

2.3 QUICKSORT

- *quicksort*
- *selection*
- *duplicate keys*
- *system sorts*

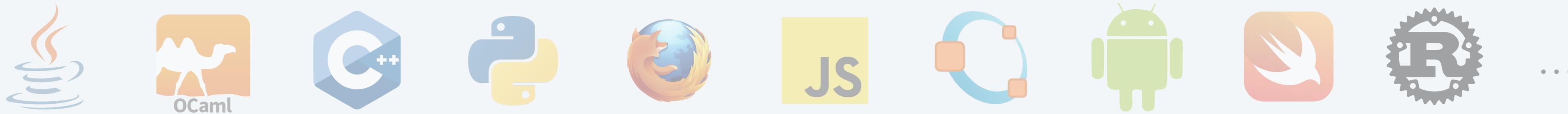
<https://algs4.cs.princeton.edu>

Two classic sorting algorithms: mergesort and quicksort

Critical components in the world's computational infrastructure.

- Full scientific understanding of their properties has enabled us to develop them into practical system sorts.
- Quicksort honored as one of the top 10 algorithms of 20th century in STEM.

Mergesort. [last lecture]

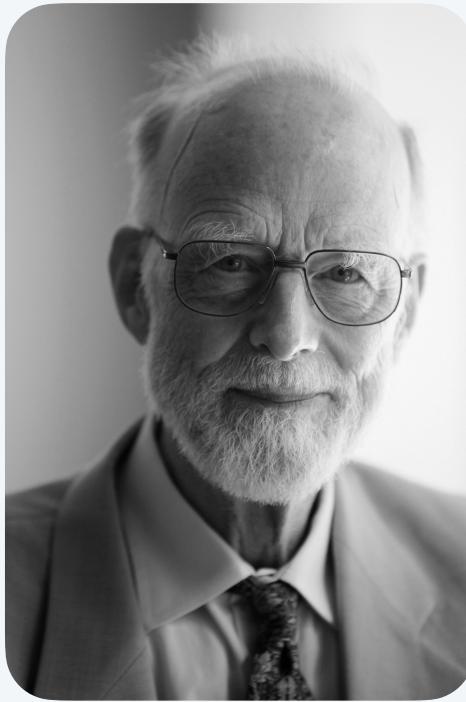


Quicksort. [this lecture]

A brief history

Tony Hoare.

- Invented quicksort in 1960 to translate Russian into English.
- Later learned Algol 60 (and recursion) to implement it.



Tony Hoare
1980 Turing Award

Algorithms
ALGORITHM 64
QUICKSORT
C. A. R. HOARE
Elliott Brothers Ltd., Borehamwood, Hertfordshire, Eng.
procedure quicksort (A,M,N); integer A,M,N;
comment Quicksort is a very fast and convenient method of sorting an array in the random-access store of a computer. The entire contents of the store may be sorted, since no extra space is required. The average number of comparisons made is $2(M-N)$ in $(N-M)$, and the average number of exchanges is one sixth this amount. Suitable refinements of this method will be desirable for its implementation on any actual computer;
begin integer I,J;
if $M < N$ then begin partition (A,M,I,J);
quicksort (A,M,I);
quicksort (A,I,N);
end
quicksort

Programming Techniques S. L. Graham, R. L. Rivest
Editors
Implementing Quicksort Programs
Robert Sedgewick
Brown University

Acta Informatica 7, 327—355 (1977)
© by Springer-Verlag 1977

The Analysis of Quicksort Programs*
Robert Sedgewick
Received January 19, 1976

Summary. The Quicksort sorting algorithm and its best variants are presented and analyzed. Results are derived which make it possible to obtain exact formulas describing the total expected running time of particular implementations on real computers of Quicksort and an improvement called the median-of-three modification. Detailed analysis of the effect of an implementation technique called loop unwrapping is presented. The paper is intended not only to present results of direct practical utility, but also to illustrate the intriguing mathematics which arises in the complete analysis of this important algorithm.

Bob Sedgewick.

- Refined and popularized quicksort in 1970s.
- Analyzed many versions of quicksort.

Bob Sedgewick

2.3 QUICKSORT

- *quicksort*
- *selection*
- *duplicate keys*
- *system sorts*

Quicksort overview

Step 1. Shuffle the array.

Step 2. Partition the array so that, for some index j :

- Entry $a[j]$ is in place. \leftarrow “pivot” or “partitioning element”
- No larger entry to the left of j .
- No smaller entry to the right of j .

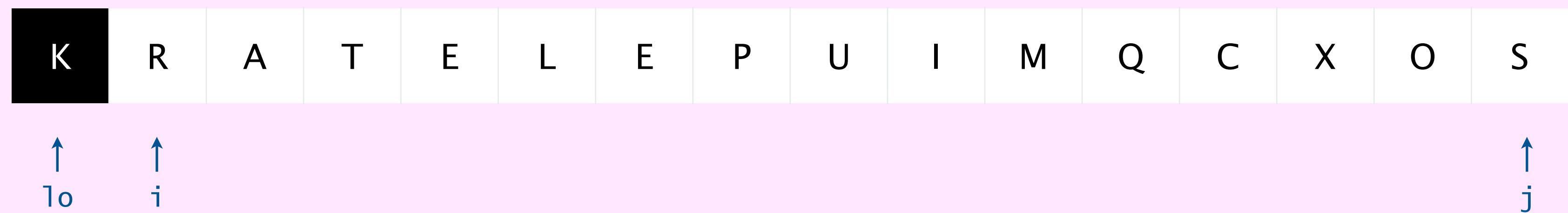
Step 3. Sort each subarray recursively.

input	Q	U	I	C	K	S	O	R	T	E	X	A	M	P	L	E
shuffle	K	R	A	T	E	L	E	P	U	I	M	Q	C	X	O	S
partition	E	C	A	I	E	K	L	P	U	T	M	Q	R	X	O	S
	<i>not greater</i>					<i>partitioning item</i>										
sort left	A	C	E	E	I	K	L	P	U	T	M	Q	R	X	O	S
sort right	A	C	E	E	I	K	L	M	O	P	Q	R	S	T	U	X
result	A	C	E	E	I	K	L	M	O	P	Q	R	S	T	U	X

Quicksort partitioning demo

Repeat until pointers cross:

- Scan i from left to right so long as $a[i] < a[lo]$.
- Scan j from right to left so long as $a[j] > a[lo]$.
- Exchange $a[i]$ with $a[j]$.



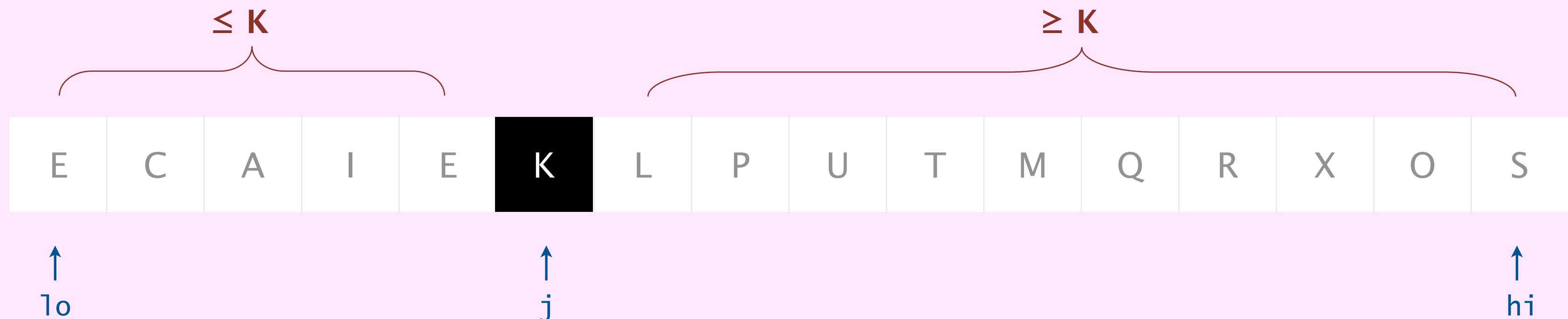
stop i scan because $a[i] \geq a[lo]$

Quicksort partitioning demo

Repeat until pointers cross:

