A 1 g Or 1 [h 1IMS ROBERT SEDGEWICK | KEVIN WAYNE

2.3 QUICKSORT

> quicksort
> selection
» duplicate keys

> system sorts

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Two classic sorting algorithms: mergesort and quicksort

Critical components in the world’s computational infrastructure.
» Full scientific understanding of their properties has enabled us
to develop them into practical system sorts.

* Quicksort honored as one of the top 10 algorithms of 20™ century in STEM.

Quicksort. [this lecture]

A brief history

Tony Hoare.

* |Invented quicksort in 1960
« Later learned Algol 60 (an

ALGORITHM 64

QUICKSORT

C. A. R. Hoare

Elliott Brothers Ltd., Borehamwood, Hertfordshire, Eng.

procedure quicksort (A,M,N); value M,N;
array A; integer M,N;
comment Quicksort is a very fast and convenient method of
sorting an array in the random-access store of a computer. The
entire contents of the store may be sorted, since no extra space is
required. The average number of comparisons made is 2(M—N) In
(N—M), and the average number of exchanges is one sixth this
amount. Suitable refinements of this method will be desirable for
its implementation on any actual computer;
begin integer 1,J;
if M < N then begin partition (A,M,N,1,J);
quicksort (A,M,J);
quicksort (A, I, N)
end
end quicksort

Bob Sedgewick.

Programming S. L. Graham, R. L. Rivest
Techniques Editors
Implementing

Quicksort Programs

Robert Sedgewick
Brown University

This paper is a practical study of how to implement
the Quicksort sorting algorithm and its best variants on
real computers, including how to apply various code
optimization techniques. A detailed implementation
combining the most effective improvements to
Quicksort is given, along with a discussion of how to
impl it in bly 1 Analytic results
describing the performance of the programs are
summarized. A variety of special situations are
considered from a practical standpoint to illustrate
Quicksort’s wide applicability as an internal sorting
method which requires negligible extra storage.

Key Words and Phrases: Quicksort, analysis of
algorithms, code optimization, sorting

CR Categories: 4.0, 4.6, 5.25, 5.31, 5.5

to translate Russian into English.

recursion) to implement it.

Acta Informatica 7, 327—355 (1977)
© by Springer-Verlag 1977

The Analysis of Quicksort Programs™
Robert Sedgewick

Received January 19, 1976

Summary. The Quicksort sorting algorithm and its best variants are presented
and analyzed. Results are derived which make it possible to obtain exact formulas de-
scribing the total expected running time of particular implementations on real com-
puters of Quicksort and an improvement called the median-of-three modification.
Detailed analysis of the effect of an implementation technique called loop unwrapping
is presented. The paper isintended not only to present results of direct practical utility,
but also to illustrate the intriguing mathematics which arises in the complete analysis
of this important algorithm.

» Refined and popularized quicksort in 1970s.

* Analyzed many versions of quicksort.

Tony Hoare
1980 Turing Award

N\
\\
I

Bob Sedgewick

2.3 QUICKSORT

> quicksort

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Quicksort overview

Step 1. Shuffle the array.

Step 2. Partition the array so that, for some index j :
* Entry a[j] is in place. <—— “pivot” or “partitioning element”
* No larger entry to the left of j.
* No smaller entry to the right of j.

Step 3. Sort each subarray recursively.

nput Q U I C K $ O R T E X A M P

shuffle K A T E L E P U I M Q C
partitioning item
partition E C A I E K L P U T M Q R X
™ not greater not less =~

sortleft A C E E 1
sort right L M O P Q R
resut A C E E I K L M O P Q R S T

Quicksort partitioning demo

Repeat until pointers cross:

* Scan i from left to right so long as a[i] < a[lo].

* Scan j from right to left so long as a[j] > a[lo].

 Exchange a[i] with a[j].

stop i scan because ali] >= a[lo]

Quicksort partitioning demo

Repeat until pointers cross:

* Scan i from left to right so long as ali:

* Scan j from right to left so long as a[j]

 Exchange a[i] with a[j].

When pointers cross. Exchange a[1o] with a[j].

<

>

d

d

1o].

1o].

<K

AN
a I /
! 1
1o J

partitioned!

