
ROBERT SEDGEWICK | KEVIN WAYNE

F O U R T H E D I T I O N

Algorithms

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

Last updated on 9/18/25 9:02  AM

2.2 MERGESORT

‣mergesort
‣ bottom-up mergesort
‣ sorting complexity
‣ asymptotic notations

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Two classic sorting algorithms: mergesort and quicksort

Critical components in our computational infrastructure.  
 

 
Mergesort. [this lecture]
 
 
 
 
 
 
Quicksort. [next lecture]

2

…

…

2.2 MERGESORT

‣mergesort
‣ bottom-up mergesort
‣ sorting complexity
‣ asymptotic notations

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Mergesort overview

Basic plan.

・Divide array into two halves.

・Recursively sort left half.

・Recursively sort right half.

・Merge two sorted halves.

4

input M E R G E S O R T E X A M P L E

sort left half E E G M O R R S T E X A M P L E

sort right half E E G M O R R S A E E L M P T X

merge results A E E E E G L M M O P R R S T X

Abstract in-place merge demo

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],  
replace with sorted subarray a[lo] to a[hi].

5

E E G M R A C E R T

lo mid mid+1 hi

sorted sorted

a[]

Merging: Java implementation

6

// precondition: a[lo..mid] and a[mid+1..hi] are sorted
private static void merge(Comparable[] a, Comparable[] aux, int lo, int mid, int hi) {

 for (int k = lo; k <= hi; k++)
 aux[k] = a[k];

 int i = lo, j = mid+1;
 for (int k = lo; k <= hi; k++) {
 if (i > mid) a[k] = aux[j++];
 else if (j > hi) a[k] = aux[i++];
 else if (less(aux[j], aux[i])) a[k] = aux[j++];
 else a[k] = aux[i++];
 }

}

copy

merge

i jlo himid

A G L O R H I M S Taux[]

k

A G H I La[]

left subarray exhausted
right subarray exhausted
select from right subarray
select from left subarray

merge subarrays a[lo..mid]
and a[mid+1..hi]

Mergesort overview

Proposition. The merge() method makes between and calls to less()
to merge two sorted subarrays each of length .
 
 
 
 
 
Worst case. Largest two elements are in different subarrays.
Best case. All elements in one subarray are larger than all elements in the other.

n / 2 n − 1
n / 2

7

A B C D E F G H

best-case input (n/2 compares)

A B C H D E F G

worst-case input (n - 1 compares)

a0 a1 a2 a3 b0 b1 b2 b3

Mergesort: Java implementation

8

lo hi

10 11 12 13 14 15 16 17 18 19

public class Merge {
 private static void merge(...) {
 /* as before */
 }

 private static void sort(Comparable[] a, Comparable[] aux, int lo, int hi) {
 if (hi <= lo) return;
 int mid = lo + (hi - lo) / 2;
 sort(a, aux, lo, mid);
 sort(a, aux, mid+1, hi);
 merge(a, aux, lo, mid, hi);
 }

 public static void sort(Comparable[] a) {
 Comparable[] aux = new Comparable[a.length];
 sort(a, aux, 0, a.length - 1);
 }
}

mid

avoid allocating arrays
within recursive function calls

sort subarray a[lo..hi]

sort left subarray
sort right subarray
merge left and right subarrays

Mergesort: trace

9

result after recursive call

Trace of merge results for top-down mergesort

 a[]
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 M E R G E S O R T E X A M P L E
 merge(a, aux, 0, 0, 1) E M R G E S O R T E X A M P L E
 merge(a, aux, 2, 2, 3) E M G R E S O R T E X A M P L E
 merge(a, aux, 0, 1, 3) E G M R E S O R T E X A M P L E
 merge(a, aux, 4, 4, 5) E G M R E S O R T E X A M P L E
 merge(a, aux, 6, 6, 7) E G M R E S O R T E X A M P L E
 merge(a, aux, 4, 5, 7) E G M R E O R S T E X A M P L E
 merge(a, aux, 0, 3, 7) E E G M O R R S T E X A M P L E
 merge(a, aux, 8, 8, 9) E E G M O R R S E T X A M P L E
 merge(a, aux, 10, 10, 11) E E G M O R R S E T A X M P L E
 merge(a, aux, 8, 9, 11) E E G M O R R S A E T X M P L E
 merge(a, aux, 12, 12, 13) E E G M O R R S A E T X M P L E
 merge(a, aux, 14, 14, 15) E E G M O R R S A E T X M P E L
 merge(a, aux, 12, 13, 15) E E G M O R R S A E T X E L M P
 merge(a, aux, 8, 11, 15) E E G M O R R S A E E L M P T X
 merge(a, aux, 0, 7, 15) A E E E E G L M M O P R R S T X

lo hi

Trace of merge results for top-down mergesort

 a[]
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 M E R G E S O R T E X A M P L E
 merge(a, aux, 0, 0, 1) E M R G E S O R T E X A M P L E
 merge(a, aux, 2, 2, 3) E M G R E S O R T E X A M P L E
 merge(a, aux, 0, 1, 3) E G M R E S O R T E X A M P L E
 merge(a, aux, 4, 4, 5) E G M R E S O R T E X A M P L E
 merge(a, aux, 6, 6, 7) E G M R E S O R T E X A M P L E
 merge(a, aux, 4, 5, 7) E G M R E O R S T E X A M P L E
 merge(a, aux, 0, 3, 7) E E G M O R R S T E X A M P L E
 merge(a, aux, 8, 8, 9) E E G M O R R S E T X A M P L E
 merge(a, aux, 10, 10, 11) E E G M O R R S E T A X M P L E
 merge(a, aux, 8, 9, 11) E E G M O R R S A E T X M P L E
 merge(a, aux, 12, 12, 13) E E G M O R R S A E T X M P L E
 merge(a, aux, 14, 14, 15) E E G M O R R S A E T X M P E L
 merge(a, aux, 12, 13, 15) E E G M O R R S A E T X E L M P
 merge(a, aux, 8, 11, 15) E E G M O R R S A E E L M P T X
 merge(a, aux, 0, 7, 15) A E E E E G L M M O P R R S T X