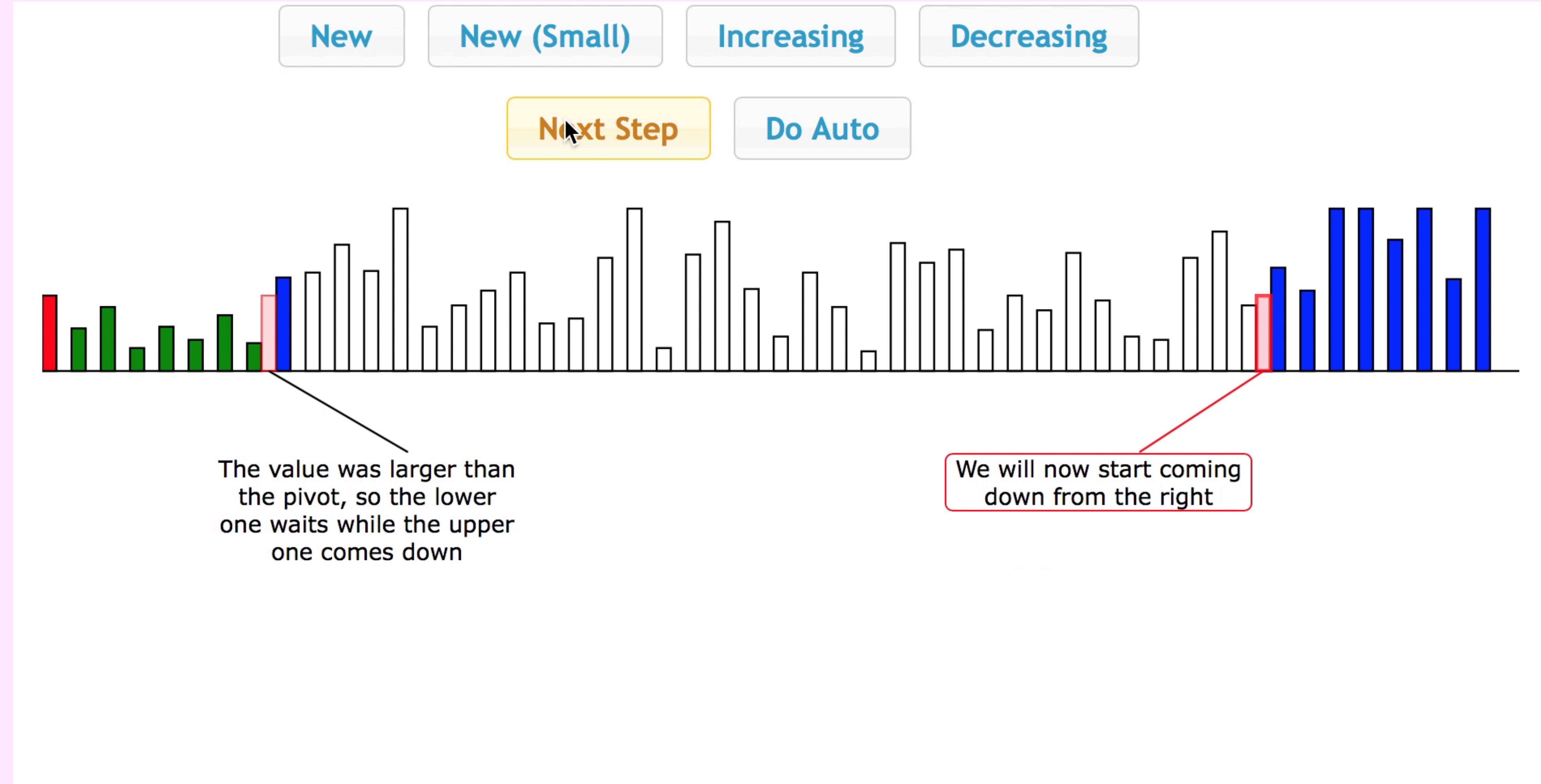
- Scan i from left to right so long as $a[i] < a[lo]$.
- Scan j from right to left so long as $a[j] > a[lo]$.
- Exchange $a[i]$ with $a[j]$.

When pointers cross. Exchange $a[lo]$ with $a[j]$.



partitioned!

The music of quicksort partitioning (by Brad Lyon)

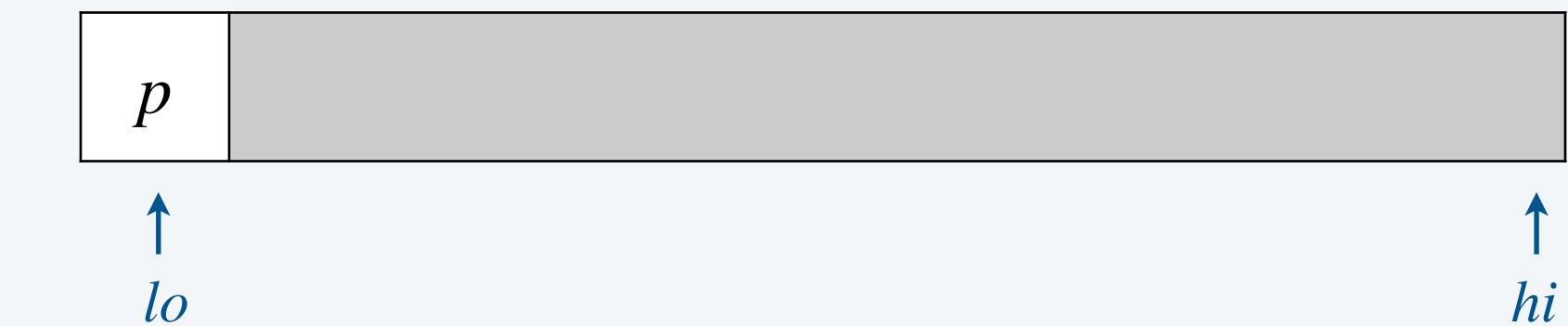


Quicksort partitioning: Java implementation

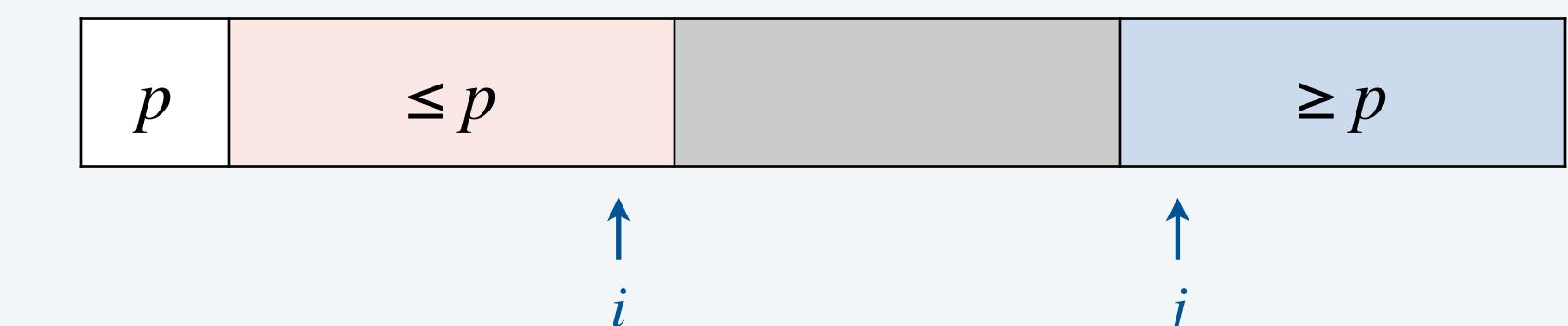
```
private static int partition(Comparable[] a, int lo, int hi) {  
    Comparable pivot = a[lo];  
    int i = lo, j = hi+1;  
    while (true) {  
        while (less(a[++i], pivot)) ← find next element on left  
            if (i == hi) break;  
  
        while (less(pivot, a[--j])) ← find next element on right  
            if (j == lo) break;  
  
        if (i >= j) break; ← check if pointers cross  
        exch(a, i, j); ← swap two elements  
    }  
  
    exch(a, lo, j); ← swap with pivot  
    return j; ← index of element known to be in place  
}
```

<https://algs4.cs.princeton.edu/23quick/Quick.java.html>

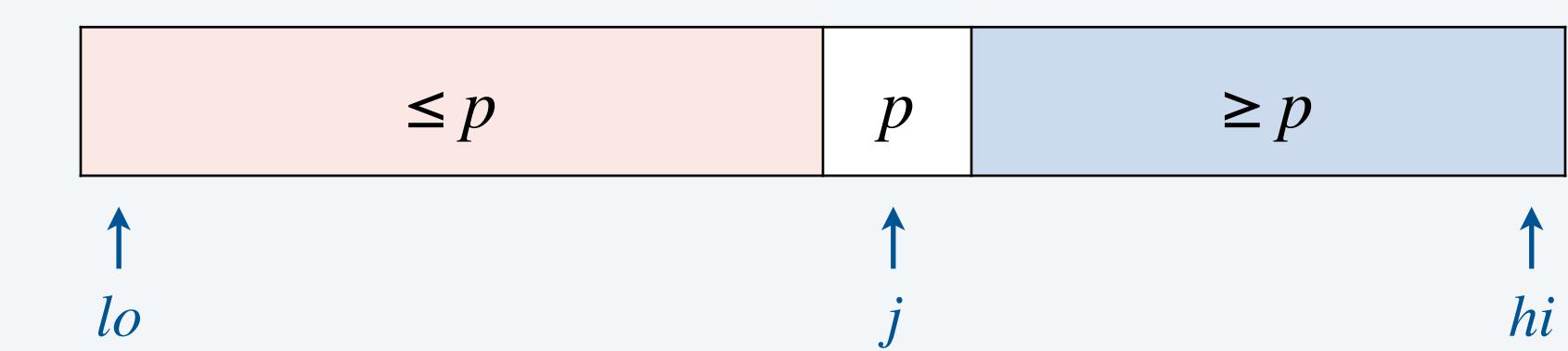
start of function



start of each iteration of while loop



end of function

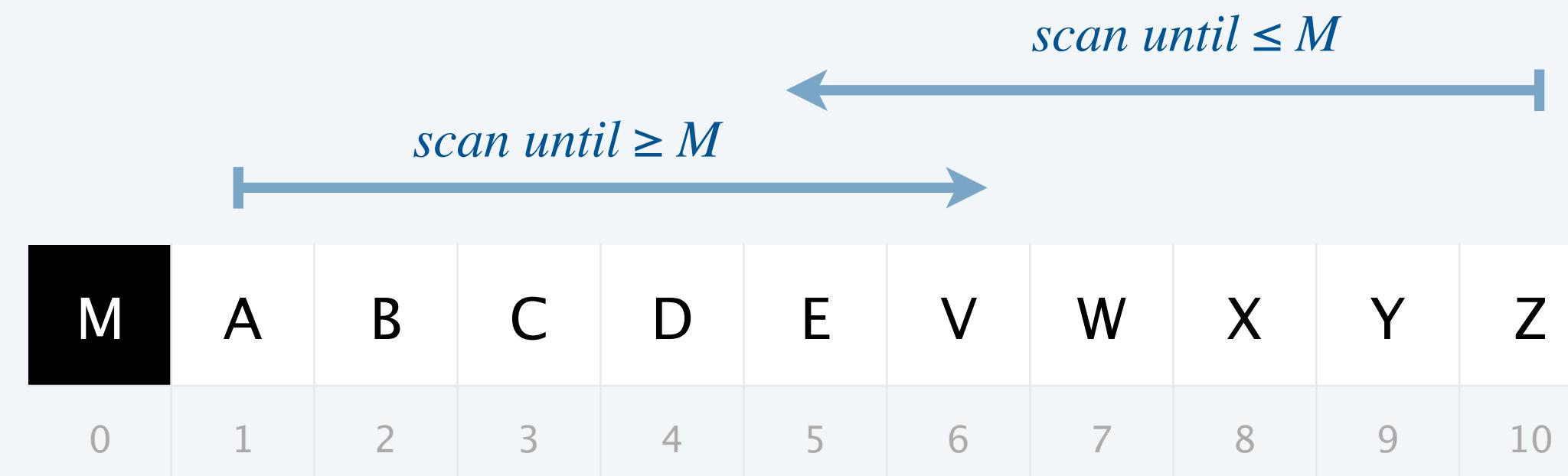


Quicksort: partitioning analysis

Proposition. In the worst case, the partitioning algorithm makes $n + 1$ compares and $\lceil n/2 \rceil$ exchanges to partition an array of length n , using $\Theta(1)$ extra space.

