
ROBERT SEDGEWICK | KEVIN WAYNE

F O U R T H E D I T I O N

Algorithms

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

Last updated on 9/23/25 8:14  AM

2.3 QUICKSORT

‣ quicksort

‣ selection

‣ duplicate keys

‣ system sorts

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Two classic sorting algorithms: mergesort and quicksort

Critical components in the world’s computational infrastructure.

・Full scientific understanding of their properties has enabled us 
to develop them into practical system sorts.

・Quicksort honored as one of the top 10 algorithms of 20th century in STEM.
 
 
Mergesort. [last lecture]
 
 
 
 
Quicksort. [this lecture]

2

…

…

A brief history

Tony Hoare.

・Invented quicksort in 1960 to translate Russian into English.

・Later learned Algol 60 (and recursion) to implement it.  
 
 
 
 
 
 
 
 

Bob Sedgewick.

・Refined and popularized quicksort in 1970s.

・Analyzed many versions of quicksort.

3

Tony Hoare 
1980 Turing Award

Bob Sedgewick

4

A L G O R I T H M 61
P R O C E D U R E S F O R R A N G E A R I T H M E T I C
ALLAN GIBB*
U n i v e r s i t y of A l b e r t a , C a l g a r y , A l b e r t a , C a n a d a

b e g i n
p r o c e d u r e RANGESUM (a, b, c, d, e, f);

rea l a , b , c , d , e , f ;
c o m m e n t The term "range number" was used by P. S. Dwyer,
Linear Computations (Wiley, 1951). Machine procedures for
range ari thmetic were developed about 1958 by Ramon Moore,
"Automatic Error Analysis in Digital Computa t ion ," LMSD
Report 48421, 28 Jan. 1959, Lockheed Missiles and Space Divi-
sion, Palo Alto, California, 59 pp. If a _< x -< b and c ~ y ~ d,
then RANGESUM yields an interval [e, f] such tha t e =< (x + y)

f. Because of machine operation (truncation or rounding) the
machine sums a -4- c and b -4- d may not provide safe end-points
of the output interval. Thus RANGESUM requires a non-local
real procedure ADJUSTSUM which will compensate for the
machine ari thmetic. The body of ADJUSTSUM will be de-
pendent upon the type of machine for which it is wri t ten and so
is not given here. (An example, however, appears below.) I t
is assumed tha t ADJUSTSUM has as parameters real v and w,
and integer i, and is accompanied by a non-local real procedure
CORRECTION which gives an upper bound to the magnitude
of the error involved in the machine representat ion of a number.
The output ADJUSTSUM provides the left end-point of the
output interval of RANGESUM when ADJUSTSUM is called
with i = --1, and the right end-point when called with i = 1
The procedures RANGESUB, RANGEMPY, and RANGEDVD
provide for the remaining fundamental operations in range
ari thmetic. RANGESQR gives an interval within which the
square of a range nmnber must lie. RNGSUMC, RNGSUBC,
RNGMPYC and RNGDVDC provide for range ari thmetic with
complex range arguments, i.e. the real and imaginary parts
are range numbers~
b e g i n

e := ADJUSTSUM (a, c, - 1) ;
f : = ADJUSTSUM (b, d, 1)

end RANGESUM;
p r o c e d u r e RANGESUB (a, b, c, d, e, f) ;

real a, b ,c , d ,e , f;
c o m m e n t RANGESUM is a non-local procedure;
b e g i n

RANGESUM (a, b, - d , --c, e, f)
end RANGESUB ;
p r o c e d u r e RANGEMPY (a, b, c, d, e, f);

real a, b, c, d, e, f;
c o m m e n t ADJUSTPROD, which appears at the end of this
procedure, is analogous to ADJUSTSUM above and is a non-
local real procedure. MAX and MIN find the maximum and
minimum of a set of real numbers and are non-local;
b e g i n

rea l v, w;
i f a < 0 A c => 0 t h e n

1: b e g i n
v : = c ; c : = a ; a : = v ; w : = d ; d : = b ; b : = w

end 1;
i f a => O t h e n

2: b e g i n
i f c >= 0 t h e n

3 :beg in
e : = a X e ; f := b X d ; g o t o 8

end 3 ;
e : = b X c ;
i f d ~ 0 t h e n

4: b e g i n
f : = b X d ; g o t o 8

end 4;
f : = a X d ; g o t o 8

5: end 2;
i f b > 0 t h e n

6: b e g i n
i f d > 0 t h e n
b e g i n

e := MIN(a X d, b X c);
f : = MAX(a X c , b X d); go t o 8

e n d 6;
e : = b X c; f : = a X c; go t o 8

end 5;
f : = a X c ;
i f d _-< O t h e n

7: b e g i n
e : = b X d ; g o t o 8

end 7 ;
e : = a X d ;

8: e : = ADJUSTPROD (e, - 1) ;
f := ADJUSTPROD (f, 1)

end RANGEMPY;
p r o c e d u r e RANGEDVD (a, b, c, d, e, f) ;

real a, b, c, d, e, f;
c o m m e n t If the range divisor includes zero the program
exists to a non-local label "zerodvsr" . RANGEDVD assumes a
non-local real procedure ADJUSTQUOT which is analogous
(possibly identical) to ADJUSTPROD;
b e g i n

i f c =< 0 A d ~ 0 t h e n go to zer0dvsr;
i f c < 0 t h e n

1: b e g i n
i f b > 0 t h e n

2: b e g i n
e : = b /d ; go t o 3

e n d 2;
e : = b /c ;

3: i f a -->_ 0 t h e n
4: b e g i n

f : = a /c ; go to 8
e n d 4;
f : = a /d ; go to 8

end 1 ;
i f a < 0 t h e n

5: b e g i n
e : = a/c; go t o 6

end 5 ;
e : = a /d ;

6: i f b > 0 t h e n
7: b e g i n

f : = b/c ; go t o 8
e n d 7 ;
f : = b /d ;

8: e := ADJUSTQUOT (e, - 1) ; f : = ADJUSTQUOT (f,1)
end RANGEDVD ;
p r o c e d u r e RANGESQR (a, b, e, f);

rea l a, b, e, f;
c o m m e n t ADJUSTPROD is a non-10cal procedure;
b e g i n

i f a < 0 t h e n

C o m m u n i c a t i o n s o f t h e &CM 319

n u m b e r) . 9.9 X 10 45 is u sed to r e p r e s e n t inf in i ty . I m a g i n a r y
v a l u e s of x m a y no t be n e g a t i v e a n d reM v a l u e s of x m a y n o t be
s m a l l e r t h a n 1.