lo hi

Trace of merge results for top-down mergesort

 a[]
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 M E R G E S O R T E X A M P L E
 merge(a, aux, 0, 0, 1) E M R G E S O R T E X A M P L E
 merge(a, aux, 2, 2, 3) E M G R E S O R T E X A M P L E
 merge(a, aux, 0, 1, 3) E G M R E S O R T E X A M P L E
 merge(a, aux, 4, 4, 5) E G M R E S O R T E X A M P L E
 merge(a, aux, 6, 6, 7) E G M R E S O R T E X A M P L E
 merge(a, aux, 4, 5, 7) E G M R E O R S T E X A M P L E
 merge(a, aux, 0, 3, 7) E E G M O R R S T E X A M P L E
 merge(a, aux, 8, 8, 9) E E G M O R R S E T X A M P L E
 merge(a, aux, 10, 10, 11) E E G M O R R S E T A X M P L E
 merge(a, aux, 8, 9, 11) E E G M O R R S A E T X M P L E
 merge(a, aux, 12, 12, 13) E E G M O R R S A E T X M P L E
 merge(a, aux, 14, 14, 15) E E G M O R R S A E T X M P E L
 merge(a, aux, 12, 13, 15) E E G M O R R S A E T X E L M P
 merge(a, aux, 8, 11, 15) E E G M O R R S A E E L M P T X
 merge(a, aux, 0, 7, 15) A E E E E G L M M O P R R S T X

lo hi

Trace of merge results for top-down mergesort

 a[]
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 M E R G E S O R T E X A M P L E
 merge(a, aux, 0, 0, 1) E M R G E S O R T E X A M P L E
 merge(a, aux, 2, 2, 3) E M G R E S O R T E X A M P L E
 merge(a, aux, 0, 1, 3) E G M R E S O R T E X A M P L E
 merge(a, aux, 4, 4, 5) E G M R E S O R T E X A M P L E
 merge(a, aux, 6, 6, 7) E G M R E S O R T E X A M P L E
 merge(a, aux, 4, 5, 7) E G M R E O R S T E X A M P L E
 merge(a, aux, 0, 3, 7) E E G M O R R S T E X A M P L E
 merge(a, aux, 8, 8, 9) E E G M O R R S E T X A M P L E
 merge(a, aux, 10, 10, 11) E E G M O R R S E T A X M P L E
 merge(a, aux, 8, 9, 11) E E G M O R R S A E T X M P L E
 merge(a, aux, 12, 12, 13) E E G M O R R S A E T X M P L E
 merge(a, aux, 14, 14, 15) E E G M O R R S A E T X M P E L
 merge(a, aux, 12, 13, 15) E E G M O R R S A E T X E L M P
 merge(a, aux, 8, 11, 15) E E G M O R R S A E E L M P T X
 merge(a, aux, 0, 7, 15) A E E E E G L M M O P R R S T X

lo hi

Trace of merge results for top-down mergesort

 a[]
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 M E R G E S O R T E X A M P L E
 merge(a, aux, 0, 0, 1) E M R G E S O R T E X A M P L E
 merge(a, aux, 2, 2, 3) E M G R E S O R T E X A M P L E
 merge(a, aux, 0, 1, 3) E G M R E S O R T E X A M P L E
 merge(a, aux, 4, 4, 5) E G M R E S O R T E X A M P L E
 merge(a, aux, 6, 6, 7) E G M R E S O R T E X A M P L E
 merge(a, aux, 4, 5, 7) E G M R E O R S T E X A M P L E
 merge(a, aux, 0, 3, 7) E E G M O R R S T E X A M P L E
 merge(a, aux, 8, 8, 9) E E G M O R R S E T X A M P L E
 merge(a, aux, 10, 10, 11) E E G M O R R S E T A X M P L E
 merge(a, aux, 8, 9, 11) E E G M O R R S A E T X M P L E
 merge(a, aux, 12, 12, 13) E E G M O R R S A E T X M P L E
 merge(a, aux, 14, 14, 15) E E G M O R R S A E T X M P E L
 merge(a, aux, 12, 13, 15) E E G M O R R S A E T X E L M P
 merge(a, aux, 8, 11, 15) E E G M O R R S A E E L M P T X
 merge(a, aux, 0, 7, 15) A E E E E G L M M O P R R S T X

lo hi

Trace of merge results for top-down mergesort

 a[]
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 M E R G E S O R T E X A M P L E
 merge(a, aux, 0, 0, 1) E M R G E S O R T E X A M P L E
 merge(a, aux, 2, 2, 3) E M G R E S O R T E X A M P L E
 merge(a, aux, 0, 1, 3) E G M R E S O R T E X A M P L E
 merge(a, aux, 4, 4, 5) E G M R E S O R T E X A M P L E
 merge(a, aux, 6, 6, 7) E G M R E S O R T E X A M P L E
 merge(a, aux, 4, 5, 7) E G M R E O R S T E X A M P L E
 merge(a, aux, 0, 3, 7) E E G M O R R S T E X A M P L E
 merge(a, aux, 8, 8, 9) E E G M O R R S E T X A M P L E
 merge(a, aux, 10, 10, 11) E E G M O R R S E T A X M P L E
 merge(a, aux, 8, 9, 11) E E G M O R R S A E T X M P L E
 merge(a, aux, 12, 12, 13) E E G M O R R S A E T X M P L E
 merge(a, aux, 14, 14, 15) E E G M O R R S A E T X M P E L
 merge(a, aux, 12, 13, 15) E E G M O R R S A E T X E L M P
 merge(a, aux, 8, 11, 15) E E G M O R R S A E E L M P T X
 merge(a, aux, 0, 7, 15) A E E E E G L M M O P R R S T X

lo hi

Trace of merge results for top-down mergesort

 a[]
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 M E R G E S O R T E X A M P L E
 merge(a, aux, 0, 0, 1) E M R G E S O R T E X A M P L E
 merge(a, aux, 2, 2, 3) E M G R E S O R T E X A M P L E
 merge(a, aux, 0, 1, 3) E G M R E S O R T E X A M P L E
 merge(a, aux, 4, 4, 5) E G M R E S O R T E X A M P L E
 merge(a, aux, 6, 6, 7) E G M R E S O R T E X A M P L E
 merge(a, aux, 4, 5, 7) E G M R E O R S T E X A M P L E
 merge(a, aux, 0, 3, 7) E E G M O R R S T E X A M P L E
 merge(a, aux, 8, 8, 9) E E G M O R R S E T X A M P L E
 merge(a, aux, 10, 10, 11) E E G M O R R S E T A X M P L E
 merge(a, aux, 8, 9, 11) E E G M O R R S A E T X M P L E
 merge(a, aux, 12, 12, 13) E E G M O R R S A E T X M P L E
 merge(a, aux, 14, 14, 15) E E G M O R R S A E T X M P E L
 merge(a, aux, 12, 13, 15) E E G M O R R S A E T X E L M P
 merge(a, aux, 8, 11, 15) E E G M O R R S A E E L M P T X
 merge(a, aux, 0, 7, 15) A E E E E G L M M O P R R S T X