Pf.

- Each element is compared against the pivot once. *plus one or two extra compares (when i and j pointers cross)*
- Each exchange in the `while` loop puts two elements in their final position. *plus 1 extra exchange (after pointers cross)*



Quicksort: Java implementation

```
public class Quick {  
  
    private static int partition(Comparable[] a, int lo, int hi) {  
        /* see previous slide */  
    }  
  
    public static void sort(Comparable[] a) {  
        StdRandom.shuffle(a); ← shuffle needed for performance  
        sort(a, 0, a.length - 1); ← guarantee (stay tuned)  
    }  
  
    private static void sort(Comparable[] a, int lo, int hi) {  
        if (hi <= lo) return;  
        int j = partition(a, lo, hi); ← partition array  
        sort(a, lo, j-1); ← sort left subarray  
        sort(a, j+1, hi); ← sort right subarray  
    }  
}
```

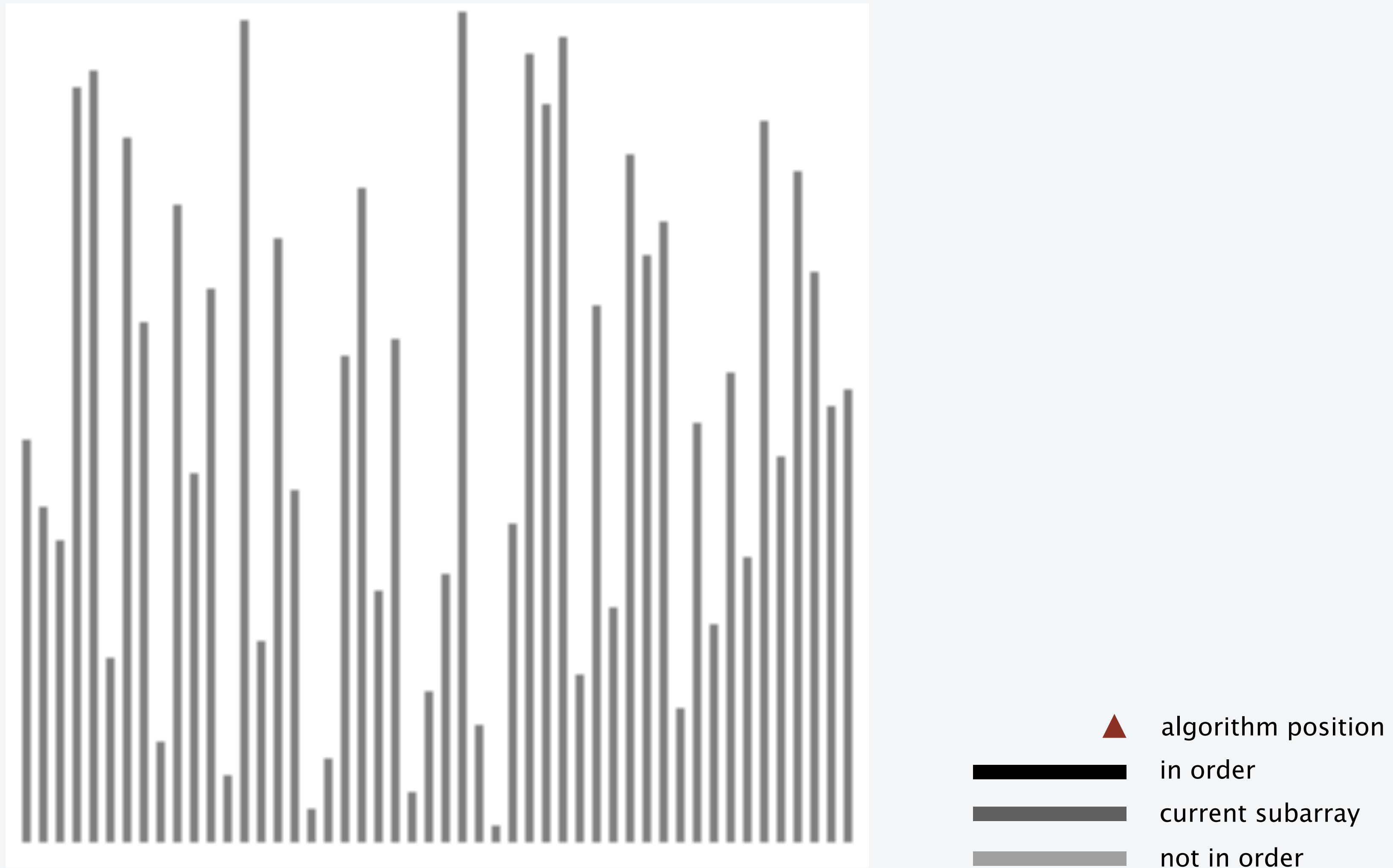
<https://algs4.cs.princeton.edu/23quick/Quick.java.html>

Quicksort trace

lo	j	hi	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15			
initial values			Q	U	I	C	K	S	0	R	T	E	X	A	M	P	L	E			
random shuffle			K	R	A	T	E	L	E	P	U	I	M	Q	C	X	O	S			
0	5	15	E	C	A	I	E	K	L	P	U	T	M	Q	R	X	O	S			
0	3	4	E	C	A	E	I	K	L	P	U	T	M	Q	R	X	O	S			
0	2	2	A	C	E	E	I	K	L	P	U	T	M	Q	R	X	O	S			
0	0	1	A	C	E	E	I	K	L	P	U	T	M	Q	R	X	O	S			
			1	1	A	C	E	E	I	K	L	P	U	T	M	Q	R	X	O	S	
			4	4	A	C	E	E	I	K	L	P	U	T	M	Q	R	X	O	S	
			6	6	15	A	C	E	E	I	K	L	P	U	T	M	Q	R	X	O	S
			7	9	15	A	C	E	E	I	K	L	M	O	P	T	Q	R	X	U	S
			7	7	8	A	C	E	E	I	K	L	M	O	P	T	Q	R	X	U	S
			8	8	A	C	E	E	I	K	L	M	O	P	T	Q	R	X	U	S	
			10	13	15	A	C	E	E	I	K	L	M	O	P	S	Q	R	T	U	X
			10	12	12	A	C	E	E	I	K	L	M	O	P	R	Q	S	T	U	X
			10	11	11	A	C	E	E	I	K	L	M	O	P	Q	R	S	T	U	X
			10	10	10	A	C	E	E	I	K	L	M	O	P	Q	R	S	T	U	X
			14	14	15	A	C	E	E	I	K	L	M	O	P	Q	R	S	T	U	X
			15	15	A	C	E	E	I	K	L	M	O	P	Q	R	S	T	U	X	
result			A	C	E	E	I	K	L	M	O	P	Q	R	S	T	U	X			
Quicksort trace (array contents after each partition)																					

Quicksort animation

50 random elements



<https://www.toptal.com/developers/sorting-algorithms/quick-sort>

Quicksort: implementation details

Partitioning in-place. Using an extra array of length n would make partitioning easier to code (and stable), but makes it slower in practice.

Loop termination. Terminating the loop (when pointers cross) is more subtle than it appears.

Equal keys. Handling duplicate keys is trickier than it appears. [stay tuned]

Preserving randomness. Shuffling is needed for performance guarantee.

Equivalent alternative. In each subarray, pick a pivot uniformly at random.

Quicksort: empirical analysis

Running time estimates (approximate):

- Laptop executes 10^8 compares/second.
- Supercomputer executes 10^{12} compares/second.

n	laptop	super	n	laptop	super	n	laptop	super
thousand	<i>instant</i>	<i>instant</i>	thousand	<i>instant</i>	<i>instant</i>	thousand	<i>instant</i>	<i>instant</i>
million	2.8 <i>hours</i>	1 <i>second</i>	million	1 <i>second</i>	<i>instant</i>	million	0.6 <i>second</i>	<i>instant</i>
billion	317 <i>years</i>	1 <i>week</i>	billion	18 <i>minutes</i>	<i>instant</i>	billion	12 <i>minutes</i>	<i>instant</i>

insertion sort: $\Theta(n^2)$

mergesort: $\Theta(n \log n)$

quicksort: ???

Lesson 1. Good algorithms are better than supercomputers.

Lesson 2. Great algorithms are better than good ones.

Why is quicksort typically faster than mergesort in practice?

- A.** Fewer compares.
- B.** Fewer array acceses.
- C.** Both A and B.
- D.** Neither A nor B.