The music of quicksort partitioning (by Brad Lyon)

)

New New (Small)

il

Naxt Step

I

Increasing

Do Auto

il

Decreasing

HHHHH

The value was larger than
the pivot, so the lower
one waits while the upper
one comes down

[

We will now start coming
down from the right

|

https://learnforeverlearn.com/pivot_music

Quicksort partitioning: Java implementation

private static int partition(Comparable[] a, i1nt lo, 1nt hi) {
Comparable pivot = allo];
int 1 = lo, jJ = hi+l;
while (true) {

while (less(al++1], pivot))
1f (1 == hi1) break;

< find next element on left

while (less(pivot, al--j]1))
it (J == lo) break;

find next element on right

1t (1 >= J) break; < check if pointers cross
exch(Ca, 1, J); < swap two elements

exch(a, lo, J); =« swap with pivot

return J; < index of element known to be in place

start of function

P
t
lo hi
start of each iteration of while loop
P =p = p
t t
l J
end of function
=p P = p
| t t

lo J hi

https://algs4.cs.princeton.edu/23quick/Quick.java.html

Quicksort: partitioning analysis

Proposition. In the worst case, the partitioning algorithm makes n + 1 compares

and [n/2] exchanges to partition an array of length n, using ®(1) extra space.

Pf.
 Each element is compared against the pivot once.

* Each exchange in the while loop puts two elements in their final position.

scan until < M

scan until = M

A B C D E v W X Y /

10

Quicksort: Java implementation

public class Quick {

private static int partition(Comparable[] a, 1nt lo, 1int hi) {

}

public static void sort(Comparable[] a) {
StdRandom.shuffle(a); = shuffle needed for performance
sort(a, 0, a.length - 1); guarantee (stay tuned)

private static void sort(Comparable[] a, 1int lo, int hi1) {
1f (hi1 <= 1o) return;
int jJ = partition(a, lo, hi); <—— partition array
sort(a, lo, J-1); <«—— sortleft subarray
sort(a, jJ+1, h1); <«<—— sortright subarray

11

https://algs4.cs.princeton.edu/23quick/Quick.java.html

Quicksort trace

1o
initial values
random shuffle

0

0

0

0

/ ;

no partition 7

for subarrays v

of size] T~

10

10

10

14

result

O N W U

N O O

13
12
11

14

= N B Ut

15
15

15
12
11

15

~ I \nu
— m O |3
U 0O A |~
cC cC —|oo
— H M|
== X|O

> > mmRXLO|O
OO OO A3 C|K
m > > > H(N

m - — N |Ww
HMmMmAX|&

= <
O O O C

OO0 0N

A CE E I K L M O P Q

Quicksort trace (array contents after each partition)

oo x|

o0

a0 0

AN <N

A

n

X X T |w

X< X

OO r|&

c O

LN N Mmoo

n n

12

Quicksort animation

50 random elements

https://www.toptal.com/developers/sorting-algorithms/quick-sort

>

algorithm position
in order
current subarray

not in order

13

http://www.sorting-algorithms.com/quick-sort
https://www.toptal.com/developers/sorting-algorithms/quick-sort

Quicksort: implementation details

Partitioning in-place. Using an extra array of length » would makes partitioning

easier to code (and stable), but makes it slower in practice.

Loop termination. Terminating the loop (when pointers cross) is more subtle than it appears.

Equal keys. Handling duplicate keys is trickier that it appears.

Preserving randomness. Shuffling is needed for performance guarantee.

Equivalent alternative. In each subarray, pick a pivot uniformly at random.

14

Quicksort: empirical analysis

Running time estimates (approximate):

. Laptop executes 10° compares/second.

. Supercomputer executes 10 compares/second.

n laptop super n laptop super
thousand instant instant thousand instant instant
million 2.8 hours 1 second million 1 second instant
billion 317 years 1 week billion 18 minutes instant
insertion sort: O®#°) mergesort: O(n log n)

Lesson 1. Good algorithms are better than supercomputers.

Lesson 2. Great algorithms are better than good ones.

n laptop super
thousand instant instant
million 0.6 second instant
billion 12 minutes instant

quicksort: ?7?

15

Quicksort: poll 2

Why is quicksort typically faster than mergesort in practice?