Va lues of Qd~'(x) m a y be ca l cu l a t ed eas i ly by h y p e r g e o m e t r i c
ser ies if x is n o t too sma l l no r (n - m) too large. Q~m(x) can be
c o m p u t e d f rom an a p p r o p r i a t e se t of v a l u e s of Pnm(X) if X is nea r
1.0 or ix is n ea r 0. Loss of s ign i f i can t d ig i t s occurs for x as sm a l l as
1.1 if n is l a rge r t h a n 10. Loss of s ign i f i can t d ig i t s is a m a j o r diffi-
cu l t y in u s i n g finite p o l y n o m i M r e p r e s e n t a t i o n s also if n is l a rge r
t h a n m. How ev e r , Q L E G h a s been t e s t e d in reg ions of x a n d n
b o t h large a n d smal l ;
p r o c e d u r e Q L E G (m , n m a x , x, ri, R, Q); v a l u e In, n m a x , x, ri ;

r e a l In, m n a x , x, ri ; r e a l a r r a y R , Q;
b e g i n r e a l t , i, n, q0, s ;

n : = 20;
i f n m a x > 13 t h e n

n : = n m a x + 7 ;
i f ri = 0 t h e n

b e g i n i f m = 0 t h e n
Q[0] : = 0.5 X 10g((x + 1) / (x - 1))
e l s e

b e g i n t : = - - 1 . 0 / s q r t (x X x - - 1);
q0 : = 0;
Q[O] : = t ;
fo r i : = 1 s t e p 1 u n t i l m d o

b e g i n s : = (x + x) X (i - 1) X t
×Q [0] + (3 i - i× i - 2)×q 0 ;
q0 : = Q[0];
Q[0] : = s e n d e n d ;

i f x = 1 t h e n
Q[0] : = 9.9 I" 45;

R[n + 1] : = x - s q r t (x X x - 1);
for i : = n s t e p --1 u n t i l 1 d o

R[i] : = (i + m) / ((i + i + 1) X x
+ (m - i - 1) X R [i + l]) ;

go to t h e e n d ;
i f m = 0 t h e n

b e g i n i f x < 0.5 t b e n
Q[0] : = a r c t a n (x) - 1.5707963 e l s e
Q[0] : = - a r e t a n (1 / x) e n d e l s e

b e g i n t : = 1 / s q r t (x X x + 1);
q0 : = 0;
q[0] := t;
f o r i : = 2 s t e p 1 u n t i l m do

b e g i n s : = (x + x) X (i -- 1) X t X Q[0I
+ (3 i + i X i -- 2) × q0;
qO : = Q[0];
Q[0] := s e n d e n d ;

R[n + 1] : = x - s q r t (x × x + 1);
for i : = n s t e p - 1 u n t i l 1 do

R[i] : = (i + m) / ((i -- m + 1) × R[i + 1]
- - (i + i + 1) X x);

f o r i : = 1 s t e p 2 u n t i l n m a x do
Ril l : = -- Ri l l ;

t h e : f o r i : = 1 s t e p 1 u n t i l n n m x d o
Q[i] : = Q[i - 1] X R[i]

e n d Q L E G ;

* T h i s p r o c e d u r e was deve loped in p a r t u n d e r t he s p o n s o r s h i p
of t h e Air Force C a m b r i d g e R e s e a r c h C en t e r .

ALGORITHM 63
PARTITION
C. A. R. HOARE
Elliott Brothers Ltd., Borehamwood, Hertfordshire, Eng.
p r o c e d u r e p a r t i t i o n (A , M , N , I , J) ; v a l u e M , N ;

a r r a y A; i n t e g e r M , N , 1 , J ;

c o n u n e n t I and J are o u t p u t va r i ab le s , a n d A is t h e a r r a y (wi th
s u b s c r i p t b o u n d s M : N) wh ich is o p e r a t e d u p o n by th i s p rocedure .
P a r t i t i o n t a k e s t h e va lue X of a r a n d o m e l e m e n t of the a r r a y A,
a n d r e a r r a n g e s t he va lue s of t he e l e m e n t s of t he a r r a y in s u c h a
w ay t h a t t he r e ex is t i n t ege r s I a n d J w i t h t he fo l lowing p ro p e r t i e s :

M _-< J < I =< N p r o v i d e d M < N
A[R] =< X f o r M =< R _-< J
A[R] = X f o r J < R < I
A[R] ~ X f o r I =< R ~ N

T h e p r oc e du r e uses an in tege r p roc edu re r a n d o m (M,N) wh ich
chooses e q u i p r o b a b l y a r a n d o m in t ege r F b e t w e e n M an d N, a n d
also a p roc edu re exchange , wh i ch e x c h a n g e s t he v a lu e s of i t s two
p a r a m e t e r s ;
b e g i n r e a l X ; i n t e g e r F;

F : = r a n d o m (M , N) ; X : = A[F];
I : = M ; J : = N ;

up : for I : = I s t e p 1 u n t i l N d o
i f X < A [I] t h e n g o to do wn ;

I : = N ;
down: f o r J : = J s t e p --1 u n t i l M d o

i f A [J] < X t h e n g o t o c h a n g e ;
J : = M ;

c ha nge : i f I < J t h e n b e g i n e x c h a n g e (A[IL A[J]) ;
I : = I + 1 ; J : = J - 1;
g o to up

e n d
e l s e i f [< F t h e n b e g i n e x c h a n g e (A[IL A[F]) i

I : = I + l
e n d

e l s e i f F < J t l l e n b e g i n e x c h a n g e (A[F], A[J]) ;
J : = J - 1

e n d ;
e n d p a r t i t i o n

ALGORITHM 64
QUICKSORT
C. A. R. HOARE
Elliott Brothers Ltd., Borehamwood, Hertfordshire, Eng.