Quicksort: worst-case analysis

Worst case. Number of compares is $\sim \frac{1}{2} n^2$.

			a[]														
lo	j	hi	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
			A	B	C	D	E	F	G	H	I	J	K	L	M	N	O
			A	B	C	D	E	F	G	H	I	J	K	L	M	N	O
0	0	14	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O
1	1	14	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O
2	2	14	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O
3	3	14	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O
4	4	14	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O
5	5	14	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O
6	6	14	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O
7	7	14	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O
8	8	14	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O
9	9	14	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O
10	10	14	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O
11	11	14	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O
12	12	14	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O
13	13	14	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O
14		14	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O
			A	B	C	D	E	F	G	H	I	J	K	L	M	N	O

after random shuffle

Quicksort: worst-case analysis

Worst case. Number of compares is $\sim \frac{1}{2} n^2$.

lo	j	hi	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
A	B	C	D	E	F	G	H	I	J	K	L	M	N	O			
A	B	C	D	E	F	G	H	I	J	K	L	M	N	O			

← *after random shuffle*

Good news. Worst case for randomized quicksort is mostly irrelevant in practice.

- Exponentially small chance of occurring.
(unless bug in shuffling or no shuffling)
- More likely that computer is struck by lightning bolt during execution.

Remark. Can make $\Theta(n \log n)$ in worst case by pivoting on the median element.

- Challenge: how to find median element? [stay tuned]
- Not currently practical.

Quicksort: probabilistic analysis

Proposition. The expected number of compares C_n to quicksort an array of n distinct keys is $\sim 2n \ln n$ (and the number of exchanges is $\sim \frac{1}{3}n \ln n$).

Intuition. Each partitioning step divides the problem into two subproblems, each of approximately one-half the size.

probabilistically “close enough”

Recall. Any algorithm with the following structure takes $\Theta(n \log n)$ time.

```
public static void f(int n) {
    if (n == 0) return;
    f(n / 2);           | ← solve two problems
    f(n / 2);           | ← of half the size
    linear(n);          ← do  $\Theta(n)$  work
}
```

Quicksort: probabilistic analysis

Proposition. The expected number of compares C_n to quicksort an array of n distinct keys is $\sim 2n \ln n$ (and the number of exchanges is $\sim \frac{1}{3}n \ln n$).

Pf. C_n satisfies the recurrence $C_0 = C_1 = 0$ and for $n \geq 2$:

$$C_n = (n+1) + \left(\frac{C_0 + C_{n-1}}{n} \right) + \left(\frac{C_1 + C_{n-2}}{n} \right) + \dots + \left(\frac{C_{n-1} + C_0}{n} \right)$$

partitioning *left* *right*

partitioning probability

- Multiply both sides by n and collect terms:

$$nC_n = n(n+1) + 2(C_0 + C_1 + \dots + C_{n-1})$$

- Subtract from this equation the same equation for $n-1$:

$$nC_n - (n-1)C_{n-1} = 2n + 2C_{n-1}$$

- Rearrange terms and divide by $n(n+1)$:

$$\frac{C_n}{n+1} = \frac{C_{n-1}}{n} + \frac{2}{n+1}$$

analysis beyond
scope of this course

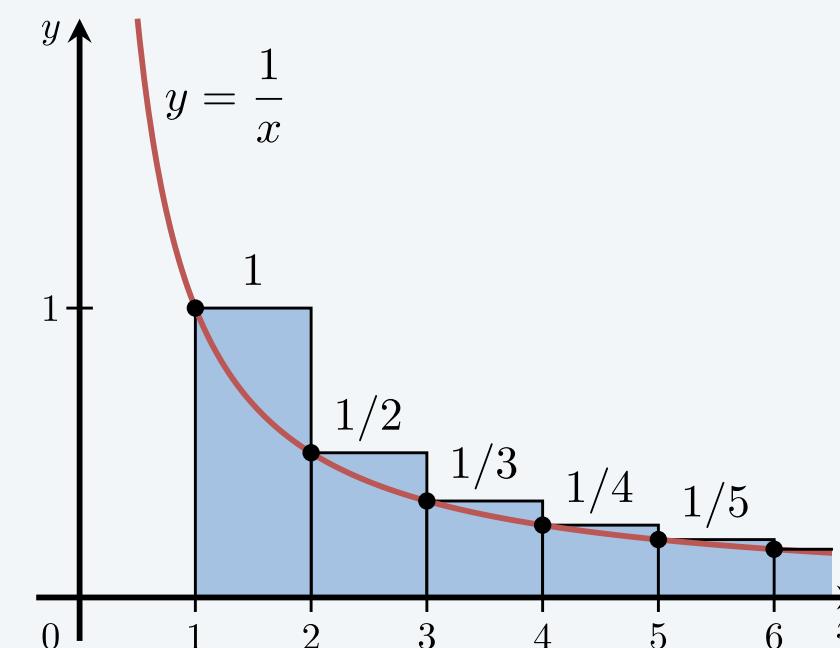
Quicksort: probabilistic analysis

- Repeatedly apply previous equation:

$$\begin{aligned}\frac{C_n}{n+1} &= \frac{C_{n-1}}{n} + \frac{2}{n+1} \\ &= \frac{C_{n-2}}{n-1} + \frac{2}{n} + \frac{2}{n+1} \quad \leftarrow \text{ substitute previous equation} \\ &= \frac{C_{n-3}}{n-2} + \frac{2}{n-1} + \frac{2}{n} + \frac{2}{n+1} \\ &= \frac{2}{3} + \frac{2}{4} + \frac{2}{5} + \dots + \frac{2}{n+1}\end{aligned}$$

- Approximate sum by an integral:

$$\begin{aligned}C_n &= 2(n+1) \left(\frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \dots + \frac{1}{n+1} \right) \\ &\sim 2(n+1) \int_3^{n+1} \frac{1}{x} dx\end{aligned}$$



- Finally, the desired result:

$$C_n \sim 2(n+1) \ln n \approx 1.39 n \lg n$$

Quicksort properties

Quicksort analysis summary.

- Expected number of compares is $\sim 1.39 n \log_2 n$.
[standard deviation is $\sim 0.65 n$]
- Expected number of exchanges is $\sim 0.23 n \log_2 n$. \leftarrow much less than mergesort
- Min number of compares is $\sim n \log_2 n$. \leftarrow never less than mergesort
- Max number of compares is $\sim \frac{1}{2} n^2$. \leftarrow but never happens

Context. Quicksort is a (Las Vegas) randomized algorithm.

- Guaranteed to be correct.
- Running time depends on outcomes of random coin flips (shuffle).

Quicksort properties

Proposition. Quicksort is an **in-place** sorting algorithm.

- Partitioning: $\Theta(1)$ extra space.
- Function-call stack: $\Theta(\log n)$ extra space (with high probability).

can guarantee $\Theta(\log n)$ depth by recurring on smaller subarray before larger subarray (but this involves using an explicit stack)

Proposition. Quicksort is **not stable**.

Pf. [by counterexample]

i	j	0	1	2	3
		B_1	C_1	C_2	A_1
1	3	B_1	C_1	C_2	A_1
1	3	B_1	A_1	C_2	C_1
0	1	A_1	B_1	C_2	C_1

Quicksort: practical improvements

Insertion sort small subarrays.

- Even quicksort has too much overhead for tiny subarrays.
- Cutoff to insertion sort for ≈ 10 elements.

```
private static void sort(Comparable[] a, int lo, int hi) {  
  
    if (hi <= lo + CUTOFF - 1) {  
        Insertion.sort(a, lo, hi);  
        return;  
    }  
  
    int j = partition(a, lo, hi);  
    sort(a, lo, j-1);  
    sort(a, j+1, hi);  
}
```

Quicksort: practical improvements

Median of sample.

- Best choice for pivot = median element.
- Estimate true median by taking median of sample.
- Median-of-3 (random) elements.

$\sim \frac{12}{7} n \ln n$ compares (14% fewer)
 $\sim \frac{12}{35} n \ln n$ exchanges (3% more)

```
private static void sort(Comparable[] a, int lo, int hi) {  
    if (hi <= lo) return;  
  
    int median = medianOf3(a, lo, mid + (hi - lo) / 2, hi);  
    swap(a, lo, median);  
  
    int j = partition(a, lo, hi);  
    sort(a, lo, j-1);  
    sort(a, j+1, hi);  
}
```


2.3 QUICKSORT

- ▶ *quicksort*
- ▶ **selection**
- ▶ *duplicate keys*
- ▶ *system sorts*

Selection

Goal. Given an unsorted array of n elements and an integer k , find element of rank k .

Ex. Min ($k = 0$), max ($k = n - 1$), median ($k = n/2$).

Applications.

- Order statistics: median, quantiles, deciles, ...
- Outlier detection: find the top k .

Use complexity theory as a guide.

- Easy $O(n \log n)$ algorithm. How?
- Easy $O(n)$ algorithm for $k = 0$ or 1 . How?
- Easy $\Omega(n)$ lower bound. Why?

Which is true?

- $O(n)$ algorithm? [is there a linear-time algorithm?]
- $\Omega(n \log n)$ lower bound? [is selection as hard as sorting?]

*element that would appear
at index k if array were sorted
(k^{th} smallest with 0-based indexing)*

Quickselect demo

Partition array so that for some j :

- Entry $a[j]$ is in place.
- No larger entry to the left of j .
- No smaller entry to the right of j .

