest key is at index 1, which corresponds to root of binary tree. 
 
Proposition.  Can use array indices to move up or down tree. 

・Parent of key at index k is at index k / 2. 

・Children of key at index k are at indices 2*k and 2*k + 1.
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0 1 2 3 4 5 6 7 8 9 10 11

– T S R P N O A E I H Ga[]
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Binary heap demo

Insertion.  Create new node at end of bottom level, then swim it up. 
Deletion of the maximum.  Exchange key in root node with key in last node, then sink it down.
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T P R N H O A E I G

R

H O AN

E I G

P

T

heap ordered



Scenario.  Key in node becomes larger than key in parent’s node. 
 
To eliminate the violation: 

・Exchange key in child node with key in parent node. 

・Repeat until heap order restored.
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Bottom-up reheapify (swim)

Binary heap:  promotion
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private void swim(int k) { 
   while (k > 1 && less(k/2, k)) { 
      exch(k, k/2); 
      k = k/2; 
   } 
} parent of node at k is at k/2
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Binary heap:  insertion

Algorithm.  Create new node at end of bottom level; then, swim it up. 
Cost.  At most  compares.1 + log2 n

Heap operations
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public void insert(Key x) { 
   pq[++n] = x; 
   swim(n); 
}



Binary heap:  demotion

Scenario.  Key in node becomes smaller than one (or both) of keys in childrens’ nodes. 
 
To eliminate the violation: 

・Exchange key in parent node with key in larger child’s node. 

・Repeat until heap order restored.  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private void sink(int k) { 
   while (2*k <= n) { 
      int j = 2*k; 
      if (j < n && less(j, j+1)) 
         j++; 
      if (!less(k, j)) break; 
      exch(k, j); 
      k = j; 
   } 
}

children of node at k 
are at 2*k and 2*k+1

j is now the index
of the larger child
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why not smaller child ?
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Binary heap:  deletion of the maximum

Algorithm.  Exchange key in root node with key in last node, then sink it down. 
Cost.  At most  compares. 2 log2 n
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public Key delMax() { 
   Key max = pq[1]; 
   exch(1, n--); 
   sink(1); 
   pq[n+1] = null; 
   return max; 
} 

prevent loitering

Heap operations
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public class MaxPQ<Key extends Comparable<Key>> { 
   private Key[] a; 
   private int n; 

   public MaxPQ(int capacity) { 
      a = (Key[]) new Comparable[capacity+1]; 
   } 
 
   public void insert(Key key)  // see previous code 
   public Key delMax()          // see previous code 

   private void swim(int k)     // see previous code 
   private void sink(int k)     // see previous code 

   private boolean less(int i, int j) { 
      return a[i].compareTo(a[j]) < 0; 
   } 
   
   private void exch(int i, int j) 
   {  Key temp = a[i]; a[i] = a[j]; a[j] = temp;  } 
 
}

Binary heap:  Java implementation 

25

array helper functions

heap helper functions

PQ ops

fixed capacity
( for simplicity)

https://algs4.cs.princeton.edu/24pq/MaxPQ.java.html

https://algs4.cs.princeton.edu/24pq/MaxPQ.java.html


Priority queue:  implementations cost summary

Goal.  Implement both INSERT and DELETE-MAX in  time.  Θ(log n)

26

implementation INSERT DELETE-MAX MAX

unordered list Θ(1) Θ(n) Θ(n)

ordered array Θ(n) Θ(1) Θ(1)

goal Θ(log n) Θ(log n) Θ(1)

worst-case running time for MaxPQ with n keys



Binary heap:  considerations

Underflow and overflow. 

・Underflow:  throw exception if deleting from empty PQ. 

・Overflow:  add no-arg constructor and use a resizable array. 
 
Minimum-oriented priority queue. 

・Replace less() with greater(). 

・Implement greater(). 
 
Other heap operations. 

・Remove an arbitrary element. 

・Change the priority of an element. 
 
Immutability of keys.  

・Assumption:  client does not change keys while they’re on the PQ. 

・Best practice:  use immutable keys.

27

can implement efficiently with sink() and swim() 
[ stay tuned for Prim / Dijkstra ]

leads to  amortized time per op
(how to make worst case?)

O(log n)

immutable in Java:  String, Integer, Double, …



Priority queue with DELETE-RANDOM

Goal.  Design an efficient data structure to support the following API: 

・INSERT: insert a key. 

・DELETE-MAX: return and remove a largest key. 

・SAMPLE: return a random key.  

・DELETE-RANDOM: return and remove a random key.

28

Midterm e xam 

Spr ing 2012



Multiway heaps

Multiway heaps. 

・Complete -way tree. 

・Child’s key no larger than parent’s key. 
 
Property.  Height of complete -way tree on n nodes is . 
Property.  Children of key at index  at indices , , and ; parent at index .

d

d ∼ logd n
k 3k − 1 3k 3k + 1 ⌊(k + 1) / 3⌋

32
3-way heap
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Priority queues:  poll 5

In the worst case, how many compares to INSERT and DELETE-MAX  
in a -way heap as function of both  and  ?