lo hi

Trace of merge results for top-down mergesort

 a[]
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 M E R G E S O R T E X A M P L E
 merge(a, aux, 0, 0, 1) E M R G E S O R T E X A M P L E
 merge(a, aux, 2, 2, 3) E M G R E S O R T E X A M P L E
 merge(a, aux, 0, 1, 3) E G M R E S O R T E X A M P L E
 merge(a, aux, 4, 4, 5) E G M R E S O R T E X A M P L E
 merge(a, aux, 6, 6, 7) E G M R E S O R T E X A M P L E
 merge(a, aux, 4, 5, 7) E G M R E O R S T E X A M P L E
 merge(a, aux, 0, 3, 7) E E G M O R R S T E X A M P L E
 merge(a, aux, 8, 8, 9) E E G M O R R S E T X A M P L E
 merge(a, aux, 10, 10, 11) E E G M O R R S E T A X M P L E
 merge(a, aux, 8, 9, 11) E E G M O R R S A E T X M P L E
 merge(a, aux, 12, 12, 13) E E G M O R R S A E T X M P L E
 merge(a, aux, 14, 14, 15) E E G M O R R S A E T X M P E L
 merge(a, aux, 12, 13, 15) E E G M O R R S A E T X E L M P
 merge(a, aux, 8, 11, 15) E E G M O R R S A E E L M P T X
 merge(a, aux, 0, 7, 15) A E E E E G L M M O P R R S T X

lo hi

Trace of merge results for top-down mergesort

 a[]
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 M E R G E S O R T E X A M P L E
 merge(a, aux, 0, 0, 1) E M R G E S O R T E X A M P L E
 merge(a, aux, 2, 2, 3) E M G R E S O R T E X A M P L E
 merge(a, aux, 0, 1, 3) E G M R E S O R T E X A M P L E
 merge(a, aux, 4, 4, 5) E G M R E S O R T E X A M P L E
 merge(a, aux, 6, 6, 7) E G M R E S O R T E X A M P L E
 merge(a, aux, 4, 5, 7) E G M R E O R S T E X A M P L E
 merge(a, aux, 0, 3, 7) E E G M O R R S T E X A M P L E
 merge(a, aux, 8, 8, 9) E E G M O R R S E T X A M P L E
 merge(a, aux, 10, 10, 11) E E G M O R R S E T A X M P L E
 merge(a, aux, 8, 9, 11) E E G M O R R S A E T X M P L E
 merge(a, aux, 12, 12, 13) E E G M O R R S A E T X M P L E
 merge(a, aux, 14, 14, 15) E E G M O R R S A E T X M P E L
 merge(a, aux, 12, 13, 15) E E G M O R R S A E T X E L M P
 merge(a, aux, 8, 11, 15) E E G M O R R S A E E L M P T X
 merge(a, aux, 0, 7, 15) A E E E E G L M M O P R R S T X

lo hi

Trace of merge results for top-down mergesort

 a[]
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 M E R G E S O R T E X A M P L E
 merge(a, aux, 0, 0, 1) E M R G E S O R T E X A M P L E
 merge(a, aux, 2, 2, 3) E M G R E S O R T E X A M P L E
 merge(a, aux, 0, 1, 3) E G M R E S O R T E X A M P L E
 merge(a, aux, 4, 4, 5) E G M R E S O R T E X A M P L E
 merge(a, aux, 6, 6, 7) E G M R E S O R T E X A M P L E
 merge(a, aux, 4, 5, 7) E G M R E O R S T E X A M P L E
 merge(a, aux, 0, 3, 7) E E G M O R R S T E X A M P L E
 merge(a, aux, 8, 8, 9) E E G M O R R S E T X A M P L E
 merge(a, aux, 10, 10, 11) E E G M O R R S E T A X M P L E
 merge(a, aux, 8, 9, 11) E E G M O R R S A E T X M P L E
 merge(a, aux, 12, 12, 13) E E G M O R R S A E T X M P L E
 merge(a, aux, 14, 14, 15) E E G M O R R S A E T X M P E L
 merge(a, aux, 12, 13, 15) E E G M O R R S A E T X E L M P
 merge(a, aux, 8, 11, 15) E E G M O R R S A E E L M P T X
 merge(a, aux, 0, 7, 15) A E E E E G L M M O P R R S T X

lo hi

Trace of merge results for top-down mergesort

 a[]
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 M E R G E S O R T E X A M P L E
 merge(a, aux, 0, 0, 1) E M R G E S O R T E X A M P L E
 merge(a, aux, 2, 2, 3) E M G R E S O R T E X A M P L E
 merge(a, aux, 0, 1, 3) E G M R E S O R T E X A M P L E
 merge(a, aux, 4, 4, 5) E G M R E S O R T E X A M P L E
 merge(a, aux, 6, 6, 7) E G M R E S O R T E X A M P L E
 merge(a, aux, 4, 5, 7) E G M R E O R S T E X A M P L E
 merge(a, aux, 0, 3, 7) E E G M O R R S T E X A M P L E
 merge(a, aux, 8, 8, 9) E E G M O R R S E T X A M P L E
 merge(a, aux, 10, 10, 11) E E G M O R R S E T A X M P L E
 merge(a, aux, 8, 9, 11) E E G M O R R S A E T X M P L E
 merge(a, aux, 12, 12, 13) E E G M O R R S A E T X M P L E
 merge(a, aux, 14, 14, 15) E E G M O R R S A E T X M P E L
 merge(a, aux, 12, 13, 15) E E G M O R R S A E T X E L M P
 merge(a, aux, 8, 11, 15) E E G M O R R S A E E L M P T X
 merge(a, aux, 0, 7, 15) A E E E E G L M M O P R R S T X