A. Fewer compares.
B. Fewer array acceses.
C. Both A and B.

D. Neither A nor B.

16

IS

worst-case analysi

Quicksort

: 1
Worst case. Number of compares is ~ Enz.

al]

6 7 8 9 10 11 12 13 14

G H
G

5

4

hi

lo

K L M N O

J
J
J
J
J
J
J
J
J
J
J
J

F
F

E
E

A B C D
A B C D

14 A B C D E

14
14
14
14
14
14
14
14
14

10 10 14

11
12
13

after random shuffle

<

K L M N O

K L M N O

F G H
F
=
=

F
F

0

0

K L M N O

G H

B C D E

K L M N O

G H

E
E
E

D

K L M N O

G H

K L M N O

G H

K L M N O

G H

K L M N O

K L M N O

K L M N O

K L M N O

K L M N O

L M N O

14

11
12
13

© O O

Z Z

14
14

K L M N O

J

F G H

E

A B C D

17

Quicksort: worst-case analysis

: 1
Worst case. Number of compares is ~ = n”.

2

lo hi O 1 2 3 4 5 6 7 8 9 10 11 12 13 14
A B C D E F GH I J K L M NDO
A B C D E F G H | _] K L M N O < afl‘er random Shuﬁqe

Good news. Worst case for randomized quicksort is mostly irrelevant in practice.
« Exponentially small chance of occurring.
(unless bug in shuffling or no shuffling)

* More likely that computer is struck by lightning bolt during execution.

Remark. Can make ®(nlogn) in worst case by pivoting on the median element.
* Challenge: how to find median element? [stay tuned]

* Not currently practical.

18

Quicksort: probabilistic analysis

Proposition. The expected number of compares C, to quicksort an array of

n distinct keys is ~ 2nInn (and the number of exchanges is ~ %nlnn).

Intuition. Each partitioning step divides the problem into two subproblems,
each of approximately one-half the size.

T

probabilistically “close enough’”

Recall. Any algorithm with the following structure takes ®(nlogn) time.

public static void f(int n) {
if (n == 0) return;

f(n / 2); . solve two problems
f(n / 2); of half the size

lIinear(n); <«—— do O®n) work

19

Quicksort: probabilistic analysis

Proposition. The expected number of compares C, to quicksort an array of

n distinct keys is ~ 2nInn (and the number of exchanges is ~ %nlnn).

Pf. C, satisfies the recurrence C,=C,=0 and forn = 2:

S left right
partitioning l l
!
C Cn_ C Cfn,— Cn— C
mn mn mn
« Multiply both sides by n and collect terms: partitioning probability

nCy, = nn+1) + 2(Co+C1+...+Cp_1)
« Subtract from this equation the same equation for n - 1:
nC, — m—1)Ch_1 = 2n + 2C,,_1

« Rearrange terms and divide by n (n + 1):

Chn Chn—1 2

n—+1 n n -+ 1

20

Quicksort: probabilistic analysis

 Repeatedly apply previous equation:

Co Cua | 2
n+1 n n+1

— Cn—2 | 2 | 2 < substitute previous equation

n—1 n n+1

 Cpes 222

" n—-2 n-1 n n+l

2 22 2

Sy taty Tt

* Approximate sum by an integral:

I 1 1 1
Cnp, = 2 Hlil=4+-4+=-+ ... 1
(”+)<3+4+5+ ¢H4> |
~2(n+1)/ —dx
3 X

* Finally, the desired result:

[C’n ~ 2(n+1)Inn = 1.39nlgn]

21

Quicksort properties

Quicksort analysis summary. P 39% more than mergesort
« Expected number of compares is ~ 1.39 nlog, n.
[standard deviation is ~ 0.65 n]
« Expected number of exchanges is ~ 0.23 nlog,n. <«— much less than mergesort
 Min number of compares Is ~ nlogzn. «<—— never less than mergesort

. 1
. Max number of compares is ~ —n’. <—— but never happens

2

Context. Quicksort is a (Las Vegas) randomized algorithm.
* Guaranteed to be correct.

* Running time depends on outcomes of random coin flips (shuffle).

22

Quicksort properties

Proposition. Quicksort is an in—-place sorting algorithm.
» Partitioning: ®(1) extra space.
« Function-call stack: ®(logn) extra space (with high probability).
\ can guarantee ©O(log n) depth by recurring

on smaller subarray before larger subarray
(but this involves using an explicit stack)

Proposition. Quicksort is not stable.