A.    and   

B.    and   

C.     and    

D.    and  

d n d

∼ logd n ∼ logd n

∼ logd n ∼ d logd n

∼ d logd n ∼ logd n

∼ d logd n ∼ d logd n
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Y

J

E FH

X

R VS

P

C ML

INSERT calls swim()
DELETE-MAX calls sink()



Priority queue:  implementation cost summary
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implementation INSERT DELETE-MAX MAX

unordered list Θ(1) Θ(n) Θ(n)

ordered array Θ(n) Θ(1) Θ(1)

binary heap Θ(log n) Θ(log n) Θ(1)

d-ary heap Θ(logd n) Θ(d logd n) Θ(1)

Fibonacci † Θ(1) Θ(log n) Θ(1)

impossible Θ(1) Θ(1) Θ(1)

worst-case running time for MaxPQ with n keys

why impossible ?

sweet spot:  d = 4

see COS 423

† amortized
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Priority queues:  poll 6

Which of the following  are properties of this sorting algorithm? 

 
 
 
 
 
 
 

A.   compares in the worst case. 

B.  In-place. 

C.  Stable. 

D.  All of the above.

Θ(n log n)

36

public void sort(String[] a) { 
    int n = a.length; 
    MinPQ<String> pq = new MinPQ<String>(); 

    for (int i = 0; i < n; i++) 
        pq.insert(a[i]); 

    for (int i = 0; i < n; i++) 
        a[i] = pq.delMin(); 
}

a heap is an array, so maybe can do in-place
(but this code uses an explicit MinPQ, which allocates its own internal array)

 compares≤ n log2 n

 compares≤ 2n log2 n



Heapsort

Basic plan for in-place sort. 

・View input array as a complete binary tree. 

・Phase 1 (heap construction):  build a max-oriented heap. 

・Phase 2 (sortdown):  repeatedly remove the maximum key.

37

keys in arbitrary order
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a version of selection sort
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Heapsort:  top-down heap construction

Phase 1 (top-down heap construction).  

・View input array as complete binary tree.  

・Insert keys into a max heap, one at a time.
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before inserting X
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Heapsort:  sortdown

Phase 2 (sortdown). 

・Remove the maximum, one at a time. 

・Leave in array (instead of nulling out).
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before deleting P
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exch(1, 7)
sink(1)



public class HeapTopDown { 
 
   public static void sort(Comparable[] a) { 

      // top-down heap construction 
      int n = a.length; 
      for (int k = 1; k <= n; k++) 
         swim(a, k); 

      // sortdown 
      int k = n; 
      while (k > 1) { 
         exch(a, 1, k--); 
         sink(a, 1, k); 
      } 

   } 
 
   ... 
}

Heapsort:  Java implementation

40

https://algs4.cs.princeton.edu/24pq/HeapTopDown.java.html

private static void sink(Comparable[] a, int k, int n) 
{  /* as before */  } 
 
private static void swim(Comparable[] a, int k) 
{  /* as before */  } 
 

private static boolean less(Comparable[] a, int i, int j) 
{  /* as before */  } 
 
private static void exch(Object[] a, int i, int j) 
{  /* as before */  } but convert from 1-based 

indexing to 0-base indexing

but make static
(and pass arguments a[] and n)

https://algs4.cs.princeton.edu/24pq/HeapTopDown.java.html


Heapsort:  mathematical analysis

Proposition.  Heapsort uses only  extra space. 
 
Proposition.  Heapsort makes  compares (and   exchanges). 

・Top-down heap construction:   compares (and exchanges). 

・Sortdown:   compares (and  exchanges). 
 
 
Bottom-up heap construction.  [see book]  Successively building larger heap from smaller ones. 
Proposition.  Makes  compares (and  exchanges).

Θ(1)

≤ 3n log2 n ≤ 2n log2 n
≤ n log2 n

≤ 2n log2 n ≤ n log2 n

≤ 2n ≤ n

41
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goal: 7-node heap



Heapsort:  context

Significance.  In-place sorting algorithm with  worst-case running time. 

・Mergesort: no,  extra space. 

・Quicksort: no,  time in worst case. 

・Heapsort: yes! 
 
 
 
Bottom line.  Heapsort is optimal for both time and space, but: 

・Inner loop longer than quicksort’s. 

・Not stable.

Θ(n log n)
Θ(n)
Θ(n2)

42

 worst-case possible for quicksort,
but not practical
Θ(n log n)

in-place merge possible; not practical



Introsort

Goal.  As fast as quicksort in practice; in place;  worst case. 
 
Introsort. 

・Run quicksort. 

・Cutoff to heapsort if function-call stack depth exceeds . 

・Cutoff to insertion sort for . 
 
 
 
 
 
 
 
 
 
In the wild.  C++ STL, Microsoft .NET Framework, Go.

Θ(n log n)

2 log2 n
n ≤ 16

43



Sorting algorithms:  summary

44

inplace? stable? best typical worst remarks

selection ✔ ½ n2 ½ n2 ½ n2 n exchanges

insertion ✔ ✔ n ¼ n2 ½ n2 use for small n
or partially ordered

merge ✔ ½ n log2 n n log2 n n log2 n Θ(n log n) guarantee;
stable

timsort ✔ n n log2 n n log2 n improves mergesort
when pre-existing order

quick ✔ n log2 n 2 n ln n ½ n2 Θ(n log n) probabilistic guarantee; 
fastest in practice

3-way quick ✔ n 2 n ln n ½ n2 improves quicksort 
when duplicate keys

heap ✔ 3 n 2 n log2 n 2 n log2 n Θ(n log n) guarantee;
in-place

? ✔ ✔ n n log2 n n log2 n holy sorting grail

number of compares to sort an array of n elements (tilde notation)
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A final thought
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