lo hi

Trace of merge results for top-down mergesort

 a[]
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 M E R G E S O R T E X A M P L E
 merge(a, aux, 0, 0, 1) E M R G E S O R T E X A M P L E
 merge(a, aux, 2, 2, 3) E M G R E S O R T E X A M P L E
 merge(a, aux, 0, 1, 3) E G M R E S O R T E X A M P L E
 merge(a, aux, 4, 4, 5) E G M R E S O R T E X A M P L E
 merge(a, aux, 6, 6, 7) E G M R E S O R T E X A M P L E
 merge(a, aux, 4, 5, 7) E G M R E O R S T E X A M P L E
 merge(a, aux, 0, 3, 7) E E G M O R R S T E X A M P L E
 merge(a, aux, 8, 8, 9) E E G M O R R S E T X A M P L E
 merge(a, aux, 10, 10, 11) E E G M O R R S E T A X M P L E
 merge(a, aux, 8, 9, 11) E E G M O R R S A E T X M P L E
 merge(a, aux, 12, 12, 13) E E G M O R R S A E T X M P L E
 merge(a, aux, 14, 14, 15) E E G M O R R S A E T X M P E L
 merge(a, aux, 12, 13, 15) E E G M O R R S A E T X E L M P
 merge(a, aux, 8, 11, 15) E E G M O R R S A E E L M P T X
 merge(a, aux, 0, 7, 15) A E E E E G L M M O P R R S T X

lo hi

Trace of merge results for top-down mergesort

 a[]
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 M E R G E S O R T E X A M P L E
 merge(a, aux, 0, 0, 1) E M R G E S O R T E X A M P L E
 merge(a, aux, 2, 2, 3) E M G R E S O R T E X A M P L E
 merge(a, aux, 0, 1, 3) E G M R E S O R T E X A M P L E
 merge(a, aux, 4, 4, 5) E G M R E S O R T E X A M P L E
 merge(a, aux, 6, 6, 7) E G M R E S O R T E X A M P L E
 merge(a, aux, 4, 5, 7) E G M R E O R S T E X A M P L E
 merge(a, aux, 0, 3, 7) E E G M O R R S T E X A M P L E
 merge(a, aux, 8, 8, 9) E E G M O R R S E T X A M P L E
 merge(a, aux, 10, 10, 11) E E G M O R R S E T A X M P L E
 merge(a, aux, 8, 9, 11) E E G M O R R S A E T X M P L E
 merge(a, aux, 12, 12, 13) E E G M O R R S A E T X M P L E
 merge(a, aux, 14, 14, 15) E E G M O R R S A E T X M P E L
 merge(a, aux, 12, 13, 15) E E G M O R R S A E T X E L M P
 merge(a, aux, 8, 11, 15) E E G M O R R S A E E L M P T X
 merge(a, aux, 0, 7, 15) A E E E E G L M M O P R R S T X

lo hi

Trace of merge results for top-down mergesort

 a[]
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 M E R G E S O R T E X A M P L E
 merge(a, aux, 0, 0, 1) E M R G E S O R T E X A M P L E
 merge(a, aux, 2, 2, 3) E M G R E S O R T E X A M P L E
 merge(a, aux, 0, 1, 3) E G M R E S O R T E X A M P L E
 merge(a, aux, 4, 4, 5) E G M R E S O R T E X A M P L E
 merge(a, aux, 6, 6, 7) E G M R E S O R T E X A M P L E
 merge(a, aux, 4, 5, 7) E G M R E O R S T E X A M P L E
 merge(a, aux, 0, 3, 7) E E G M O R R S T E X A M P L E
 merge(a, aux, 8, 8, 9) E E G M O R R S E T X A M P L E
 merge(a, aux, 10, 10, 11) E E G M O R R S E T A X M P L E
 merge(a, aux, 8, 9, 11) E E G M O R R S A E T X M P L E
 merge(a, aux, 12, 12, 13) E E G M O R R S A E T X M P L E
 merge(a, aux, 14, 14, 15) E E G M O R R S A E T X M P E L
 merge(a, aux, 12, 13, 15) E E G M O R R S A E T X E L M P
 merge(a, aux, 8, 11, 15) E E G M O R R S A E E L M P T X
 merge(a, aux, 0, 7, 15) A E E E E G L M M O P R R S T X

lo hi

Trace of merge results for top-down mergesort

 a[]
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 M E R G E S O R T E X A M P L E
 merge(a, aux, 0, 0, 1) E M R G E S O R T E X A M P L E
 merge(a, aux, 2, 2, 3) E M G R E S O R T E X A M P L E
 merge(a, aux, 0, 1, 3) E G M R E S O R T E X A M P L E
 merge(a, aux, 4, 4, 5) E G M R E S O R T E X A M P L E
 merge(a, aux, 6, 6, 7) E G M R E S O R T E X A M P L E
 merge(a, aux, 4, 5, 7) E G M R E O R S T E X A M P L E
 merge(a, aux, 0, 3, 7) E E G M O R R S T E X A M P L E
 merge(a, aux, 8, 8, 9) E E G M O R R S E T X A M P L E
 merge(a, aux, 10, 10, 11) E E G M O R R S E T A X M P L E
 merge(a, aux, 8, 9, 11) E E G M O R R S A E T X M P L E
 merge(a, aux, 12, 12, 13) E E G M O R R S A E T X M P L E
 merge(a, aux, 14, 14, 15) E E G M O R R S A E T X M P E L
 merge(a, aux, 12, 13, 15) E E G M O R R S A E T X E L M P
 merge(a, aux, 8, 11, 15) E E G M O R R S A E E L M P T X
 merge(a, aux, 0, 7, 15) A E E E E G L M M O P R R S T X

lo hi

Trace of merge results for top-down mergesort

 a[]
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 M E R G E S O R T E X A M P L E
 merge(a, aux, 0, 0, 1) E M R G E S O R T E X A M P L E
 merge(a, aux, 2, 2, 3) E M G R E S O R T E X A M P L E
 merge(a, aux, 0, 1, 3) E G M R E S O R T E X A M P L E
 merge(a, aux, 4, 4, 5) E G M R E S O R T E X A M P L E
 merge(a, aux, 6, 6, 7) E G M R E S O R T E X A M P L E
 merge(a, aux, 4, 5, 7) E G M R E O R S T E X A M P L E
 merge(a, aux, 0, 3, 7) E E G M O R R S T E X A M P L E
 merge(a, aux, 8, 8, 9) E E G M O R R S E T X A M P L E
 merge(a, aux, 10, 10, 11) E E G M O R R S E T A X M P L E
 merge(a, aux, 8, 9, 11) E E G M O R R S A E T X M P L E
 merge(a, aux, 12, 12, 13) E E G M O R R S A E T X M P L E
 merge(a, aux, 14, 14, 15) E E G M O R R S A E T X M P E L
 merge(a, aux, 12, 13, 15) E E G M O R R S A E T X E L M P
 merge(a, aux, 8, 11, 15) E E G M O R R S A E E L M P T X
 merge(a, aux, 0, 7, 15) A E E E E G L M M O P R R S T X

lo hi

Mergesort: poll 1

Which subarray lengths will arise when mergesorting an array of length ?