Repeat in only **one** subarray, depending on j ; stop when j equals k .

select element of rank $k = 5$

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
50	21	28	65	39	59	56	22	95	12	90	53	32	77	33

$k = 5$

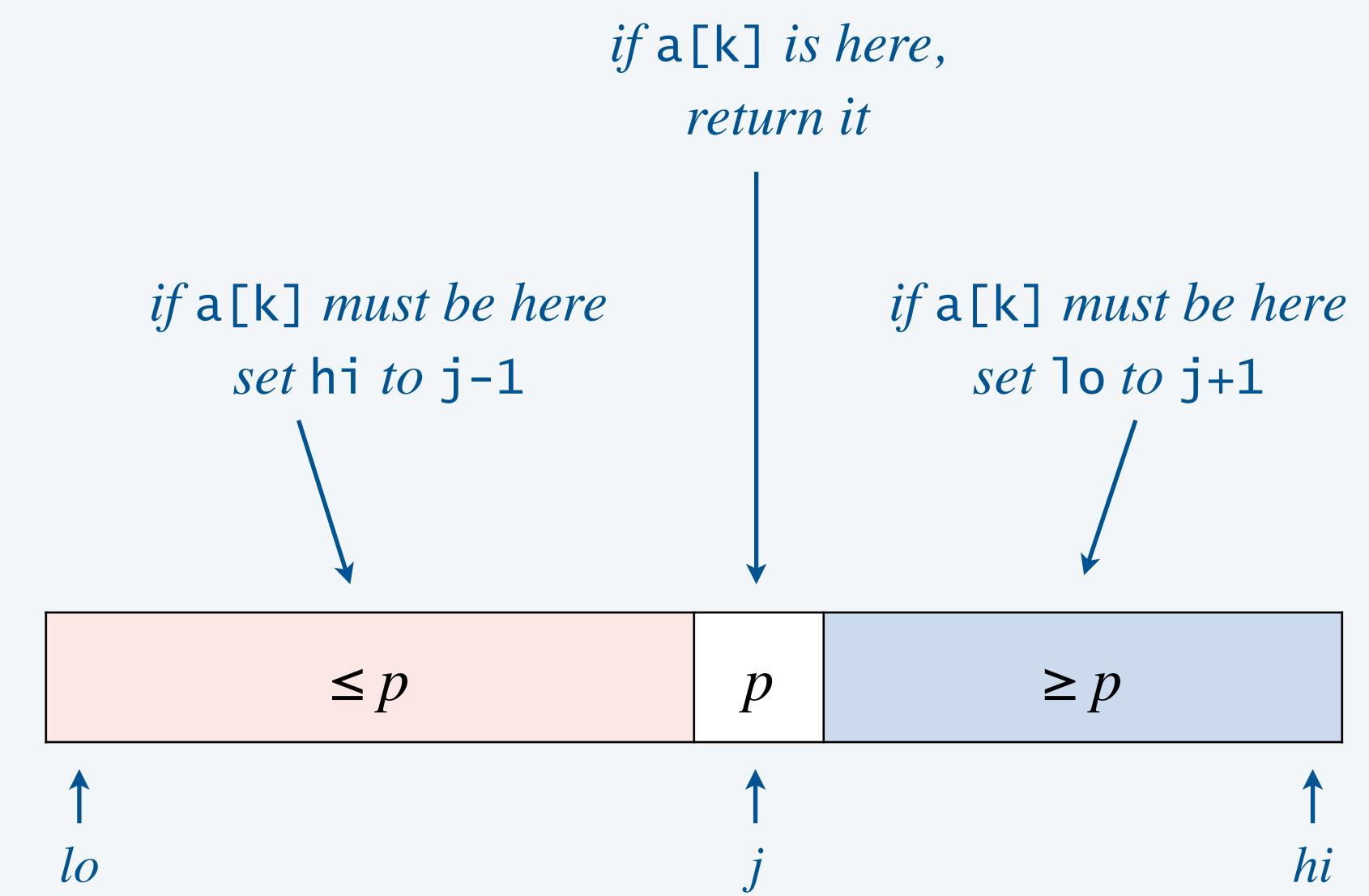
Quickselect

Partition array so that for some j :

- Entry $a[j]$ is in place.
- No larger entry to the left of j .
- No smaller entry to the right of j .

Repeat in only **one** subarray, depending on j ; stop when j equals k .

```
public static Comparable select(Comparable[] a, int k) {  
    StdRandom.shuffle(a);  
    int lo = 0, hi = a.length - 1;  
    while (hi > lo) {  
        int j = partition(a, lo, hi);  
        if (j < k) lo = j + 1;  
        else if (j > k) hi = j - 1;  
        else return a[k];  
    }  
    return a[k];  
}
```



Quickselect: probabilistic analysis

Proposition. The expected number of compares C_n to quickselect the element of rank k in an array of length n is $\Theta(n)$.

Intuition. Each partitioning step approximately halves the length of the array.

Recall. Any algorithm with the following divide-and-conquer structure takes $\Theta(n)$ time.

```
public static void f(int n) {  
    if (n == 0) return;  
    linear(n);    ← do  $\Theta(n)$  work  
    f(n/2);      ← solve one subproblem of half the size  
}
```

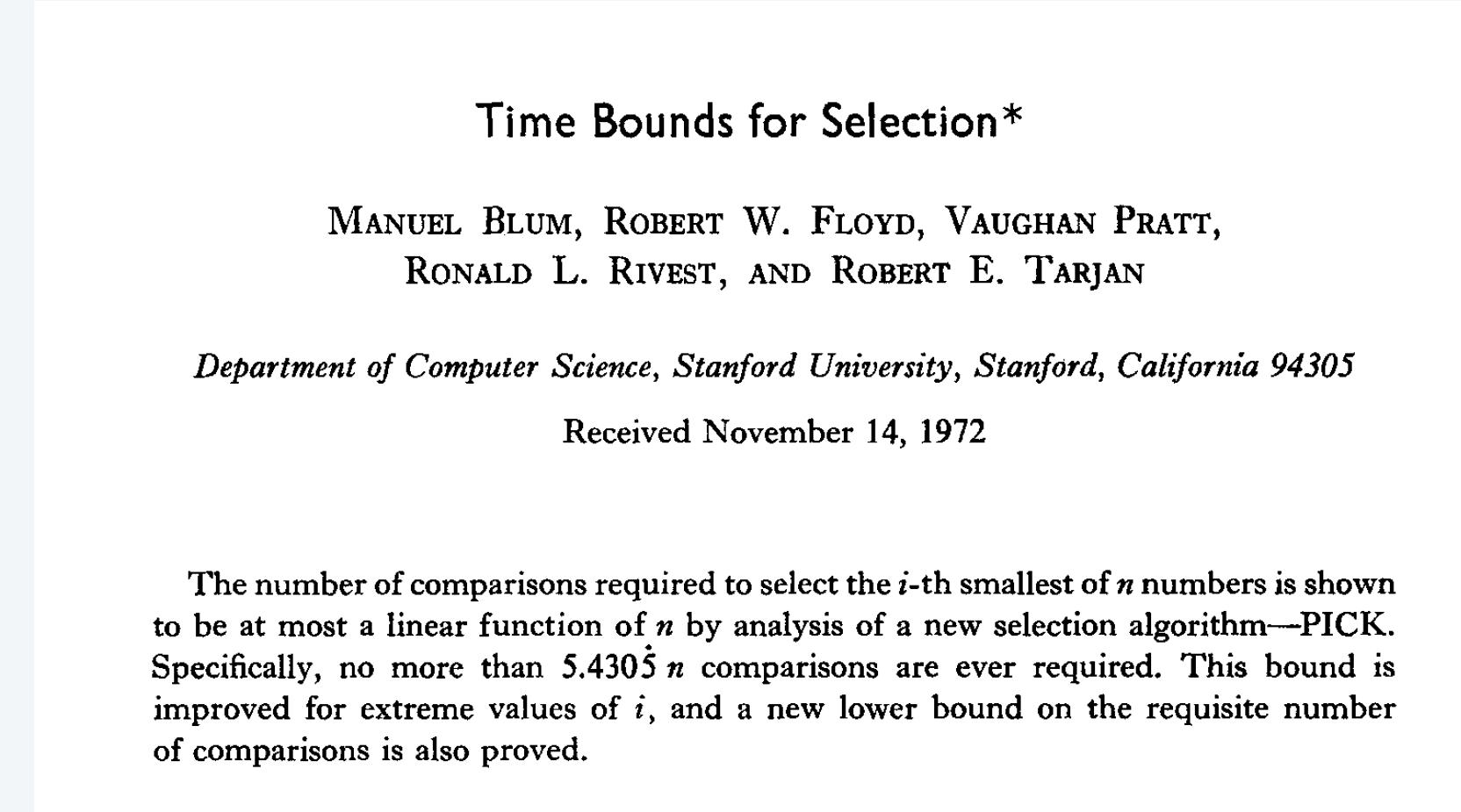
$$n + \frac{n}{2} + \frac{n}{4} + \dots + 1 \sim 2n$$

Careful analysis yields: $C_n \sim 2n + 2k \ln \left(\frac{n}{k} \right) + 2(n-k) \ln \left(\frac{n}{n-k} \right)$ | ← max occurs for median ($k = \frac{n}{2}$)
 $\leq (2 + 2 \ln 2) n$
 $\approx 3.38 n$

Theoretical context for selection

Q. Compare-based selection algorithm that makes $\Theta(n)$ compares in the **worst case**?

A. Yes! [ingenious divide-and-conquer]



$$T(n) = T\left(\frac{n}{5}\right) + T\left(\frac{7n}{10}\right) + \Theta(n)$$

↑ *↑*
find pivot *that eliminates*
("median of medians") *30% of elements*

Caveat. Constants are high \Rightarrow not used in practice.

Use theory as a guide.

- Open problem: **practical** selection algorithm that makes $\Theta(n)$ compares in the worst case.
- Until one is discovered, use quickselect (if you don't need a full sort).

2.3 QUICKSORT

- *quicksort*
- *selection*
- *duplicate keys*
- *system sorts*

Duplicate keys

Often, purpose of sort is to bring elements with equal keys together.

- Sort population by age.
- Remove duplicates from mailing list.
- Sort job applicants by college attended.