p r o c e d u r e q u i c k s o r t (A , M , N) ; v a l u e M , N ;
a r r a y A; i n t e g e r M , N ;

c o m m e n t Q u i c k s o r t is a v e r y f a s t a n d c o n v e n i e n t m e t h o d of
s o r t i n g an a r r a y in t he r a n d o m - a c c e s s s tore of a c o m p u t e r . T h e
en t i r e c o n t e n t s of t he s tore m a y be so r t ed , s ince no e x t r a space is
r equ i red . T h e a ve r age n u m b e r of c o m p a r i s o n s m a d e is 2 (M - - N) In
(N - - M) , a n d t he ave r age n m n b e r of e x c h a n g e s is one s ix th th i s
a m o u n t . Su i t ab le r e f inemen t s of th i s m e t h o d will be des i rab le for
i t s i m p l e m e n t a t i o n on any a c tua l c o m p u t e r ;
b e g i n i n t e g e r 1,J ;

i f M < N t h e n b e g i n p a r t i t i o n (A , M , N , I , J) ;
q u i c k s o r t (A,M,J) ;
q u i c k s o r t (A, I, N)

e n d
e n d q u i e k s o r t

ALGORITHM 65
FIND
C. A. R. HOARE
Elliott Brothers Ltd., Borehamwood, Hertfordshire, Eng.
p r o c e d u r e f ind (A , M , N , K) ; v a l u e M , N , K ;

a r r a y A; i n t e g e r M , N , K ;
c o m m e n t F i n d will a s s ign to A [K] t he va lu e wh ich it would
h a v e if t he a r r a y A [M:N] h a d been sor ted . T h e a r r a y A will be
p a r t l y so r t ed , a n d s u b s e q u e n t en t r i e s will be f a s t e r t h a n t h e f i rs t ;

C o m m u n i c a t i o n s o f t h e A C M 321

Programming
Techniques

S. L. Graham, R. L. Rivest
Editors

Implementing
Quicksort Programs
Robert Sedgewick
Brown University

This paper is a practical study of how to implement
the Quicksort sorting algorithm and its best variants on
real computers, including how to apply various code
optimization techniques. A detailed implementation
combining the most effective improvements to
Quicksort is given, along with a discussion of how to
implement it in assembly language. Analytic results
describing the performance of the programs are
summarized. A variety of special situations are
considered from a practical standpoint to illustrate
Quicksort's wide applicability as an internal sorting
method which requires negligible extra storage.

Key Words and Phrases: Quicksort, analysis of
algorithms, code optimization, sorting

CR Categories: 4.0, 4.6, 5.25, 5.31, 5.5

Introduction

One of the most widely studied practical problems in
computer science is sorting: the use of a computer to put
files in order. A person wishing to use a computer to sort
is faced with the problem of determining which of the
many available algorithms is best suited for his purpose.
This task is becoming less difficult than it once was for
three reasons. First, sorting is an area in which the
mathematical analysis of algorithms has been particu-
larly successful: we can predict the performance of many
sorting methods and compare them intelligently. Second,
we have a great deal of experience using sorting algo-

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

This work was supported in part by the Fannie and John Hertz
Foundation and in part by NSF Grants. No. GJ-28074 and MCS75-
23738.

Author's address: Division of Applied Mathematics and Computer
Science Program, Brown University, Providence, RI 02912.
© 1978 ACM 0001-0782/78/1000-0847 $00.75

847

rithms, and we can learn from that experience to separate
good algorithms from bad ones. Third, if the tile fits into
the memory of the computer, there is one algorithm,
called Quicksort, which has been shown to perform well
in a variety of situations. Not only is this algorithm
simpler than many other sorting algorithms, but empir-
ical [2, ll , 13, 21] and analytic [9] studies show that
Quicksort can be expected to be up to twice as fast as its
nearest competitors. The method is simple enough to be
learned by programmers who have no previous experi-
ence with sorting, and those who do know other sorting
methods should also find it profitable to learn about
Quicksort.

Because of its prominence, it is appropriate to study
how Quicksort might be improved. This subject has
received considerable attention (see, for example, [1, 4,
11, 13, 14, 18, 20]), but few real improvements have been
suggested beyond those described by C.A.R. Hoare, the
inventor of Quicksort, in his original papers [5, 6]. Hoare
also showed how to analyze Quicksort and predict its
running time. The analysis has since been extended to
the improvements that he suggested, and used to indicate
how they may best be implemented [9, 15, 17]. The
subject of the careful implementation of Quicksort has
not been studied as widely as global improvements to
the algorithm, but the savings to be realized are as
significant. The history of Quicksort is quite complex,
and [15] contains a full survey of the many variants
which, have been proposed.

The purpose of this paper is to describe in detail how
Quicksort can best be implemented to handle actual
applications on real computers. A general description of
the algorithm is followed by descriptions of the most
effective improvements that have been proposed (as
demonstrated in [15]). Next, an implementation of
Quicksort in a typical high level language is presented,
and assembly language implementation issues are con-
sidered. This discussion should easily translate to real
languages on real machines. Finally, a number of special
issues are considered which may be of importance in
particular sorting applications.

This paper is intended to be a self-contained overview
of the properties of Quicksort for use by those who need
to actually implement and use the algorithm. A compan-
ion paper [17] provides the analytical results which su-
port much of the discussion presented here.

The Algofithm

Quicksort is a recursive method for sorting an array
A[1], A[2] A[N] by first "partitioning" it so that the
following conditions hold:

(i) Some key v is in its final position in the array. (If it
is thejth smallest, it is in position A[j].)

(ii) All elements to the left of A[j] are less than or equal
to it. (These elements A [1], A [2] A [j - 1] are
called the "left subtile.")

Communications October 1978
of Volume 21
the ACM Number 10

Acta Informatica 7, 327--355 (1977)
 9 by Springer-Verlag 1977

The Analysis of Quicksort Programs*
Robert Sedgewick

Received January 19, t976

Summary. The Quicksort sorting algorithm and its best variants are presented
and analyzed. Results are derived which make it possible to obtain exact formulas de-
scribing the total expected running time of particular implementations on real com-
puters of Quick, sort and an improvement called the median-of-three modification.
Detailed analysis of the effect of an implementation technique called loop unwrapping
is presented. The paper is intended not only to present results of direct practical utility,
but also to illustrate the intriguing mathematics which arises in the complete analysis
of this important algorithm.

1. Introduction

In t96t-62 C.A.R. Hoare presented a new algorithm called Quicksort [7, 8]
which is suitable for putting files into order by computer. This method combines
elegance and efficiency, and it remains today the most useful general-purpose
sorting method for computers. The practical utility of the algorithm has meant
not only that it has been sfibjected to countless modifications (though few real
improvements have been suggested beyond those described by Hoare), but also
that it has been used .in countless applications, often to sort very large, f i les .
Consequently, it is important to be able to estimate how long an implementation
of Quicksort can be expected to run, in order to be able to compare variants or
estimate expenses. Fortunately, as we shall see, this is an algorithm which can be
analyzed. (Hoare recognized this, and gave some analytic results in [8].) I t is
possible to derive exact formulas describing the average performance of real
implementations of the algorithm.