Pf. [by counterexample |}

| j 0 1 2 3

B G (C A:
1 3 B A1
1 3 Br Ai Ci

0 1 Ar B1 C (G

Quicksort: practical improvements

Insertion sort small subarrays.
* Even quicksort has too much overhead for tiny subarrays.

o Cutoff to insertion sort for ~ 10 elements.

private static void sort(Comparable[] a, int lo, 1nt hi) {

if (hi <= 1o + CUTOFF - 1) {
Insertion.sort(a, lo, hi):
return;

int j = partition(a, lo, hi);
sort(a, lo, j-1);
sort(a, j+1, hi);

24

Quicksort: practical improvements

Median of sample.
» Best choice for pivot = median element.
« Estimate true median by taking median of sample.

e Median-of-3 (random) elements.

N

~ 17—2 nlnn compares (14% fewer)

~ % nlnn exchanges (3% more)

private static void sort(Comparable[] a, int lo, int hi) {
if (hi <= 1o) return:

int median = medianOf3(a, 1o, mid + (hi1 - 1lo) / 2, hi);
swap(a, lo, median);

int j = partition(a, lo, hi);
sort(a, lo, j-1);
sort(a, j+1, hi);

25

2.3 QUICKSORT

» selection

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Selection

Goal. Given an unsorted array of n elements and an integer k, find element of rank «.

Ex. Min (k =0), max (k =n— 1), median (k =n/?2).

Applications.
* Order statistics: median, quantiles, deciles, ...
« Qutlier detection: find the top k.

Use complexity theory as a guide.
« Easy O(nlogn) algorithm. How?
« Easy O(n) algorithm for k =0or 1. How?
« Easy Q(n) lower bound. Why?

Which is true?

* (O(n) algorithm? is there a linear-time algorithm?]

» Q(nlogn) lower bound? [is selection as hard as sorting?]

|

element that would appear
at index k if array were sorted
(kth smallest with O-based indexing)

27

Quickselect demo

Partition array so that for some j:
 Entry a[j] is in place.
* No larger entry to the left of j.

* No smaller entry to the right of j.

Repeat in only one subarray, depending on j; stop when j equals k.

select element of rank k = 5

28

Quickselect

Partition array so that for some j:
 Entry a[j] is in place.
* No larger entry to the left of j.

* No smaller entry to the right of j.

Repeat in only one subarray, depending on j; stop when j equals k.

public static Comparable select(Comparable[] a, 1nt k) {
StdRandom.shuffle(a);

if alk] must be here

if a[k] is here,
return it

if alk] must be here

_ _ set hi to J-1 set 10 to J+1
int lo = 0, hi = a.length - 1;
while (hi > o) { \ /
int j = partition(a, lo, hi); v
if | (J:<k)1(?=J:+1; <p p =D
else if (j > k) hi = 3 - 1;
else return alk]: 1 1 1
) lo Jj hi

return alk]:

29

Quickselect: probabilistic analysis

Proposition. The expected number of compares C, to quickselect the element of rank k

in an array of length n is ©(n).

probabilistically “close enough’”

/

Intuition. Each partitioning step approximately halves the length of the array.

Recall. Any algorithm with the following divide-and-conquer structure takes ®(n) time.

public static void f(int n) {
if (n == 0) return;
linear(n); «— do O(n) work n n i

~ 2n
f(n/2); <« solve one subproblem of half the size o) 4

Careful analysis yields: C, ~ 2n+ 2kln (%) + 2(n—k) ln(& k) «—— max occurs for median (k:%)
n_
<2+2In2)n

~ 3.38n

30

Theoretical context for selection

Q. Compare-based selection algorithm that makes ®(n) compares in the worst case?
A. Yes!

T(n) T(") +T(7") + On)
n)y = — —— n
Time Bounds for Selection* 5 10

MANUEL BLum, RoBERT W. FLOYD, VAUGHAN PRATT, T \
RonaLD L. RivesT, AND ROBERT E. TARjAN

' that eliminates
Department of Computer Science, Stanford University, Stanford, California 94305 ﬁnd 1% 1ot)
7 . .
Received November 14, 1972 (median Ofmedlans) 30% Of elements

The number of comparisons required to select the i-th smallest of » numbers is shown
to be at most a linear function of # by analysis of a new selection algorithm—PICK.
Specifically, no more than 5.4305 n comparisons are ever required. This bound is
improved for extreme values of iz, and a new lower bound on the requisite number
of comparisons is also proved.

Caveat. Constants are high =— not used in practice.

Use theory as a guide.

 Open problem: practical selection algorithm that makes ®(n) compares in the worst case.

* Until one is discovered, use quickselect (if you don’t need a full sort).