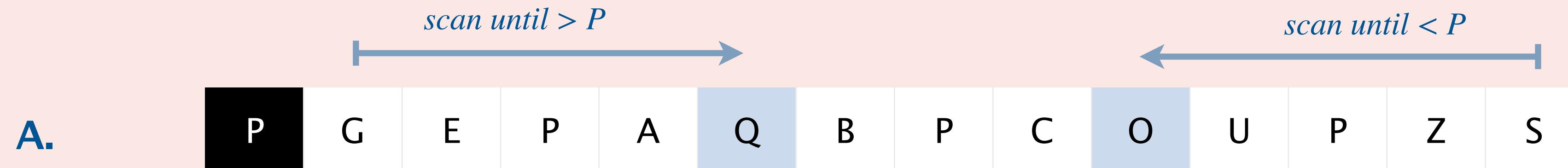
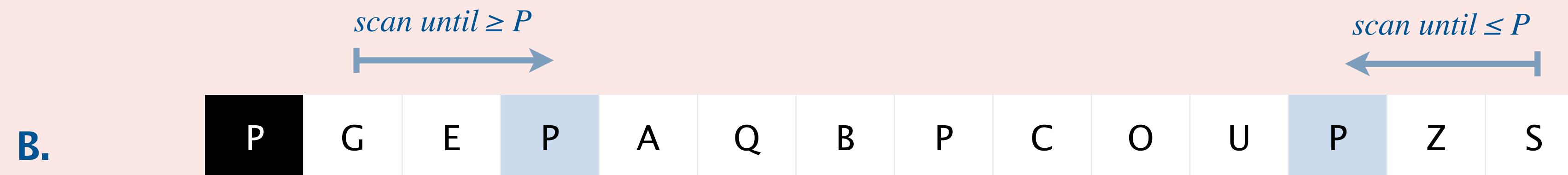
Typical characteristics of such applications.

- Huge array.
- Small number of key values.

Chicago	09:25:52
Chicago	09:03:13
Chicago	09:21:05
Chicago	09:19:46
Chicago	09:19:32
Chicago	09:00:00
Chicago	09:35:21
Chicago	09:00:59
Houston	09:01:10
Houston	09:00:13
Phoenix	09:37:44
Phoenix	09:00:03
Phoenix	09:14:25
Seattle	09:10:25
Seattle	09:36:14
Seattle	09:22:43
Seattle	09:10:11
Seattle	09:22:54

key

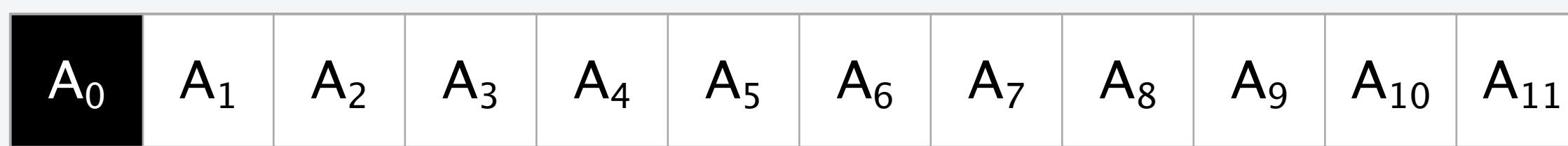
When partitioning, how to handle keys equal to pivot?



C. Either A or B.

War story (system sort in C)

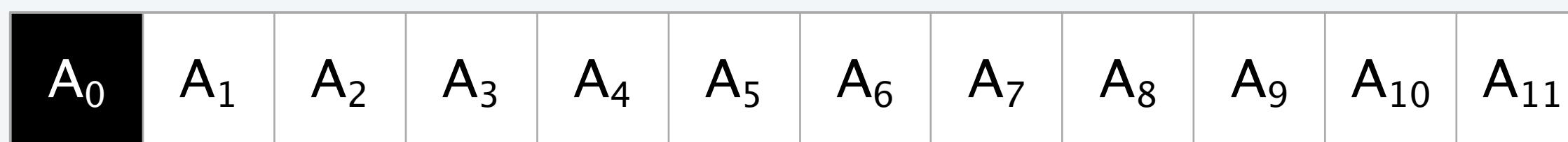
Bug. A `qsort()` call in C that should have taken seconds was taking minutes to sort a random array of 0s and 1s.



skip over equal keys

↑
 i

↑
 j



stop scan on equal keys

↑
 i

↑
 j

Duplicate keys: partitioning strategies

Bad. Don't stop scans on equal keys.

[$\Theta(n^2)$ compares when all keys equal]

A	A	A	A	A	A	A	A	A	A	A	A	A
---	---	---	---	---	---	---	---	---	---	---	---	---

Good. Stop scans on equal keys.

[$\sim n \log_2 n$ compares when all keys equal]

A	A	A	A	A	A	A	A	A	A	A	A	A
---	---	---	---	---	---	---	---	---	---	---	---	---

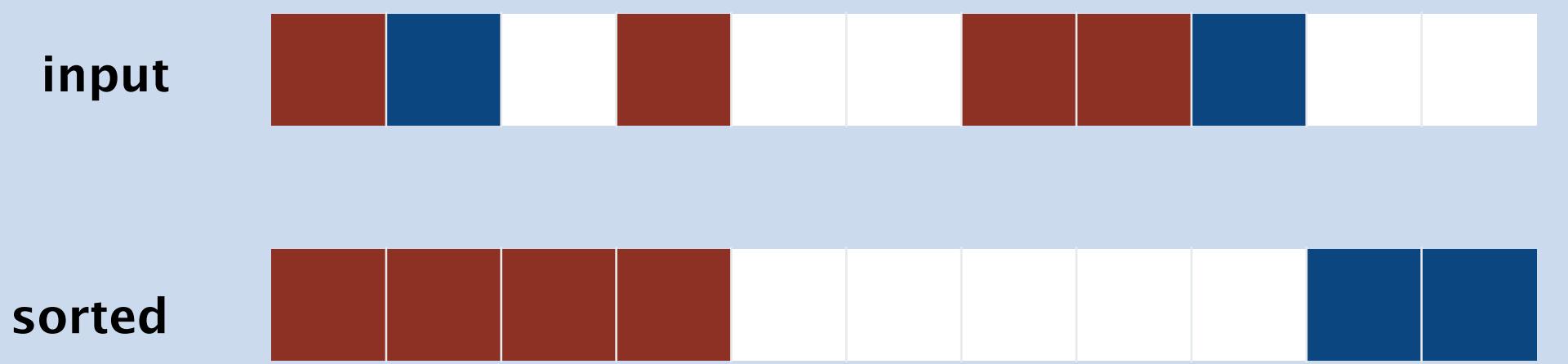
Better. Put all equal keys in place. How?

[$\sim n$ compares when all keys equal]

A	A	A	A	A	A	A	A	A	A	A	A	A
---	---	---	---	---	---	---	---	---	---	---	---	---

Dutch National Flag Problem

Problem. [Edsger Dijkstra] Given an array of n buckets, each containing a red, white, or blue pebble, sort them by color.



Operations allowed.

- $swap(i, j)$: swap the pebble in bucket i with the pebble in bucket j .
- $getColor(i)$: determine the color of the pebble in bucket i .

Performance requirements.

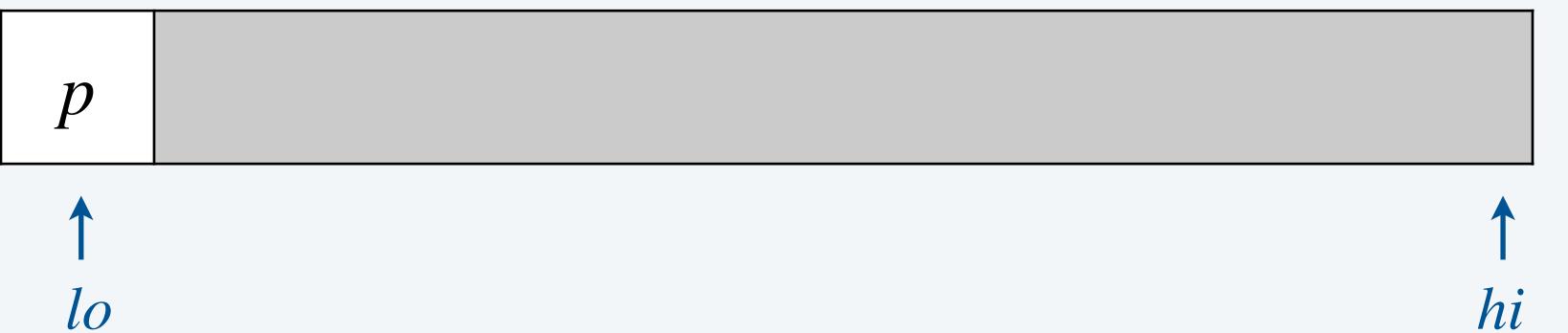
- Exactly n calls to $getColor()$.
- At most n calls to $swap()$.
- $\Theta(1)$ extra space.