A.

B.

C.

D.

E. Run-time exception.

n = 12

{ 1, 2, 3, 4, 6, 8, 12 }

{ 1, 2, 3, 6, 12 }

{ 1, 2, 4, 8, 12 }

{ 1, 3, 6, 9, 12 }

10

12

6 6

2 12 1 2 12 1

3 3 3 3

1 1 1 1 1 1 1 1

Mergesort: animation

11

https://www.toptal.com/developers/sorting-algorithms/merge-sort

50 random items

in order
current subarray

algorithm position

not in order

https://www.toptal.com/developers/sorting-algorithms/merge-sort

Mergesort: animation

12

50 reverse-sorted items

in order
current subarray

algorithm position

not in order
https://www.toptal.com/developers/sorting-algorithms/merge-sort

https://www.toptal.com/developers/sorting-algorithms/merge-sort

Insertion sort vs. mergesort: empirical analysis

Running time estimates (approximate):

・Laptop executes compares/second.

・Supercomputer executes compares/second.
 
 
 
 
 
 
 
 
 
 
 
 
Bottom line. Great algorithms are better than supercomputers.

108

1012

13

n laptop super

thousand instant instant

million 2.8 hours 1 second

billion 317 years 1 week

insertion sort

n laptop super

thousand instant instant

million 1 second instant

billion 18 minutes instant

mergesort

Mergesort analysis: number of compares

Proposition. Mergesort uses compares to sort any array of length .
 
Pf sketch. The number of compares to mergesort any array of length

satisfies the recurrence:  

 for , with .
 
 
 
 
 
For simplicity. Assume is a power of and solve this recurrence:  
 
 , for , with .

≤ n log2 n n

C(n) n

C(n) ≤ C(⌈n / 2⌉) + C(⌊n / 2⌋) + (n − 1) n > 1 C(1) = 0

n 2

D(n) = 2 D(n / 2) + n n > 1 D(1) = 0

14

sort
left half

sort
right half

merge

proposition holds even when n is not a power of 2
(but analysis cleaner in this case)

Divide-and-conquer recurrence

Proposition. If satisfies for , with , then .
 
Pf by picture. [assuming n is a power of 2] 

D(n) D(n) = 2 D(n / 2) + n n > 1 D(1) = 0 D(n) = n log2 n

15

log2 n

D (n) = n log2 n

n = n

2 (n / 2) = n

8 (n / 8) = n

⋮

D (n)

4 (n / 4) = n

D (n / 2) D (n / 2)

D (n / 8) D (n / 8)D (n / 8) D (n / 8) D (n / 8) D (n / 8)D (n / 8) D (n / 8)

D (n / 4) D (n / 4) D (n / 4) D (n / 4)

⋮

Mergesort analysis: number of array accesses

Proposition. Mergesort makes array accesses.
 
Pf sketch. The number of array accesses satisfies the recurrence:  

 A(n) = A(⎡n / 2⎤) + A(⎣n / 2⎦) + Θ(n) for n > 1, with A(1) = 0.
 
 
Divide-and-conquer. Any algorithm with the following structure takes time:
 
 
 
 
 
 
 
Famous examples. FFT, closest pair, hidden-line removal, Kendall-tau distance, …

Θ(n log n)

A(n)

Θ(n log n)

16

public static void f(int n) {
 if (n == 0) return;
 f(n/2);
 f(n/2);
 linear(n);
}

solve two problems of half the size

do Θ(n) work

Mergesort analysis: memory

Proposition. Mergesort uses extra space.
Pf.

・The length of the aux[] array is .

・The max depth of the function-call stack (for recursion) is .
 
 
 
 
 
 
Def. A sorting algorithm is in-place if it uses extra space (or less).
Ex. Insertion sort and selection sort.
 
 
Challenge 1 (not hard). Merge using an aux[] array of length (instead of).
Challenge 2 (very hard). Merge using only or extra space. [Kronrod 1969]

Θ(n)

n
log2 n

Θ(log n)

1
2 n n

Θ(log n) Θ(1)
17

essentially negligible
(includes memory for any recursive calls)

a[] A C D G H I U V B E J O P Q R T

aux[]

function-call tree

Mergesort: poll 2

Consider the following modified version of mergesort.
How much total memory is allocated (and deallocated) over all recursive calls?

A.

B.

C.

D.

Θ(n)

Θ(n log n)

Θ(n2)

Θ(2n)

18

private static void sort(Comparable[] a, int lo, int hi) {
 if (hi <= lo) return;
 int mid = lo + (hi - lo) / 2;
 int n = hi - lo + 1;
 Comparable[] aux = new Comparable[n];
 sort(a, lo, mid);
 sort(a, mid+1, hi);
 merge(a, aux, lo, mid, hi);
}

The amount of memory allocated satisfies the recurrence:  

 for , with . M(n) = M(⌈n / 2⌉) + M(⌊n / 2⌋) + Θ(n) n > 1 M(1) = 0

allocates array in
recursive method

Mergesort: practical improvement

Use insertion sort for small subarrays.

・Mergesort has too much overhead for tiny subarrays.

・Cutoff to insertion sort for ≈ 12 items.

19

private static void sort(...) {

 if (hi <= lo + CUTOFF - 1) {
 Insertion.sort(a, lo, hi);
 return;
 }

 int mid = lo + (hi - lo) / 2;
 sort (a, aux, lo, mid);
 sort (a, aux, mid+1, hi);
 merge(a, aux, lo, mid, hi);
}

makes mergesort
about 20% faster

Java system sort
 uses cutoff value = 7 first subarray

second subarray

first merge

third merge

second merge

mergesort with cuto! to insertion sort
(n = 48, cuto! = 12)

original array

Visual trace of top-down mergesort with cutoff for small subarrays

second half sorted

result

Visual trace of top-down mergesort with cutoff for small subarrays

second half sorted

result

Visual trace of top-down mergesort with cutoff for small subarrays

second half sorted

result

Visual trace of top-down mergesort with cutoff for small subarrays

second half sorted

result

Visual trace of top-down mergesort with cutoff for small subarrays

second half sorted

result

Visual trace of top-down mergesort with cutoff for small subarrays

second half sorted

result

Visual trace of top-down mergesort with cutoff for small subarrays

second half sorted

result

Visual trace of top-down mergesort with cutoff for small subarrays

second half sorted

result

2.2 MERGESORT

‣mergesort
‣ bottom-up mergesort
‣ sorting complexity
‣ asymptotic notations

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Bottom-up mergesort

Basic plan.