31

2.3 QUICKSORT

Al g0 rithms > duplicate keys

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Duplicate keys

Often, purpose of sort is to bring elements with equal keys together.

* Sort population by age.
 Remove duplicates from mailing list.

* Sort job applicants by college attended.

Typical characteristics of such applications.
* Huge array.

* Small number of key values.

Chicago
Chicago
Chicago
Chicago
Chicago
Chicago
Chicago
Chicago
Houston
Houston
Phoen1ix
Phoen1ix
Phoenix
Seattle
Seattle
Seattle
Seattle
Seattle

|

key

09:
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:

25:
03:
21:
19:
19:
00:
21
00:
01:
00:
37:
00:
14:
10:
36:
143
10:
: 54

35

22

22

52
13
05
46
32
00

59
10
13
44
03
25
25
14

11

33

Quicksort: poll 3

When partitioning, how to handle keys equal to pivot?

scan until > P scan until < P

scan until > P scan until < P

- G E P A Q B P C O U P / S

C. Either A or B.

34

War story (system sort in C)

Bug. A gsort() call in C that should have taken seconds was taking minutes

to sort a random array of Os and 1s.

Why is gsort() so slow?
\/_/

ack<
SSSSSSS

A A A Ay Ac A Ay Ay Ay A Apg skip over equal keys
1 1
L j

At Ay Az Ay As As A A Ay A Ang stop scan on equal keys
1 1

L]

35

Duplicate keys: partitioning strategies

Bad. Don’t stop scans on equal keys.

[®(n?) compares when all keys equal]

Good. Stop scans on equal keys.

[~nlog,n compares when all keys equal]

Better. Put all equal keys in place. How?

| ~ncompares when all keys equal]

36

Dutch National Flag Problem

Problem. Given an array of n buckets, each containing

a red, white, or blue pebble, sort them by color.

input §
ored [BB

Operations allowed.
« swap(i,j): swap the pebble in bucket i with the pebble in bucket ;.

e octColor(i): determine the color of the pebble in bucket i.

Performance requirements.
« Exactly n calls to gerColor().
« At most n calls to swap().

(1) extra space.

37

3-way partitioning

Goal. Use pivot p = a[lo] to partition array into three parts so that:

¢ Red:

smaller entries to the left of 1t.

 White: equal entries between 1t and gt.

 Blue:

larger entries to the right of gt.

before

P

t t

lo hi
after

<p =P >p

) t t t
lo It gt hi

38

Dijkstra’s 3-way partitioning algorithm: demo

 Letp = a[lo] be pivot.

* Scan i from left to right and compare a[i] to p.

- less: exchange a[i]

- greater: exchange af[i:

- equal: increment i

lo 1t 1

oo

with a

with a

1t

gt]

increment both 1t and 1

- decrement gt

gt h1

b

D B X W P> P3 V P4 A Ps C Y /

39

Dijkstra’s 3-way partitioning algorithm: demo

 Letp = a[lo] be pivot.
* Scan i from left to right and compare a[i] to p.

- less: exchange a[i] with a[1t]; increment both 1t and 1

- greater: exchange a[i] with a[gt]; decrement gt

- equal: increment i

1o 1t gt h1

| | | |
A - e e

less equal greater

3-way quicksort: Java implementation

private static void sort(Comparable[] a, int lo, 1nt hi) {
if (hi <= 1o) return:
Comparable p = allo];

int 1t = lo, gt = hi;
int 1 = lo + 1;
while (1 <= gt) {
int cmp = a[1].compareTo(p);

1f (cmp < 0) exch(a, Tt++, 1++);
else if (cmp > 0) exch(a, i, gt--);
else 1++;

sort(a, lo, 1t - 1);
sort(a, gt + 1, hi);

start of function

P
t
lo hi
start of each iteration of while loop
<p =P >p
t t
[t]
end of function
<p =P >p
| t t
lo [t hi

41

Quicksort: poll 4

What is the worst-case number of compares to 3-way quicksort an array of length n

containing only 7/ distinct values?

A. On)
B. O(nlogn)
C. On?)
D. O’

input

42

Sorting summary

3-way quick

inplace? stable? “

v

5 n? 5 n?

v n Yan?
4 “nlogo,n nlog,n
v n nlog,n
nlog,n 2nlnn

n 2nlnn

v n nlog,n

15 n?

15 n?

nlog,n

nlog,n

15 n?