The history of Quicksort is quite complex, and a full survey of the many variants
which have been proposed is given in [t 7]. In addition, [t 7] gives analytic results
describing many of the improvements which have been suggested for the purpose
of determining which are the most effective. There are many examples in [~ 7]
which illustrate that the simplicity of Quicksort is deceiving. The algorithm has
hidden subtleties which can have significant effects on performance. Furthermore,
as we shall see, simple changes to the algorithm or its implementation can radically
change the analysis. In this paper, we shall consider in detail how practical
implementations of the best versions of Quicksort may be analyzed.

In this paper, we will deal with the analysis of: (i) the basic Quicksort algo-
ri thm; (ii) an improvement called the "median-of-three" modification which
reduces the average number of comparisons required; and (iii) an implementation
technique called "loop unwrapping" which reduces the amount of overhead per
comparison. These particular methods not only represent the most effective vari-

* This work was supported in part by the Fannie and John Hertz Foundation, and
in part by the National Science Foundation Grants No. GJ-28074 and MCS75-23738.
22 Acta Informatica, Vol. 7

2.3 QUICKSORT

‣ quicksort

‣ selection

‣ duplicate keys

‣ system sorts
ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Quicksort overview

Step 1. Shuffle the array.
Step 2. Partition the array so that, for some index j :

・Entry a[j] is in place.

・No larger entry to the left of j.

・No smaller entry to the right of j.
Step 3. Sort each subarray recursively.

5

Q U I C K S O R T E X A M P L E

K R A T E L E P U I M Q C X O S

E C A I E K L P U T M Q R X O S

A C E E I K L P U T M Q R X O S

A C E E I K L M O P Q R S T U X

A C E E I K L M O P Q R S T U X

not greater not less

partitioning item

input

shuffle

partition

sort left

sort right

result

Quicksort overview

“pivot” or “partitioning element”

Quicksort partitioning demo

Repeat until pointers cross:

・Scan i from left to right so long as a[i] < a[lo].

・Scan j from right to left so long as a[j] > a[lo].

・Exchange a[i] with a[j].

6

lo

K R A T E L E P U I M Q C X O S

i j

stop i scan because a[i] >= a[lo]

Quicksort partitioning demo

Repeat until pointers cross:

・Scan i from left to right so long as a[i] < a[lo].

・Scan j from right to left so long as a[j] > a[lo].

・Exchange a[i] with a[j].

7

lo

E C A I E E L P U T M Q R X O S

hij

partitioned!

K

When pointers cross. Exchange a[lo] with a[j].

≤ K ≥ K

The music of quicksort partitioning (by Brad Lyon)

8

https://learnforeverlearn.com/pivot_music

https://learnforeverlearn.com/pivot_music

Quicksort partitioning: Java implementation

9

private static int partition(Comparable[] a, int lo, int hi) {
 Comparable pivot = a[lo];
 int i = lo, j = hi+1;
 while (true) {

 while (less(a[++i], pivot))
 if (i == hi) break;

 while (less(pivot, a[--j]))
 if (j == lo) break;

 if (i >= j) break;

 exch(a, i, j);
 }

 exch(a, lo, j);
 return j;
}

https://algs4.cs.princeton.edu/23quick/Quick.java.html

p ≤ p ≥ p

start of each iteration of while loop

≤ p p ≥ p

end of function

lo j hi

p

start of function

lo hi
find next element on left

find next element on right

check if pointers cross

swap two elements

swap with pivot
index of element known to be in place

i j

https://algs4.cs.princeton.edu/23quick/Quick.java.html

Quicksort: partitioning analysis

Proposition. In the worst case, the partitioning algorithm makes compares 
and exchanges to partition an array of length , using extra space.
 
Pf.

・Each element is compared against the pivot once.

・Each exchange in the while loop puts two elements in their final position.

n + 1
⌈n / 2⌉ n Θ(1)

10

M A B C D E V W X Y Z

0 1 2 3 4 5 6 7 8 9 10

scan until ≥ M

scan until ≤ M

plus 1 extra exchange
(after points cross)

plus one or two extra compares
(when i and j pointers cross)

Quicksort: Java implementation

11

public class Quick {

 private static int partition(Comparable[] a, int lo, int hi) {
 /* see previous slide */
 }

 public static void sort(Comparable[] a) {
 StdRandom.shuffle(a);
 sort(a, 0, a.length - 1);
 }

 private static void sort(Comparable[] a, int lo, int hi) {
 if (hi <= lo) return;
 int j = partition(a, lo, hi);
 sort(a, lo, j-1);
 sort(a, j+1, hi);
 }

}

shuffle needed for performance
guarantee (stay tuned)

https://algs4.cs.princeton.edu/23quick/Quick.java.html

sort left subarray
sort right subarray

partition array

https://algs4.cs.princeton.edu/23quick/Quick.java.html

Quicksort trace

12

 lo j hi 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 Q U I C K S O R T E X A M P L E
 K R A T E L E P U I M Q C X O S
 0 5 15 E C A I E K L P U T M Q R X O S
 0 3 4 E C A E I K L P U T M Q R X O S
 0 2 2 A C E E I K L P U T M Q R X O S
 0 0 1 A C E E I K L P U T M Q R X O S
 1 1 A C E E I K L P U T M Q R X O S
 4 4 A C E E I K L P U T M Q R X O S
 6 6 15 A C E E I K L P U T M Q R X O S
 7 9 15 A C E E I K L M O P T Q R X U S
 7 7 8 A C E E I K L M O P T Q R X U S
 8 8 A C E E I K L M O P T Q R X U S
 10 13 15 A C E E I K L M O P S Q R T U X
 10 12 12 A C E E I K L M O P R Q S T U X
 10 11 11 A C E E I K L M O P Q R S T U X
 10 10 A C E E I K L M O P Q R S T U X
 14 14 15 A C E E I K L M O P Q R S T U X
 15 15 A C E E I K L M O P Q R S T U X

 A C E E I K L M O P Q R S T U X

no partition
 for subarrays

 of size 1

initial values

random shuffle

result

Quicksort trace (array contents after each partition)

Quicksort animation

13

https://www.toptal.com/developers/sorting-algorithms/quick-sort

50 random elements

in order
current subarray

algorithm position

not in order

http://www.sorting-algorithms.com/quick-sort
https://www.toptal.com/developers/sorting-algorithms/quick-sort

Quicksort: implementation details

Partitioning in-place. Using an extra array of length would makes partitioning 
easier to code (and stable), but makes it slower in practice.
 
Loop termination. Terminating the loop (when pointers cross) is more subtle than it appears.
 
Equal keys. Handling duplicate keys is trickier that it appears. [stay tuned]
 
Preserving randomness. Shuffling is needed for performance guarantee.
Equivalent alternative. In each subarray, pick a pivot uniformly at random.

n

14

Quicksort: empirical analysis

Running time estimates (approximate):

・Laptop executes compares/second.