3-way partitioning

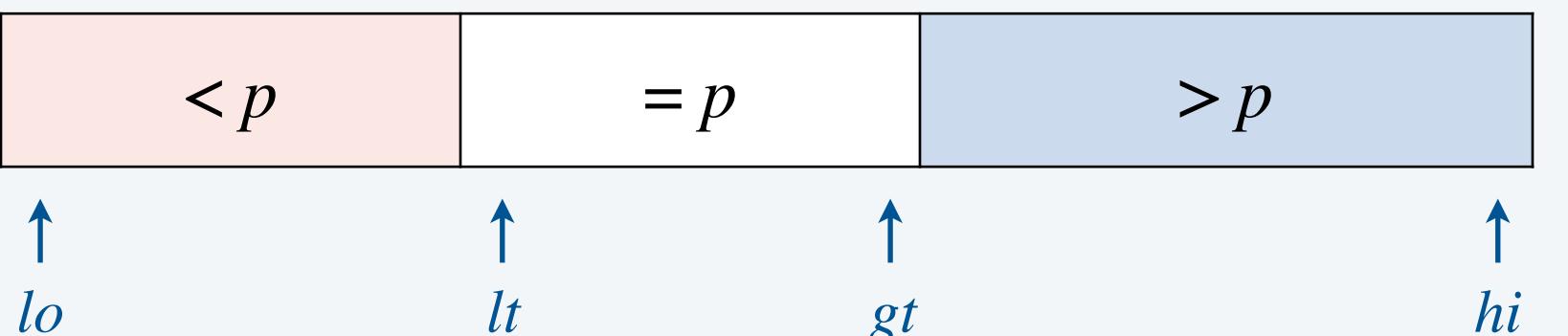
Goal. Use pivot $p = a[lo]$ to partition array into **three** parts so that:

- Red: smaller entries to the left of lt .
- White: equal entries between lt and gt .
- Blue: larger entries to the right of gt .

before



after

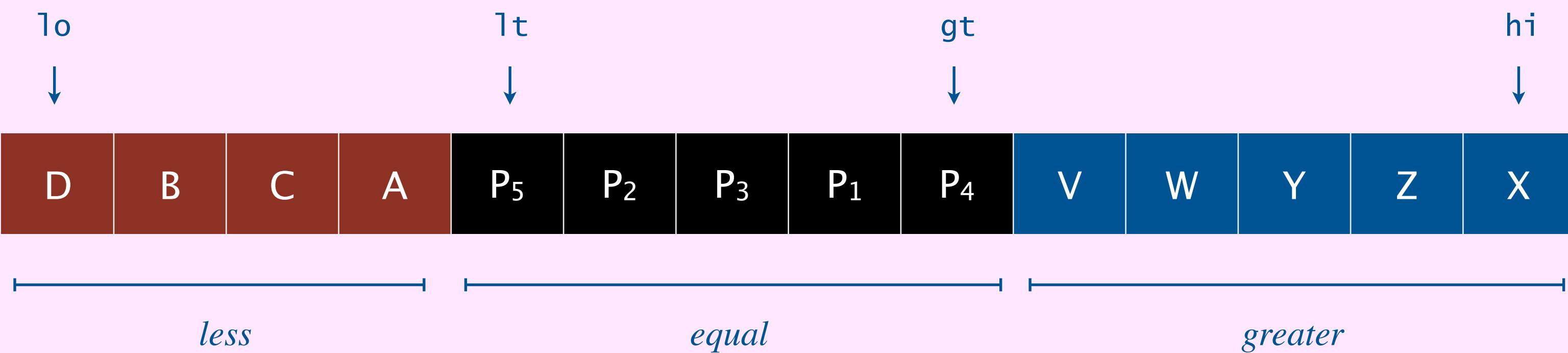


Dijkstra's 3-way partitioning algorithm: demo

- Let $p = a[lo]$ be pivot.
- Scan i from left to right and compare $a[i]$ to p .
 - less: exchange $a[i]$ with $a[lt]$; increment both lt and i
 - greater: exchange $a[i]$ with $a[gt]$; decrement gt
 - equal: increment i

Dijkstra's 3-way partitioning algorithm: demo

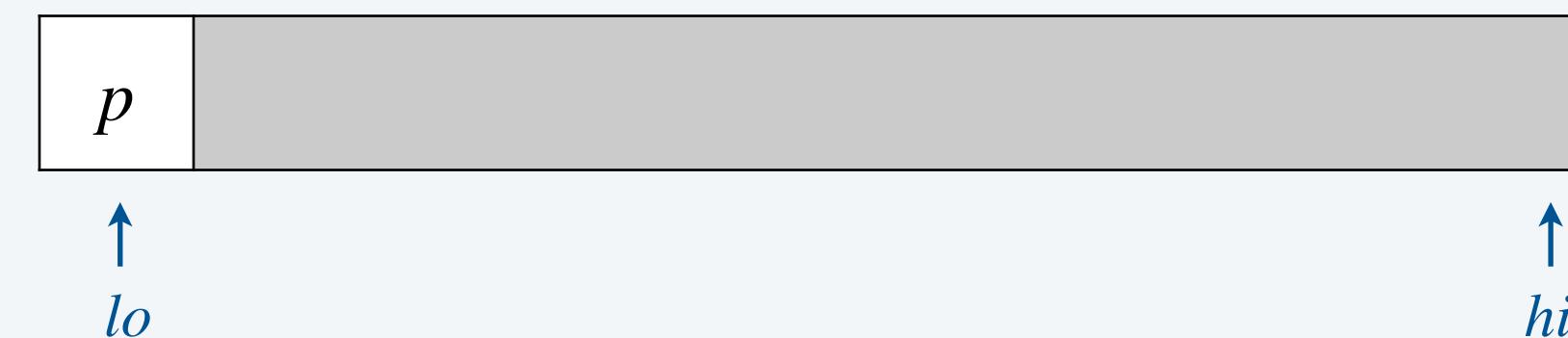
- Let $p = a[lo]$ be pivot.
- Scan i from left to right and compare $a[i]$ to p .
 - less: exchange $a[i]$ with $a[lt]$; increment both lt and i
 - greater: exchange $a[i]$ with $a[gt]$; decrement gt
 - equal: increment i



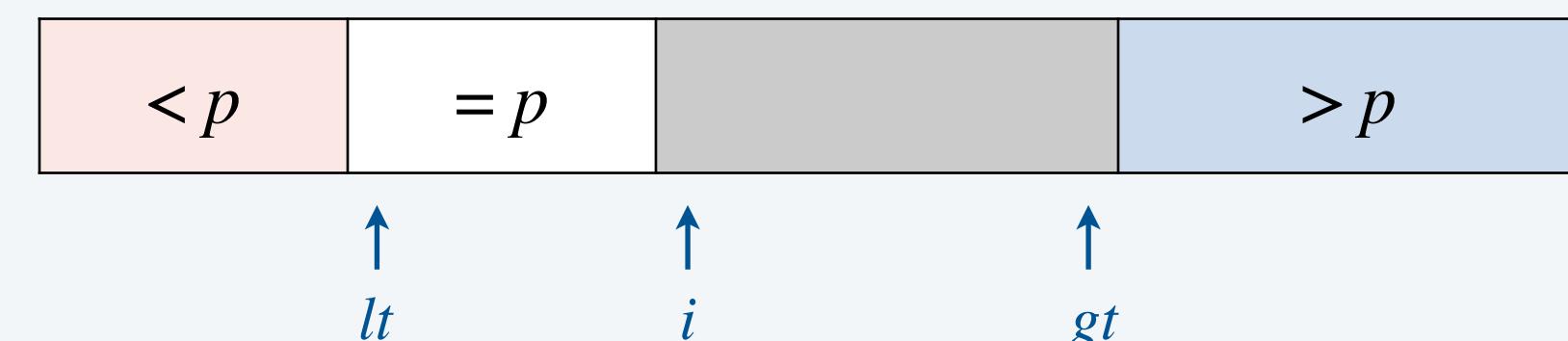
3-way quicksort: Java implementation

```
private static void sort(Comparable[] a, int lo, int hi) {  
    if (hi <= lo) return;  
    Comparable p = a[lo];  
  
    int lt = lo, gt = hi;  
    int i = lo + 1;  
    while (i <= gt) {  
        int cmp = a[i].compareTo(p);  
        if (cmp < 0) exch(a, lt++, i++);  
        else if (cmp > 0) exch(a, i, gt--);  
        else i++;  
    }  
  
    sort(a, lo, lt - 1);  
    sort(a, gt + 1, hi);  
}
```

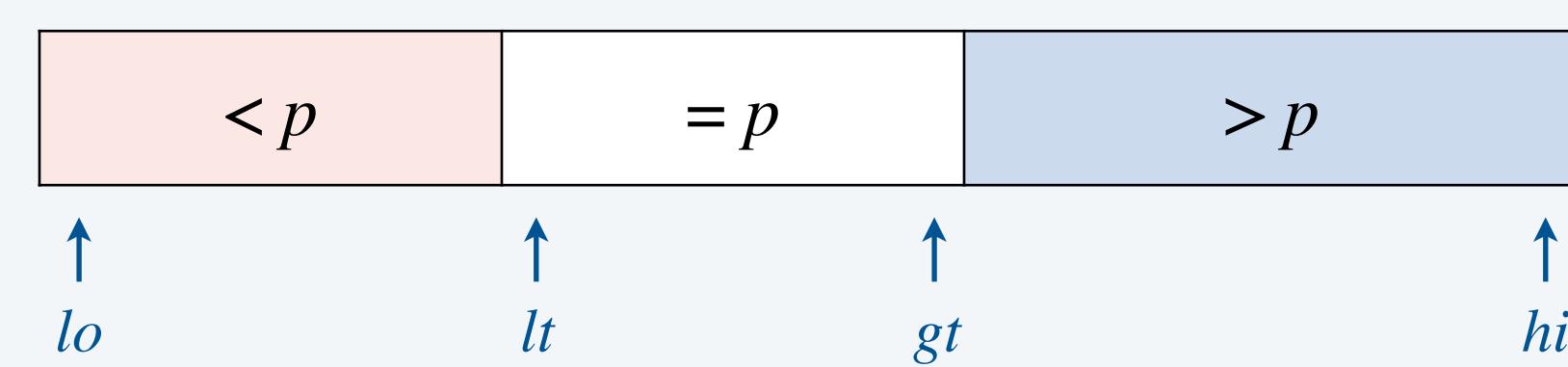
start of function



start of each iteration of while loop



end of function



What is the worst-case number of compares to 3-way quicksort an array of length n containing only 7 distinct values?