15 n?

nlog,n

remarks

n exchanges

use for small n
or partially sorted arrays

O(n log n) guarantee;
stable

iImproves mergesort
when pre-existing order

O(n log n) probabilistic guarantee;
fastest in practice

improves quicksort
when duplicate keys

holy sorting grail

number of compares to sort an array of n elements (tilde notation)

2.3 QUICKSORT

Algorithms
> system sorts

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Sorting applications

Sorting algorithms are essential in a broad variety of applications:

Sort a list of names.
Organize an MP3 library.
Display Google PageRank results.

List RSS feed in reverse chronological order.

Find the median.

ldentify statistical outliers.

Binary search in a database.

Find duplicates in a mailing list.

Data compression.
Computer graphics.
Computational biology.

Load balancing on a parallel computer.

< obvious applications

problems become easy once
elements are in sorted order

< non-obvious applications

45

Engineering a system sort (in 1990s)

Bentley-Mcllroy quicksort.
» Cutoff to insertion sort for small subarrays.
* Pivot selection: median of 3 or Tukey’s ninther.

» Partitioning scheme: Bentley-Mcllroy 3-way partitioning.

Engineering a Sort Function

JON L. BENTLEY

M. DOUGLAS McILROY
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974, U.S.A.

SUMMARY

We recount the history of a new gsort function for a C library. Our function is clearer, faster and more
robust than existing sorts. It chooses partitioning elements by a new sampling scheme; it partitions by a
novel solution to Dijkstra’s Dutch National Flag problem; and it swaps efficiently. Its behavior was
assessed with timing and debugging testbeds, and with a program to certify performance. The design
techniques apply in domains beyond sorting.

In the wild. C, C++, Java 6,

46

A Java mailing list post (Yaroslavskiy, September 2009)

Replacement of quicksort in java.util.Arrays with new dual-pivot quicksort

Hello AlT,

I'd Tike to share with you new Dual-Pivot Quicksort which i1s faster than the
known implementations (theoretically and experimental). I'd like to propose
to replace the JDK's Quicksort implementation by new one.

The new Dual-Pivot Quicksort uses *two* pivots elements 1n this manner:

1. Pick an elements P1, P2, called pivots from the array.

2. Assume that P1 <= P2, otherwise swap 1it.

3. Reorder the array into three parts: those less than the smaller pivot,
those larger than the larger pivot, and in between are those elements
between (or equal to) the two pivots.

4. Recursively sort the sub-arrays.

The invariant of the Dual-Pivot Quicksort is:

[< Pl | P1 <= & <= P2 } > P2]

47

https://mail.openjdk.java.net/pipermail/core-libs-dev/2009-September/002630.html

Another Java mailing list post (Yaroslavskiy-Bloch-Bentley)

Replacement of quicksort in java.util.Arrays with new dual-pivot quicksort

Date: Thu, 29 Oct 2009 11:19:39 +0000
Subject: Replace quicksort 1n java.util.Arrays with dual-pivot implementation

Changeset: b05abb410c52

Author: alanb
Date: 2009-10-29 11:18 +0000
URL: http://hg.openjdk.java.net/jdk7/t1/jdk/rev/b05abb410c5?2

6880672: Replace quicksort 1n java.util.Arrays with dual-pivot implementation
Reviewed-by: jjb

Contributed-by: vladimir.yaroslavskiy at sun.com, joshua.bloch at google.com,
jbentley at avaya.com

| src/share/classes/java/util/Arrays.java
+ src/share/classes/java/util/DualPivotQuicksort. java

48

https://mail.openjdk.java.net/pipermail/compiler-dev/2009-October.txt

Dual-pivot quicksort

Use two pivots p, and p, with p, < p, and partition into three subarrays:
« Keys less than p,.
« Keys between p, and p..

« Keys greater than p,.

< D P = p; and < p, P > D2
! !] !
lo It gt hi

Recursively sort three subarrays (skip middle subarray if p, = p,).

\

degenerates to Dijkstra’s 3-way partitioning

In the wild. Java 8-25, Python unstable sort, Android, ...

49

System sort

Premise. Suppose you are the lead architect of a new programming language.

Q. Which sorting algorithm(s) would you choose for the system sort? Defend your answer.

50

System sorts: Java 8 to Java 25+

Java system sort: Arrays.sort()
* A method for Comparable objects.

 An overloaded method for use with a Comparator. —)

* An overloaded method for each primitive type.