・Supercomputer executes compares/second.
 
 
 
 
 
 
 
 
 
 
 
Lesson 1. Good algorithms are better than supercomputers.
Lesson 2. Great algorithms are better than good ones.

108

1012

15

n laptop super

thousand instant instant

million 2.8 hours 1 second

billion 317 years 1 week

insertion sort: Θ(n2)

n laptop super

thousand instant instant

million 1 second instant

billion 18 minutes instant

mergesort: Θ(n log n)

n laptop super

thousand instant instant

million 0.6 second instant

billion 12 minutes instant

quicksort: ???

Quicksort: poll 2

Why is quicksort typically faster than mergesort in practice?

A. Fewer compares.

B. Fewer array acceses.

C. Both A and B.

D. Neither A nor B.

16

and even better cache locality

Quicksort: worst-case analysis

Worst case. Number of compares is .∼ 1
2 n2

17

after random shuffle

Quicksort: worst-case analysis

Worst case. Number of compares is .
 
 
 
 
 
 
Good news. Worst case for randomized quicksort is mostly irrelevant in practice.

・Exponentially small chance of occurring.  
(unless bug in shuffling or no shuffling)

・More likely that computer is struck by lightning bolt during execution.
 
 
Remark. Can make in worst case by pivoting on the median element.

・Challenge: how to find median element? [stay tuned]

・Not currently practical.

∼ 1
2 n2

Θ(n log n)

18

after random shuffle

public static void f(int n) {
 if (n == 0) return;
 f(n / 4);
 f(3 * n / 4);
 linear(n);
}

solve two problems
of 25% and 75% size

do Θ(n) work

Proposition. The expected number of compares to quicksort an array of 
n distinct keys is (and the number of exchanges is).

Intuition. Each partitioning step divides the problem into two subproblems,  
each of approximately one-half the size.
 
 
 
 
Recall. Any algorithm with the following structure takes time.  

Cn

∼ 2n ln n ∼ 1
3 n ln n

Θ(n log n)

public static void f(int n) {
 if (n == 0) return;
 f(n / 2);
 f(n / 2);
 linear(n);
}

solve two problems
of half the size

do Θ(n) work

Quicksort: probabilistic analysis

19

probabilistically “close enough”

Quicksort: probabilistic analysis

Proposition. The expected number of compares to quicksort an array of 
n distinct keys is (and the number of exchanges is).

Pf. Cn satisfies the recurrence C0 = C1 = 0 and for n ≥ 2:  
 
 

・Multiply both sides by n and collect terms:  
 

・Subtract from this equation the same equation for n - 1:  
 

・Rearrange terms and divide by n (n + 1):

Cn

∼ 2n ln n ∼ 1
3 n ln n

20

partitioning probability

left right
partitioning

Cn = (n + 1) +

�
C0 + Cn�1

n

�
+

�
C1 + Cn�2

n

�
+ . . . +

�
Cn�1 + C0

n

�

nCn � (n � 1) Cn�1 = 2n + 2 Cn�1

Cn

n + 1
=

Cn�1

n
+

2

n + 1

nCn = n(n + 1) + 2(C0 + C1 + . . . + Cn�1)

analys is beyond

scope of this course

Quicksort: probabilistic analysis

・Repeatedly apply previous equation:  
 
 
 
 
 
 

・Approximate sum by an integral:  
 
 
 
 

・Finally, the desired result:

21

substitute previous equation

Cn

n + 1
=

Cn�1

n
+

2

n + 1

Cn � 2 (n + 1) ln n � 1.39n lg n

� 2 (n + 1)

� n+1

3

1

x
dx

Cn = 2 (n + 1)

�
1

3
+

1

4
+

1

5
+ . . . +

1

n + 1

�

=
2

3
+

2

4
+

2

5
+ . . . +

2

n + 1

=
Cn�3

n � 2
+

2

n � 1
+

2

n
+

2

n + 1

=
Cn�2

n � 1
+

2

n
+

2

n + 1

Quicksort properties

Quicksort analysis summary.

・Expected number of compares is .  
[standard deviation is]

・Expected number of exchanges is .

・Min number of compares is .

・Max number of compares is .
 
 
 
 
Context. Quicksort is a (Las Vegas) randomized algorithm.

・Guaranteed to be correct.

・Running time depends on outcomes of random coin flips (shuffle).

∼ 1.39 n log2 n
∼ 0.65 n

∼ 0.23 n log2 n
∼ n log2 n
∼ 1

2 n2

22

39% more than mergesort

never less than mergesort

but never happens

much less than mergesort

Quicksort properties

Proposition. Quicksort is an in-place sorting algorithm.

・Partitioning: extra space.

・Function-call stack: extra space (with high probability).
 
 
 
 
Proposition. Quicksort is not stable.
Pf. [by counterexample]

Θ(1)
Θ(log n)

23

i j 0 1 2 3

B1 C1 C2 A1

1 3 B1 C1 C2 A1

1 3 B1 A1 C2 C1

0 1 A1 B1 C2 C1

can guarantee Θ(log n) depth by recurring
on smaller subarray before larger subarray

(but this involves using an explicit stack)

Quicksort: practical improvements

Insertion sort small subarrays.

・Even quicksort has too much overhead for tiny subarrays.

・Cutoff to insertion sort for elements.≈ 10

24

private static void sort(Comparable[] a, int lo, int hi) {

 if (hi <= lo + CUTOFF - 1) {
 Insertion.sort(a, lo, hi);
 return;
 }

 int j = partition(a, lo, hi);
 sort(a, lo, j-1);
 sort(a, j+1, hi);
}

Quicksort: practical improvements

Median of sample.

・Best choice for pivot = median element.

・Estimate true median by taking median of sample.

・Median-of-3 (random) elements.

25

 compares (14% fewer)

 exchanges (3% more)

∼ 12
7 n ln n

∼ 12
35 n ln n

private static void sort(Comparable[] a, int lo, int hi) {
 if (hi <= lo) return;

 int median = medianOf3(a, lo, mid + (hi - lo) / 2, hi);
 swap(a, lo, median);

 int j = partition(a, lo, hi);
 sort(a, lo, j-1);
 sort(a, j+1, hi);
}

2.3 QUICKSORT

‣ quicksort

‣ selection

‣ duplicate keys

‣ system sorts
ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Selection

Goal. Given an unsorted array of elements and an integer , find element of rank .
Ex. Min (), max (), median ().
 
Applications.

・Order statistics: median, quantiles, deciles, …

・Outlier detection: find the top .
 
Use complexity theory as a guide.

・Easy algorithm.	 How?