・Pass through array, merging subarrays of length .

・Repeat for subarrays of length
1

2, 4, 8, …

21

Trace of merge results for bottom-up mergesort

 a[i]
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 M E R G E S O R T E X A M P L E
 merge(a, aux, 0, 0, 1) E M R G E S O R T E X A M P L E
 merge(a, aux, 2, 2, 3) E M G R E S O R T E X A M P L E
 merge(a, aux, 4, 4, 5) E M G R E S O R T E X A M P L E
 merge(a, aux, 6, 6, 7) E M G R E S O R T E X A M P L E
 merge(a, aux, 8, 8, 9) E M G R E S O R E T X A M P L E
 merge(a, aux, 10, 10, 11) E M G R E S O R E T A X M P L E
 merge(a, aux, 12, 12, 13) E M G R E S O R E T A X M P L E
 merge(a, aux, 14, 14, 15) E M G R E S O R E T A X M P E L

 merge(a, aux, 0, 1, 3) E G M R E S O R E T A X M P E L
 merge(a, aux, 4, 5, 7) E G M R E O R S E T A X M P E L
 merge(a, aux, 8, 9, 11) E G M R E O R S A E T X M P E L
 merge(a, aux, 12, 13, 15) E G M R E O R S A E T X E L M P

 merge(a, aux, 0, 3, 7) E E G M O R R S A E T X E L M P
 merge(a, aux, 8, 11, 15) E E G M O R R S A E E L M P T X

 merge(a, aux, 0, 7, 15) A E E E E G L M M O P R R S T X

sz = 1

sz = 2

sz = 4

sz = 8

Trace of merge results for bottom-up mergesort

 a[i]
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 M E R G E S O R T E X A M P L E
 merge(a, aux, 0, 0, 1) E M R G E S O R T E X A M P L E
 merge(a, aux, 2, 2, 3) E M G R E S O R T E X A M P L E
 merge(a, aux, 4, 4, 5) E M G R E S O R T E X A M P L E
 merge(a, aux, 6, 6, 7) E M G R E S O R T E X A M P L E
 merge(a, aux, 8, 8, 9) E M G R E S O R E T X A M P L E
 merge(a, aux, 10, 10, 11) E M G R E S O R E T A X M P L E
 merge(a, aux, 12, 12, 13) E M G R E S O R E T A X M P L E
 merge(a, aux, 14, 14, 15) E M G R E S O R E T A X M P E L

 merge(a, aux, 0, 1, 3) E G M R E S O R E T A X M P E L
 merge(a, aux, 4, 5, 7) E G M R E O R S E T A X M P E L
 merge(a, aux, 8, 9, 11) E G M R E O R S A E T X M P E L
 merge(a, aux, 12, 13, 15) E G M R E O R S A E T X E L M P

 merge(a, aux, 0, 3, 7) E E G M O R R S A E T X E L M P
 merge(a, aux, 8, 11, 15) E E G M O R R S A E E L M P T X

 merge(a, aux, 0, 7, 15) A E E E E G L M M O P R R S T X

sz = 1

sz = 2

sz = 4

sz = 8

Trace of merge results for bottom-up mergesort

 a[i]
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 M E R G E S O R T E X A M P L E
 merge(a, aux, 0, 0, 1) E M R G E S O R T E X A M P L E
 merge(a, aux, 2, 2, 3) E M G R E S O R T E X A M P L E
 merge(a, aux, 4, 4, 5) E M G R E S O R T E X A M P L E
 merge(a, aux, 6, 6, 7) E M G R E S O R T E X A M P L E
 merge(a, aux, 8, 8, 9) E M G R E S O R E T X A M P L E
 merge(a, aux, 10, 10, 11) E M G R E S O R E T A X M P L E
 merge(a, aux, 12, 12, 13) E M G R E S O R E T A X M P L E
 merge(a, aux, 14, 14, 15) E M G R E S O R E T A X M P E L

 merge(a, aux, 0, 1, 3) E G M R E S O R E T A X M P E L
 merge(a, aux, 4, 5, 7) E G M R E O R S E T A X M P E L
 merge(a, aux, 8, 9, 11) E G M R E O R S A E T X M P E L
 merge(a, aux, 12, 13, 15) E G M R E O R S A E T X E L M P

 merge(a, aux, 0, 3, 7) E E G M O R R S A E T X E L M P
 merge(a, aux, 8, 11, 15) E E G M O R R S A E E L M P T X

 merge(a, aux, 0, 7, 15) A E E E E G L M M O P R R S T X

sz = 1

sz = 2

sz = 4

sz = 8

Trace of merge results for bottom-up mergesort

 a[i]
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 M E R G E S O R T E X A M P L E
 merge(a, aux, 0, 0, 1) E M R G E S O R T E X A M P L E
 merge(a, aux, 2, 2, 3) E M G R E S O R T E X A M P L E
 merge(a, aux, 4, 4, 5) E M G R E S O R T E X A M P L E
 merge(a, aux, 6, 6, 7) E M G R E S O R T E X A M P L E
 merge(a, aux, 8, 8, 9) E M G R E S O R E T X A M P L E
 merge(a, aux, 10, 10, 11) E M G R E S O R E T A X M P L E
 merge(a, aux, 12, 12, 13) E M G R E S O R E T A X M P L E
 merge(a, aux, 14, 14, 15) E M G R E S O R E T A X M P E L

 merge(a, aux, 0, 1, 3) E G M R E S O R E T A X M P E L
 merge(a, aux, 4, 5, 7) E G M R E O R S E T A X M P E L
 merge(a, aux, 8, 9, 11) E G M R E O R S A E T X M P E L
 merge(a, aux, 12, 13, 15) E G M R E O R S A E T X E L M P