* And overloaded methods for sorting subarrays.
Core algorithms.
* Optimized version of mergesort (Timsort) for reference types.

* Optimized version of quicksort (dual-pivot quicksort) for primitive types.

Q. Why different algorithms for primitive and reference types?

Bottom line. Use the system sort!

51

Credits

image source license
C.AR. Hoare Wikimedia CCBY-SA20FR
Bob Sedgewick sedgewick.io by author
Music of Quicksort Brad F. Lyon
Coin Toss Clipground CCBY4.0
Magnifying Glass and Code Adobe Stock Education License

Computer and Supercomputer
Apocalypse Network Skin
Harmonic Integral
Programmer Icon
Dutch National Flag

Princeton COS 13 T-Shirt

New York Times

istyles.com

Wikimedia

Jaime Botero

Adobe Stock

Ruth Dannenfelser *20

public domain

public domain

Education License

by author

Lecture Slides © Copyright 2025 Robert Sedgewick and Kevin Wayne

https://commons.wikimedia.org/wiki/File:Sir_Tony_Hoare_IMG_5123.jpg
https://creativecommons.org/licenses/by-sa/2.0/fr/deed.en
https://sedgewick.io/
https://learnforeverlearn.com/pivot_music/
https://clipground.com/images/toss-clipart-1.jpg
https://creativecommons.org/licenses/by/4.0/
https://stock.adobe.com/images/magnifying-glass-coding-filled-line-icon/1283120396
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://www.nytimes.com/interactive/2021/09/03/climate/bitcoin-carbon-footprint-electricity.html
https://www.istyles.com/skins/laptop/other-laptop/netbook-universal-fit/apocalypse-violet-netbook-skin-p-24641.html
https://commons.wikimedia.org/wiki/File:Integral_Test.svg
https://wiki.creativecommons.org/wiki/public_domain
http://www.clker.com/clipart-programmer-1.html
https://wiki.creativecommons.org/wiki/public_domain
https://stock.adobe.com/images/netherlands-national-flag-vector-illustration/279683718
https://stock.adobe.com/enterprise-conditions#educationLicenses

A final thought

k) lo =1+ 1; else return al[il; } return a[lo]; } i

npareTo(w) < @); } private static void exch(Object[] a,

orivate static boolean isSorted(Comparable[] a) { return
ted(Comparable[] a, int lo, int hi) { for (int i = lo + 1;

1 true; } private static void show(Comparable[] a) { for (in
oublic static void main(String[] args) { String[] a = StdIn.re.
or (int 1 = @; i < a.length; i++) { String ith = (String) Quick.
Jblic class Quick { public static void sort(Comparable[] a) { Si
static void sort(Comparablell a. int 1o, int hi) { if (hi <= lo]

(a, lo, j-1); sort(a, - ort isSorted(a, lo, hi);
o, int hi) { int 1 = W + 1; Comparable v = al
ak; while (less(v, a[- lo) break; if (i >= j]
ic static Comparable s¢ le[] a, int k) { if (k
ected element out of b dRandom.shuffle(a); inf
ition(a, lo, hi);if (i - 1; else if (1 < k) lo

oolean less(Comparable v, tomparaole w) { return (v.compare
int j) { Object swap = alil]; alil = aljl; alj] = swap; } p!
n isSorted(a, @, a.length - 1); } private static boolean i
1; 1 <= hi; i++) if (less(a[i], a[i-1])) return false; re’
int 1 = @; 1 < a.length; i++) { StdOut.println(ali]l); }
= StdIn.readStrings(); Quick.sort(a); show(a); StdOut
ring) Quick.select(a, 1i); StdOut.println(ith); } } °
ndom.shuffle(a); sort(a, @, a.length - 1); } priv
eturn; int j = partition(a, lo, hi); sort(a, lr
tatic int partition(Cor
) { while (less(a[++i],
a, i, j);) exch(a, 1lo,
th) { throw new Runtime
@, hi = a.length - 1;
else return alil; } ref

npareTo(w) < @); } private stati

orivate static boolean isSorted(t

ted(Comparable[] a, int lo, int |

1 true; } private static void shi

oublic static void main(Stringl]

or (int 1 = @; 1 < a.length; i++

Jblic class Quick { public statis

static void sort(Comparablel[] a,

(a, lo, i-1); sort(a, i+1l, hi); :

CS @ Princeton