・Easy algorithm for or .	 How?

・Easy lower bound.	 	 Why?
 
Which is true?

・ algorithm?	 	 [is there a linear-time algorithm?]

・ lower bound?	 [is selection as hard as sorting?]

n k k
k = 0 k = n − 1 k = n / 2

k

O(n log n)
O(n) k = 0 1
Ω(n)

O(n)
Ω(n log n)

27

element that would appear
at index if array were sorted

(kth smallest with 0-based indexing)
k

Quickselect demo

Partition array so that for some j:

・Entry a[j] is in place.

・No larger entry to the left of j.

・No smaller entry to the right of j.

Repeat in only one subarray, depending on j; stop when j equals k.

28

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

50 21 28 65 39 59 56 22 95 12 90 53 32 77 33

select element of rank k = 5

k = 5

Quickselect

Partition array so that for some j:

・Entry a[j] is in place.

・No larger entry to the left of j.

・No smaller entry to the right of j.

Repeat in only one subarray, depending on j; stop when j equals k.

29

if a[k] must be here
set hi to j-1

if a[k] must be here
set lo to j+1

≤ p p ≥ p

lo j hi

if a[k] is here,
return it

public static Comparable select(Comparable[] a, int k) {
 StdRandom.shuffle(a);
 int lo = 0, hi = a.length - 1;
 while (hi > lo) {
 int j = partition(a, lo, hi);
 if (j < k) lo = j + 1;
 else if (j > k) hi = j - 1;
 else return a[k];
 }
 return a[k];
}

Quickselect: probabilistic analysis

Proposition. The expected number of compares to quickselect the element of rank

in an array of length is .
 

Intuition. Each partitioning step approximately halves the length of the array.
Recall. Any algorithm with the following divide-and-conquer structure takes time.
 
 
 
 
 
 
 
Careful analysis yields:

Cn k
n Θ(n)

Θ(n)

30

public static void f(int n) {
 if (n == 0) return;
 linear(n);
 f(n/2);
}

solve one subproblem of half the size
do Θ(n) work n +

n
2

+
n
4

+ … + 1 ∼ 2n

probabilistically “close enough”

max occurs for median ()k = n
2Cn ∼ 2n + 2 k ln (n

k) + 2(n − k) ln (n
n − k)

≤ (2 + 2 ln 2) n

≈ 3.38 n

Theoretical context for selection

Q. Compare-based selection algorithm that makes compares in the worst case?
A. Yes! [ingenious divide-and-conquer]
 
 
 
 
 
 
 
 
Caveat. Constants are high not used in practice.
 
 
Use theory as a guide.

・Open problem: practical selection algorithm that makes compares in the worst case.

・Until one is discovered, use quickselect (if you don’t need a full sort).

Θ(n)

⟹

Θ(n)

31

JOURNAL OF COMPUTER AND SYSTEM SCIENCES 7, 4 4 8 - 4 6 1 (1973)

Time Bounds for Selection*

MANUEL BLUM, ROBERT W. FLOYD, VAUGHAN PRATT,
RONALD L. RIVEST, AND ROBERT E. TARJAN

Department of Computer Science, Stanford University, Stanford, California 94305

Received November 14, 1972

The number of comparisons required to select the i-th smallest of n numbers is shown
to be at most a linear function of n by analysis of a new selection algori thm--PICK.
Specifically, no more than 5.4305 n comparisons are ever required. This bound is
improved for extreme values of i, and a new lower bound on the requisite number
of comparisons is also proved.

1. INTRODUCTION

In this paper we present a new selection algorithm, PICK, and derive by an analysis
of its efficiency the (surprising) result that the cost of selection is at most a linear
function of the number of input items. In addition, we prove a new lower bound
for the cost of selection.

The selection problem is perhaps best exemplified by the computation of medians.
In general, we may wish to select the i-th smallest of a set of n distinct numbers,
or the element ranking closest to a given percentile level.

Interest in this problem may be traced to the realm of sports and the design of
(traditionally, tennis) tournaments to select the first- and second-best players. In
1883, Lewis Carroll published an article [1] denouncing the unfair method by which
the second-best player is usually determined in a "knockout tournament" -- the loser
of the final match is often not the second-best! (Any of the players who lost only
to the best player may be second-best.) Around 1930, Hugo Steinhaus brought the
problem into the realm of algorithmic complexity by asking for the minimum number
of matches required to (correctly) select both the first- and second-best players
from a field of n contestants. In 1932, J. Schreier [8] showed that no more than
n + [logg(n)]- 2 matches are required, and in 1964, S. S. Kislitsin [6] proved
this number to be necessary as well. Schreier's method uses a knockout tournament
to determine the winner, followed by a second knockout tournament among the

* This work was supported by the National Science Foundation under grant GJ-992.

448
Copyright © I973 by Academic Press, Inc.
All rights of reproduction in any form reserved.

find pivot
(“median of medians”)

that eliminates
30% of elements

T(n) = T (n
5) + T (7n

10) + Θ(n)

2.3 QUICKSORT

‣ quicksort

‣ selection

‣ duplicate keys

‣ system sorts
ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Duplicate keys

Often, purpose of sort is to bring elements with equal keys together.

・Sort population by age.

・Remove duplicates from mailing list.

・Sort job applicants by college attended.

 Typical characteristics of such applications.

・Huge array.

・Small number of key values.

33

Chicago 09:00:00
Phoenix 09:00:03
Houston 09:00:13
Chicago 09:00:59
Houston 09:01:10
Chicago 09:03:13
Seattle 09:10:11
Seattle 09:10:25
Phoenix 09:14:25
Chicago 09:19:32
Chicago 09:19:46
Chicago 09:21:05
Seattle 09:22:43
Seattle 09:22:54
Chicago 09:25:52
Chicago 09:35:21
Seattle 09:36:14
Phoenix 09:37:44

Chicago 09:00:00
Chicago 09:00:59
Chicago 09:03:13
Chicago 09:19:32
Chicago 09:19:46
Chicago 09:21:05
Chicago 09:25:52
Chicago 09:35:21
Houston 09:00:13
Houston 09:01:10
Phoenix 09:00:03
Phoenix 09:14:25
Phoenix 09:37:44
Seattle 09:10:11
Seattle 09:10:25
Seattle 09:22:43
Seattle 09:22:54
Seattle 09:36:14

Chicago 09:25:52
Chicago 09:03:13
Chicago 09:21:05
Chicago 09:19:46
Chicago 09:19:32
Chicago 09:00:00
Chicago 09:35:21
Chicago 09:00:59
Houston 09:01:10
Houston 09:00:13
Phoenix 09:37:44
Phoenix 09:00:03
Phoenix 09:14:25
Seattle 09:10:25
Seattle 09:36:14
Seattle 09:22:43
Seattle 09:10:11
Seattle 09:22:54

Stability when sorting on a second key

sorted

sorted by time sorted by city (unstable) sorted by city (stable)

NOT
sorted

key

Quicksort: poll 3

When partitioning, how to handle keys equal to pivot?  
 