 merge(a, aux, 0, 3, 7) E E G M O R R S A E T X E L M P
 merge(a, aux, 8, 11, 15) E E G M O R R S A E E L M P T X

 merge(a, aux, 0, 7, 15) A E E E E G L M M O P R R S T X

sz = 1

sz = 2

sz = 4

sz = 8

Trace of merge results for bottom-up mergesort

 a[i]
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 M E R G E S O R T E X A M P L E
 merge(a, aux, 0, 0, 1) E M R G E S O R T E X A M P L E
 merge(a, aux, 2, 2, 3) E M G R E S O R T E X A M P L E
 merge(a, aux, 4, 4, 5) E M G R E S O R T E X A M P L E
 merge(a, aux, 6, 6, 7) E M G R E S O R T E X A M P L E
 merge(a, aux, 8, 8, 9) E M G R E S O R E T X A M P L E
 merge(a, aux, 10, 10, 11) E M G R E S O R E T A X M P L E
 merge(a, aux, 12, 12, 13) E M G R E S O R E T A X M P L E
 merge(a, aux, 14, 14, 15) E M G R E S O R E T A X M P E L

 merge(a, aux, 0, 1, 3) E G M R E S O R E T A X M P E L
 merge(a, aux, 4, 5, 7) E G M R E O R S E T A X M P E L
 merge(a, aux, 8, 9, 11) E G M R E O R S A E T X M P E L
 merge(a, aux, 12, 13, 15) E G M R E O R S A E T X E L M P

 merge(a, aux, 0, 3, 7) E E G M O R R S A E T X E L M P
 merge(a, aux, 8, 11, 15) E E G M O R R S A E E L M P T X

 merge(a, aux, 0, 7, 15) A E E E E G L M M O P R R S T X

sz = 1

sz = 2

sz = 4

sz = 8

Bottom-up mergesort: Java implementation

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Proposition. At most compares; extra space.
Bottom line. Simple and non-recursive version of mergesort.

n log2 n Θ(n)

22

public class MergeBU {

 private static void merge(...) {
 /* as before */
 }

 public static void sort(Comparable[] a) {
 int n = a.length;
 Comparable[] aux = new Comparable[n];
 for (int sz = 1; sz < n; sz = sz+sz)
 for (int lo = 0; lo < n-sz; lo += sz+sz)
 merge(a, aux, lo, lo+sz-1, Math.min(lo+sz+sz-1, n-1));
 }

} mid hi

length of subarrays
to merge

Mergesort: poll 3

Which is faster in practice for , top-down mergesort or bottom-up mergesort?

A. Top-down (recursive) mergesort.

B. Bottom-up (non-recursive) mergesort.

C. No difference.

D. I don't know.

n = 220

23

Natural mergesort

Idea. Exploit pre-existing order by identifying naturally occurring runs.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Tradeoff. Fewer passes vs. extra compares per pass to identify runs.

24

1 5 10 16 3 4 23 9 13 2 7 8 12 14

first run

1 5 10 16 3 4 23 9 13 2 7 8 12 14

second run

1 3 4 5 10 16 23 9 13 2 7 8 12 14

merge two runs

1 5 10 16 3 4 23 9 13 2 7 8 12 14

input

Timsort (2002)

・Natural mergesort.

・Use binary insertion sort to make initial runs (if needed).

・A few more clever optimizations.
 
 
 
 
 
 
 
 
 
 
 
Consequence. Only compares to sort many arrays with pre-existing order.
Widely used. Python, Java, Android, Swift, Rust, V8 JavaScript, …

Θ(n)

25

This describes an adaptive, stable, natural mergesort, modestly called
timsort (hey, I earned it <wink>). It has supernatural performance on many
kinds of partially ordered arrays (less than lg(n!) comparisons needed, and
as few as n-1), yet as fast as Python's previous highly tuned samplesort
hybrid on random arrays.

In a nutshell, the main routine marches over the array once, left to right,
alternately identifying the next run, then merging it into the previous
runs "intelligently". Everything else is complication for speed, and some
hard-won measure of memory efficiency.
...

Tim Peters

Timsort bug (February 2015)

26

http://envisage-project.eu/proving-android-java-and-python-sorting-algorithm-is-broken-and-how-to-fix-it

http://envisage-project.eu/proving-android-java-and-python-sorting-algorithm-is-broken-and-how-to-fix-it/
http://envisage-project.eu/proving-android-java-and-python-sorting-algorithm-is-broken-and-how-to-fix-it

Timsort bug (May 2018)

27

https://bugs.openjdk.java.net/browse/JDK-8203864

http://envisage-project.eu/proving-android-java-and-python-sorting-algorithm-is-broken-and-how-to-fix-it/
https://bugs.openjdk.java.net/browse/JDK-8203864

Powersort (October 2022)

Algorithmic progress is ongoing. A version of Timsort that optimizes order of merges.

28

https://www.wild-inter.net/posts/powersort-in-python-3.11

http://envisage-project.eu/proving-android-java-and-python-sorting-algorithm-is-broken-and-how-to-fix-it/
https://www.wild-inter.net/posts/powersort-in-python-3.11

Sorting summary

29

in-place? stable? best typical worst remarks

selection ✔ ½ n2 ½ n2 ½ n2 n exchanges

insertion ✔ ✔ n ¼ n2 ½ n2 use for small n
or partially sorted

merge ✔ ½ n log2 n n log2 n n log2 n Θ(n log n) guarantee;
stable

timsort ✔ n n log2 n n log2 n improves mergesort
when pre-existing order

? ✔ ✔ n n log2 n n log2 n holy sorting grail

number of compares to sort an array of n elements (tilde notation)

2.2 MERGESORT

‣mergesort
‣ bottom-up mergesort
‣ sorting complexity
‣ asymptotic notations

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Computational complexity

A framework to study efficiency of algorithms for solving a particular problem X.

31

term description example (X = sorting)

model of computation
specifies memory

and primitive operations comparison tree

cost model primitive operation counts # compares

upper bound
cost guarantee provided by

some algorithm for a problem
~ n log2 n

lower bound
proven limit on cost guarantee

for all algorithms for a problem ?

optimal algorithm
algorithm with best possible
cost guarantee for a problem ?

can gain knowledge about input
only through pairwise compares

(e.g., Java’s Comparable framework)

from mergesort

lower bound ~ upper bound

Comparison tree (for n = 3 distinct keys a, b, and c)

32

b < c

yes no

a < c

yes no

a < c

yes no

a c b c a b

b a ca b c b < c

yes no

b c a c b a

height of pruned comparison tree =
worst-case number of compares

a < b

yes no

code between compares
(e.g., sequence of exchanges)

one (and only one) reachable leaf corresponds to each each possible ordering

Compare-based lower bound for sorting

Proposition. In the worst case, any compare-based sorting algorithm must make  
at least compares.
 