- A. $\Theta(n)$
- B. $\Theta(n \log n)$
- C. $\Theta(n^2)$
- D. $\Theta(n^7)$



Sorting summary

	inplace?	stable?	best	typical	worst	remarks
selection	✓		$\frac{1}{2} n^2$	$\frac{1}{2} n^2$	$\frac{1}{2} n^2$	n exchanges
insertion	✓	✓	n	$\frac{1}{4} n^2$	$\frac{1}{2} n^2$	use for small n or partially sorted arrays
merge		✓	$\frac{1}{2} n \log_2 n$	$n \log_2 n$	$n \log_2 n$	$\Theta(n \log n)$ guarantee; stable
timsort		✓	n	$n \log_2 n$	$n \log_2 n$	improves mergesort when pre-existing order
quick	✓		$n \log_2 n$	$2 n \ln n$	$\frac{1}{2} n^2$	$\Theta(n \log n)$ probabilistic guarantee; fastest in practice
3-way quick	✓		n	$2 n \ln n$	$\frac{1}{2} n^2$	improves quicksort when duplicate keys
?	✓	✓	n	$n \log_2 n$	$n \log_2 n$	holy sorting grail

number of compares to sort an array of n elements (tilde notation)

2.3 QUICKSORT

- *quicksort*
- *selection*
- *duplicate keys*
- ***system sorts***

Sorting applications

Sorting algorithms are essential in a broad variety of applications:

- Sort a list of names.
- Organize an MP3 library.
- Display Google PageRank results.
- List RSS feed in reverse chronological order.

obvious applications

- Find the median.
- Identify statistical outliers.
- Binary search in a database.
- Find duplicates in a mailing list.

*problems become easy once
elements are in sorted order*

- Data compression.
- Computer graphics.
- Computational biology.
- Load balancing on a parallel computer.

non-obvious applications

...

Engineering a system sort (in 1990s)

Bentley-McIlroy quicksort.

- Cutoff to insertion sort for small subarrays.
- Pivot selection: median of 3 or Tukey's ninther.
- Partitioning scheme: Bentley-McIlroy 3-way partitioning.

sample 9 elements

*similar to Dijkstra 3-way partitioning
(but fewer exchanges when not many equal keys)*

Engineering a Sort Function

JON L. BENTLEY

M. DOUGLAS McILROY

AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974, U.S.A.

SUMMARY

We recount the history of a new `qsort` function for a C library. Our function is clearer, faster and more robust than existing sorts. It chooses partitioning elements by a new sampling scheme; it partitions by a novel solution to Dijkstra's Dutch National Flag problem; and it swaps efficiently. Its behavior was assessed with timing and debugging testbeds, and with a program to certify performance. The design techniques apply in domains beyond sorting.

In the wild. C, C++, Java 6,

A Java mailing list post (Yaroslavskiy, September 2009)

Replacement of quicksort in `java.util.Arrays` with new dual-pivot quicksort

Hello All,

I'd like to share with you new **Dual-Pivot Quicksort** which is faster than the known implementations (theoretically and experimental). I'd like to propose to replace the JDK's Quicksort implementation by new one.

...

The new Dual-Pivot Quicksort uses ***two*** pivots elements in this manner:

1. Pick an elements P_1, P_2 , called pivots from the array.
2. Assume that $P_1 \leq P_2$, otherwise swap it.
3. Reorder the array into three parts: those less than the smaller pivot, those larger than the larger pivot, and in between are those elements between (or equal to) the two pivots.
4. Recursively sort the sub-arrays.

The invariant of the Dual-Pivot Quicksort is:

$[< P_1 \mid P_1 \leq & \leq P_2 \} > P_2]$

...

Another Java mailing list post (Yaroslavskiy-Bloch-Bentley)

Replacement of quicksort in java.util.Arrays with new dual-pivot quicksort

Date: Thu, 29 Oct 2009 11:19:39 +0000

Subject: Replace quicksort in java.util.Arrays with dual-pivot implementation

Changeset: b05abb410c52

Author: alanb

Date: 2009-10-29 11:18 +0000

URL: <http://hg.openjdk.java.net/jdk7/t1/jdk/rev/b05abb410c52>

6880672: Replace quicksort in java.util.Arrays with dual-pivot implementation

Reviewed-by: jjb

Contributed-by: vladimir.yaroslavskiy at sun.com, joshua.bloch at google.com, jbentley at avaya.com

! src/share/classes/java/util/Arrays.java

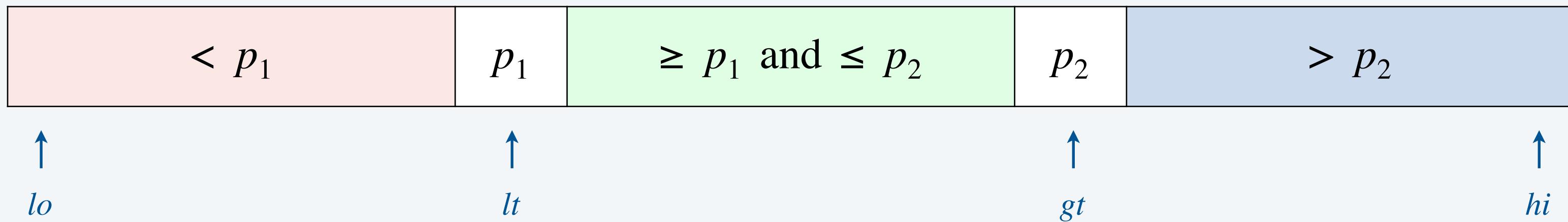
+ src/share/classes/java/util/DualPivotQuicksort.java

<https://mail.openjdk.java.net/pipermail/compiler-dev/2009-October.txt>

Dual-pivot quicksort

Use two pivots p_1 and p_2 with $p_1 \leq p_2$ and partition into three subarrays:

- Keys less than p_1 .
- Keys between p_1 and p_2 .
- Keys greater than p_2 .



Recursively sort three subarrays (skip middle subarray if $p_1 = p_2$).

degenerates to Dijkstra's 3-way partitioning

In the wild. Java 8-25, Python unstable sort, Android, ...

Premise. Suppose you are the lead architect of a new programming language.

Q. Which sorting algorithm(s) would you choose for the system sort? Defend your answer.

System sorts: Java 8 to Java 25+

Java system sort: `Arrays.sort()`

- A method for `Comparable` objects.
- An overloaded method for use with a `Comparator`.
- An overloaded method for each primitive type.
- And overloaded methods for sorting subarrays.

Core algorithms.

- Optimized version of mergesort (`Timsort`) for reference types.
- Optimized version of quicksort (`dual-pivot quicksort`) for primitive types.

Q. Why different algorithms for primitive and reference types?

Bottom line. Use the system sort!

Credits

image	source	license
<i>C.A.R. Hoare</i>	Wikimedia	CC BY-SA 2.0 FR
<i>Bob Sedgewick</i>	sedgewick.io	by author
<i>Music of Quicksort</i>	Brad F. Lyon	
<i>Coin Toss</i>	Clipground	CC BY 4.0
<i>Magnifying Glass and Code</i>	Adobe Stock	Education License
<i>Computer and Supercomputer</i>	New York Times	
<i>Apocalypse Network Skin</i>	istyles.com	
<i>Harmonic Integral</i>	Wikimedia	public domain
<i>Programmer Icon</i>	Jaime Botero	public domain
<i>Dutch National Flag</i>	Adobe Stock	Education License
<i>Princeton COS '13 T-Shirt</i>	Ruth Dannenfelser *20	by author

A final thought

```
k) lo = i + 1; else return a[i]; } return a[lo]; } p
mpareTo(w) < 0); } private static void exch(Object[] a,
private static boolean isSorted(Comparable[] a) { return
ted(Comparable[] a, int lo, int hi) { for (int i = lo + 1;
n true; } private static void show(Comparable[] a) { for (in
public static void main(String[] args) { String[] a = StdIn.re
or (int i = 0; i < a.length; i++) { String ith = (String) Quick.
public class Quick { public static void sort(Comparable[] a) { S1
static void sort(Comparable[] a, int lo, int hi) { if (hi <= lo)
(a, lo, j-1); sort(a, j+1, hi); } private static boolean isSorted(a, lo, hi);
lo, int hi) { int i = lo; Comparable v = a[i];
ak; while (less(v, a[i+1])) { i++; if (i >= hi) break; if (i >= j)
ic static Comparable select(Comparable[] a, int k) { if (k < 1) {
lected element out of b
dRandom.shuffle(a); int i = partition(a, lo, hi); if (i == k) return a[i];
else if (i < k) lo = i + 1; else if (i > k) hi = i - 1; else if (i < k) lo
boolean less(Comparable v, Comparable w) { return (v.compar
int j) { Object swap = a[i]; a[i] = a[j]; a[j] = swap; } pri
n isSorted(a, 0, a.length - 1); } private static boolean is
1; i <= hi; i++) if (less(a[i], a[i-1])) return false; re
int i = 0; i < a.length; i++) { StdOut.println(a[i]); }
= StdIn.readStrings(); Quick.sort(a); show(a); StdOut
ring) Quick.select(a, i); StdOut.println(ith); } } }
andom.shuffle(a); sort(a, 0, a.length - 1); } priv
eturn; int j = partition(a, lo, hi); sort(a, lo, j-1);
static int partition(Comparable[] a, int lo, int hi)
) { while (less(a[++i], a[i])) exch(a, lo, i); if (i >= hi) {
a, i, j); } exch(a, lo, j); if (j <= hi) return j;
0, hi = a.length - 1; else return a[i]; } re
mpareTo(w) < 0); } private static void exch(Comparable[] a,
private static boolean isSorted(Comparable[] a, int lo, int hi)
ted(Comparable[] a, int lo, int hi) { for (int i = lo + 1;
n true; } private static void show(Comparable[] a) { for (in
public static void main(String[] args) { String[] a = StdIn.re
or (int i = 0; i < a.length; i++) { String ith = (String) Quick.
public class Quick { public static void sort(Comparable[] a,
(a, lo, i-1); sort(a, i+1, hi); }
```