 

A.  

 

 

B.  

 

C. Either A or B.

34

P G E P A Q B P C O U P Z S

scan until ≥ P scan until ≤ P

P G E P A Q B P C O U P Z S

scan until > P scan until < P

War story (system sort in C)

Bug. A qsort() call in C that should have taken seconds was taking minutes 
to sort a random array of 0s and 1s.

35

Why is qsort() so slow?

i j

skip over equal keys

i j

stop scan on equal keys

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11A0

A6 A7A5 A8A4A3 A9A2 A10 A11A1A0

Duplicate keys: partitioning strategies

Bad. Don’t stop scans on equal keys.  
 [compares when all keys equal]
 
 
 
 
Good. Stop scans on equal keys.  
 [compares when all keys equal]
 
 
 
 
Better. Put all equal keys in place. How? 
 [compares when all keys equal]

Θ(n2)

∼ n log2 n

∼ n

36

A A A A A A A A A A A A

A A A A A A A A A A A A

A A A A A A A A A A A A

Dutch National Flag Problem

Problem. [Edsger Dijkstra] Given an array of n buckets, each containing 
a red, white, or blue pebble, sort them by color.
 
 
 
 
 
Operations allowed.

・ : swap the pebble in bucket with the pebble in bucket .

・ : determine the color of the pebble in bucket .
 
Performance requirements.

・Exactly calls to .

・At most calls to .

・ extra space.

swap(i, j) i j
getColor(i) i

n getColor()
n swap()

Θ(1)

37

input

sorted

3-way partitioning

Goal. Use pivot p = a[lo] to partition array into three parts so that:

・Red:	 smaller entries to the left of lt.

・White:	 equal entries between lt and gt.

・Blue:	 larger entries to the right of gt.

38

< p = p > p

after

lo gt hilt

p

before

lo hi

Dijkstra’s 3-way partitioning algorithm: demo

・Let p = a[lo] be pivot.

・Scan i from left to right and compare a[i] to p.
– less:	 exchange a[i] with a[lt]; increment both lt and i
– greater:	 exchange a[i] with a[gt]; decrement gt
– equal:	 increment i

39

P1 D B X W P2 P3 V P4 A P5 C Y ZP1

lt gtilo hi

Dijkstra’s 3-way partitioning algorithm: demo

・Let p = a[lo] be pivot.

・Scan i from left to right and compare a[i] to p.
– less:	 exchange a[i] with a[lt]; increment both lt and i
– greater:	 exchange a[i] with a[gt]; decrement gt
– equal:	 increment i

40

D B C A P5 P2 P3 P1 P4 V W Y Z X

lt gt

equalless greater

hilo

private static void sort(Comparable[] a, int lo, int hi) {
 if (hi <= lo) return;
 Comparable p = a[lo];

 int lt = lo, gt = hi;
 int i = lo + 1;
 while (i <= gt) {
 int cmp = a[i].compareTo(p);
 if (cmp < 0) exch(a, lt++, i++);
 else if (cmp > 0) exch(a, i, gt--);
 else i++;
 }

 sort(a, lo, lt - 1);
 sort(a, gt + 1, hi);
}

3-way quicksort: Java implementation

41

< p = p > p

start of each iteration of while loop

i gtlt

< p = p > p

end of function

lo gt hilt

p

start of function

lo hi

Quicksort: poll 4

What is the worst-case number of compares to 3-way quicksort an array of length
containing only distinct values?

A.

B.

C.

D.

n
7

Θ(n)

Θ(n log n)

Θ(n2)

Θ(n7)

42

input

sorted

number of partitioning steps ≤ # distinct keys

Sorting summary

43

inplace? stable? best typical worst remarks

selection ✔ ½ n2 ½ n2 ½ n2 n exchanges

insertion ✔ ✔ n ¼ n 2 ½ n2 use for small n
or partially sorted arrays

merge ✔ ½ n log2 n n log2 n n log2 n Θ(n log n) guarantee;
stable

timsort ✔ n n log2 n n log2 n improves mergesort
when pre-existing order

quick ✔ n log2 n 2 n ln n ½ n2 Θ(n log n) probabilistic guarantee;
fastest in practice

3-way quick ✔ n 2 n ln n ½ n2 improves quicksort
when duplicate keys

? ✔ ✔ n n log2 n n log2 n holy sorting grail

number of compares to sort an array of n elements (tilde notation)

2.3 QUICKSORT

‣ quicksort

‣ selection

‣ duplicate keys

‣ system sorts
ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Sorting applications

Sorting algorithms are essential in a broad variety of applications:

・Sort a list of names.

・Organize an MP3 library.

・Display Google PageRank results.

・List RSS feed in reverse chronological order.

・Find the median.

・Identify statistical outliers.

・Binary search in a database.

・Find duplicates in a mailing list.

・Data compression.

・Computer graphics.

・Computational biology.

・Load balancing on a parallel computer.  
. . .

45

obvious applications

problems become easy once
elements are in sorted order

non-obvious applications

Engineering a system sort (in 1990s)

Bentley–McIlroy quicksort.

・Cutoff to insertion sort for small subarrays.

・Pivot selection: median of 3 or Tukey’s ninther.

・Partitioning scheme: Bentley–McIlroy 3-way partitioning.
 
 
 
 
 
 
 
 
 
 
 
In the wild. C, C++, Java 6, ….

46

SOFTWARE—PRACTICE AND EXPERIENCE, VOL. 23(11), 1249–1265 (NOVEMBER 1993)

Engineering a Sort Function

JON L. BENTLEY
M. DOUGLAS McILROY

AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974, U.S.A.

SUMMARY
We recount the history of a new qsort function for a C library. Our function is clearer, faster and more
robust than existing sorts. It chooses partitioning elements by a new sampling scheme; it partitions by a
novel solution to Dijkstra’s Dutch National Flag problem; and it swaps efficiently. Its behavior was
assessed with timing and debugging testbeds, and with a program to certify performance. The design
techniques apply in domains beyond sorting.