Pf.

・Assume array consists of distinct values.

・ different orderings reachable leaves.

・Worst-case number of compares = height of pruned comparison tree.

・Binary tree of height has leaves.

log2(n!) ∼ n log2 n

n
n! ⟹ n!

h
h ≤ 2h

33

h

≤ 2h leaves

n! reachable leaves

lower bound holds even
for this special kind of input

Compare-based lower bound for sorting

Proposition. In the worst case, any compare-based sorting algorithm must make  
at least compares.

Pf.

・Assume array consists of distinct values.

・ different orderings reachable leaves.

・Worst-case number of compares = height of pruned comparison tree.

・Binary tree of height has leaves.

log2(n!) ∼ n log2 n

n
n! ⟹ n!

h
h ≤ 2h

34

 # reachable leaves =

2h ≥ n!

⟹ h ≥ log2(n!)

∼ n log2 n

logarithmic sum
(Stirling’s formula)

Computational complexity

A framework to study efficiency of algorithms for solving a particular problem X.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
First goal of algorithm design: optimal algorithms.

35

term description example (X = sorting)

model of computation
specifies memory

and primitive operations comparison tree

cost model primitive operation counts # compares

upper bound
cost guarantee provided by

some algorithm for a problem
~ n log2 n

lower bound
proven limit on cost guarantee

for all algorithms for a problem

optimal algorithm
algorithm with best possible
cost guarantee for a problem

~ n log2 n

mergesort

Computational complexity results in context

Compares? Mergesort is optimal with respect to number compares.
Space? Mergesort is not optimal with respect to space usage.
 
 
 
 
 
 
 
 
 
 
 
Lesson. Use theory as a guide.
Ex 1. Design sorting algorithm that makes compares in worst case?
Ex 2. Design sorting algorithm that makes compares and uses extra space.

∼ 1
2 n log2 n

Θ(n log n) Θ(1)
36

Commercial break (sponsored by)

Q. Why doesn’t this Skittles sorter violate the sorting lower bound?

37
https://www.youtube.com/watch?v=tSEHDBSynVo

http://www.apple.com

Complexity results in context (continued)

Lower bound may not hold if the algorithm can exploit:  

・The initial order of the input array.  
Ex: insertion sort makes only Θ(n) compares on partially sorted arrays.  

・The distribution of key values.  
Ex: 3-way quicksort makes only Θ(n) compares on arrays 
with only a few distinct key values. [next lecture]  

・The representation of the keys.  
Ex: MSD radix sort takes linear time to sort integers (or strings);  
it accesses the keys via individual digits (or characters), not key compares.

38

2.2 MERGESORT

‣mergesort
‣ bottom-up mergesort
‣ sorting complexity
‣ asymptotic notations

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Asymptotic notations

41

notation provides example shorthand for

tilde
(~)

leading
term ~ ½ n2

½ n2

½ n2 + 3 n + 22
½ n2 + n log2 n

big Theta
(Θ)

order of
growth Θ(n2)

½ n2

7 n2 + n½

 5 n2 − 3 n

big O
(O)

upper
bound O(n2)

10 n2

22 n
log2 n

big Omega
(Ω)

lower
bound Ω(n2)

½ n2

n3 + 3 n
2n

Θ(n 2) or smaller

Θ(n 2) or larger

ignore
lower-order terms

also ignore
leading coefficient

Warning: many programmers

misuse O to me an Θ.

O-notation

exact
run-time

input size n

time

Ω-notation

tilde
notation

Mergesort: poll 4

Which of the following correctly describes the function ?

A.

B.

C.

D. All of the above.

E. None of the above.

f(n) = 3n2 + 30n

∼ n2

Θ(n)

O(n3)

42

f(n) is also both O(n2) and O(2 n)

f(n) ~ 3n2

f(n) is Θ(n2) and also Ω(n)

Sorting lower bound

Interviewer. Give a formal description of the sorting lower bound for sorting arrays of elements.
 
Cornell student. I call Arrays.sort().
 
Yale student. Any sorting algorithm takes time.
 
Harvard student. Any compare-based sorting algorithm makes at least compares.

n

Θ(n log n)

O(n log n)

43

Princeton student. In the worst case, any compare-based
sorting algorithm makes compares.Ω(n log n)

Summary

Mergesort. Makes compares (and array accesses) in the worst case.
 
Sorting lower bound. In the worst case, any compare-based sorting algorithm 
makes compares.
 
Divide-and-conquer. Divide a problem into two (or more) subproblems;  
solve each subproblem independently; combine results.

O(n log n)

Ω(n log n)

44

Lecture Slides © Copyright 2025 Robert Sedgewick and Kevin Wayne

Credits

45

media source license

Jon von Neumann IAS / Alan Richards

Computer and Supercomputer New York Times

Mergesort Visualization Toptal

Tim Peters unknown

Flexing Arm freepik.com

Theory vs. Practice Ela Sjolie

Skittles Sorting Machine Rolf R. Bakke

Fast Skittles Sorting Machine Kazumichi Moriyama

Mergesort Instructions IDEA CC BY-NC-SA 4.0

Impossible Stamp Adobe Stock education license

Divide-and-Conquer Tiles wallpapercrafter.com

https://www.chronicle.com/article/early-computings-deal-with-the-devil
https://www.nytimes.com/interactive/2021/09/03/climate/bitcoin-carbon-footprint-electricity.html
https://www.toptal.com/developers/sorting-algorithms/selection-sort
https://www.freepik.com/icon/strong_418278
https://elasjoliedotcom.files.wordpress.com/2011/03/theory_practice_tree.jpg
https://www.youtube.com/watch?v=tSEHDBSynVo
https://www.youtube.com/watch?v=-_JdQZTQuTI#ws
https://stock.adobe.com/images/impossible-stamp-set-impossible-square-grunge-sign/406633267
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://wallpapercrafter.com/1898086-divide-and-conquer-conquer--divide-blocks-scrabble.html

A final thought

46