KEY WORDS Quicksort Sorting algorithms Performance tuning Algorithm design and implementation Testing

INTRODUCTION
C libraries have long included a qsort function to sort an array, usually implemented by
Hoare’s Quicksort.1 Because existing qsorts are flawed, we built a new one. This paper
summarizes its evolution.
Compared to existing library sorts, our new qsort is faster—typically about twice as

fast—clearer, and more robust under nonrandom inputs. It uses some standard Quicksort
tricks, abandons others, and introduces some new tricks of its own. Our approach to build-
ing a qsort is relevant to engineering other algorithms.
The qsort on our home system, based on Scowen’s ‘Quickersort’,2 had served faith-

fully since Lee McMahon wrote it almost two decades ago. Shipped with the landmark Sev-
enth Edition Unix System,3 it became a model for other qsorts. Yet in the summer of
1991 our colleagues Allan Wilks and Rick Becker found that a qsort run that should have
taken a few minutes was chewing up hours of CPU time. Had they not interrupted it, it
would have gone on for weeks.4 They found that it took n 2 comparisons to sort an ‘organ-
pipe’ array of 2n integers: 123..nn.. 321.
Shopping around for a better qsort, we found that a qsort written at Berkeley in 1983

would consume quadratic time on arrays that contain a few elements repeated many
times—in particular arrays of random zeros and ones.5 In fact, among a dozen different
Unix libraries we found no qsort that could not easily be driven to quadratic behavior; all
were derived from the Seventh Edition or from the 1983 Berkeley function. The Seventh

0038-0644/93/111249–17$13.50 Received 21 August 1992
 1993 by John Wiley & Sons, Ltd. Revised 10 May 1993

similar to Dijkstra 3-way partitioning
(but fewer exchanges when not many equal keys)

sample 9 elements

A Java mailing list post (Yaroslavskiy, September 2009)

47

Replacement of quicksort in java.util.Arrays with new dual-pivot quicksort

Hello All,

I'd like to share with you new Dual-Pivot Quicksort which is faster than the
known implementations (theoretically and experimental). I'd like to propose
to replace the JDK's Quicksort implementation by new one.

...

The new Dual-Pivot Quicksort uses *two* pivots elements in this manner:

1. Pick an elements P1, P2, called pivots from the array.
2. Assume that P1 <= P2, otherwise swap it.
3. Reorder the array into three parts: those less than the smaller pivot,
 those larger than the larger pivot, and in between are those elements
 between (or equal to) the two pivots.
4. Recursively sort the sub-arrays.

The invariant of the Dual-Pivot Quicksort is:

[< P1 | P1 <= & <= P2 } > P2]

...

https://mail.openjdk.java.net/pipermail/core-libs-dev/2009-September/002630.html

https://mail.openjdk.java.net/pipermail/core-libs-dev/2009-September/002630.html

Another Java mailing list post (Yaroslavskiy–Bloch–Bentley)

48

Replacement of quicksort in java.util.Arrays with new dual-pivot quicksort

Date: Thu, 29 Oct 2009 11:19:39 +0000
Subject: Replace quicksort in java.util.Arrays with dual-pivot implementation

Changeset: b05abb410c52
Author: alanb
Date: 2009-10-29 11:18 +0000
URL: http://hg.openjdk.java.net/jdk7/tl/jdk/rev/b05abb410c52

6880672: Replace quicksort in java.util.Arrays with dual-pivot implementation
Reviewed-by: jjb
Contributed-by: vladimir.yaroslavskiy at sun.com, joshua.bloch at google.com,
jbentley at avaya.com

! src/share/classes/java/util/Arrays.java
+ src/share/classes/java/util/DualPivotQuicksort.java

https://mail.openjdk.java.net/pipermail/compiler-dev/2009-October.txt

https://mail.openjdk.java.net/pipermail/compiler-dev/2009-October.txt

Dual-pivot quicksort

Use two pivots and with and partition into three subarrays:

・Keys less than .

・Keys between and .

・Keys greater than .
 
 
 
 
 
 
Recursively sort three subarrays (skip middle subarray if).
 
 
 
 
In the wild. Java 8–25, Python unstable sort, Android, …

p1 p2 p1 ≤ p2

p1

p1 p2

p2

p1 = p2

49

< p1 p1 ≥ p1 and ≤ p2 p2 > p2

lo hilt gt

degenerates to Dijkstra’s 3-way partitioning

System sort

Premise. Suppose you are the lead architect of a new programming language.
Q. Which sorting algorithm(s) would you choose for the system sort? Defend your answer.

50

System sorts: Java 8 to Java 25+

Java system sort: Arrays.sort()

・A method for Comparable objects.

・An overloaded method for use with a Comparator.

・An overloaded method for each primitive type.

・And overloaded methods for sorting subarrays.
 
Core algorithms.

・Optimized version of mergesort (Timsort) for reference types.

・Optimized version of quicksort (dual-pivot quicksort) for primitive types.
 
Q. Why different algorithms for primitive and reference types?
 
 
Bottom line. Use the system sort!

51

Lecture Slides © Copyright 2025 Robert Sedgewick and Kevin Wayne

Credits

52

image source license

C.A.R. Hoare Wikimedia CC BY-SA 2.0 FR

Bob Sedgewick sedgewick.io by author

Music of Quicksort Brad F. Lyon

Coin Toss Clipground CC BY 4.0

Magnifying Glass and Code Adobe Stock Education License

Computer and Supercomputer New York Times

Apocalypse Network Skin istyles.com

Harmonic Integral Wikimedia public domain

Programmer Icon Jaime Botero public domain

Dutch National Flag Adobe Stock Education License

Princeton COS ’13 T-Shirt Ruth Dannenfelser *20 by author

https://commons.wikimedia.org/wiki/File:Sir_Tony_Hoare_IMG_5123.jpg
https://creativecommons.org/licenses/by-sa/2.0/fr/deed.en
https://sedgewick.io/
https://learnforeverlearn.com/pivot_music/
https://clipground.com/images/toss-clipart-1.jpg
https://creativecommons.org/licenses/by/4.0/
https://stock.adobe.com/images/magnifying-glass-coding-filled-line-icon/1283120396
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://www.nytimes.com/interactive/2021/09/03/climate/bitcoin-carbon-footprint-electricity.html
https://www.istyles.com/skins/laptop/other-laptop/netbook-universal-fit/apocalypse-violet-netbook-skin-p-24641.html
https://commons.wikimedia.org/wiki/File:Integral_Test.svg
https://wiki.creativecommons.org/wiki/public_domain
http://www.clker.com/clipart-programmer-1.html
https://wiki.creativecommons.org/wiki/public_domain
https://stock.adobe.com/images/netherlands-national-flag-vector-illustration/279683718
https://stock.adobe.com/enterprise-conditions#educationLicenses

A final thought

53

