A 1 g Or 1 [h 1IMS ROBERT SEDGEWICK | KEVIN WAYNE

2.2 MERGESORT

> mergesort
> bottom-up mergesort
» sorting complexity

» asymptotic notations

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Two classic sorting algorithms: mergesort and quicksort

Critical components in our computational infrastructure.

Mergesort. [this lecture]

L A2 @e s CHOS®.

OCaml

2.2 MERGESORT

> mergesort

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Mergesort overview

Basic plan. _
Svid e bl First Draft §
ivide array into two halves. of g &
» Recursively sort left half. Report on the #
» Recursively sort right half. EDVAC §
° Merge two sorted halves. John von Neumann

T E X A M P L E

input M E R G E S O R

sort left half E E G M O R R S

sort right half A E E L M P T X

merge results A £E E E E G L MMOP R R S T X

Abstract in-place merge demo

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],

replace with sorted subarray a[1o] to a[hi].

1o mid mid+1

sorted sorted

Merging: Java implementation

private static void merge(Comparable[] a, Comparable[] aux, int lo, 1nt mid, 1nt hi) {

for (

int k = 1lo; k <= hi1; k++)

aux|[k] = alk];

int 1
for (
1f
o
o
o

= lo, J = mid+1;
int k = 1o; k <= hi; k++) {

(1 > mid) al
se 1f (3 > h1) al
se 1f (less(Caux[3j], aux[1])) al
se al

1o 1

copy

e N N N\
— e L L
|

mid

R

auX
dUX
dUX
duUX

H

merge
(J++];
14+ <
(J++];
(14++]; <

T M

left subarray exhausted
right subarray exhausted
select from right subarray

select from left subarray

h1

<

merge subarrays a[lo..mid]
and a[mid+1..hi]

Mergesort overview

Proposition. The merge() method makes between n/2 and n — 1 calls to Tess()

to merge two sorted subarrays each of length n/2.

Worst case. Largest two elements are in different subarrays.

Best case. All elements in one subarray are larger than all elements in the other.

worst-case input (n - 1 compares) best-case input (n/2 compares)

A B c(H b e F () A 8B c () (E) F G H

Mergesort: Java implementation

public class Merge {
private static void merge(...) {

h
private static void sort(Comparable[] a, Comparable[] aux, 1nt lo, 1nt hi) { < sort subarray a[lo. .hi]
if (hi <= 1o) return:
int mid = lo + (h1 - lo) / 2;
sort(a, aux, lo, mid); « sort left subarray
sort(a, aux, mid+1l, hi); < sort right subarray
merge(a, aux, lo, mid, hi); < merge left and right subarrays
h

public static void sort(Comparable[] a) {
Comparable[] aux = new Comparablela.length]; «——
sort(a, aux, 0, a.length - 1);

avoid allocating arrays
within recursive function calls

1o mid h1

10 11 12 13 14 15 16 17 18 19

Mergesort: trace

AR

merge(a, aux, 0, O, 1)

merge(a, aux, 2, 2, 3)
merge(a, aux, 0, 1, 3)

merge(a, aux, 4, 4, 5)
merge(a, aux, 6, 6, 7)
merge(a, aux, 4, 5, 7)
merge(a, aux, 0, 3, 7)
merge(a, aux, 8, 8, 9)
merge(a, aux, 10, 10, 11)
merge(a, aux, &8, 9, 11)
merge(a, aux, 12, 12, 13)
merge(a, aux, 14, 14, 15)
merge(a, aux, 12, 13, 15)
merge(a, aux, &8, 11, 15)
merge(a, aux, 0, 7, 15)

all

1

12 13 14 15

=<
=< M|
)
O
i
wniu
O
A |~

~ I O
Wn

A E E E E G L M

> | =

M P L

— - =X m

E

X X T

result after recursive call

Mergesort: poll 1

Which subarray lengths will arise when mergesorting an array of length n =12 ?

A. {1,2 3,4 6,8, 12}
B. [1,2 3, 6, 12)

i1 2, 4,8, 12}

o 0

{1, 3,6,9, 12}

E. Run-time exception.

10

Mergesort: animation

50 random items

https://www.toptal.com/developers/sorting-algorithms/merge-sort

>

algorithm position
in order
current subarray

not in order

11

https://www.toptal.com/developers/sorting-algorithms/merge-sort

Mergesort: animation

50 reverse-sorted items

https://www.toptal.com/developers/sorting-algorithms/merge-sort

|||>

algorithm position
in order
current subarray

not in order

12

https://www.toptal.com/developers/sorting-algorithms/merge-sort

Insertion sort vs. mergesort: empirical analysis

Running time estimates (approximate):

. Laptop executes 10° compares/second.

. Supercomputer executes 10 compares/second.

n laptop super n laptop super

thousand instant instant thousand instant instant

million 2.8 hours 1 second million 1 second instant

billion 317 years 1 week billion 18 minutes instant
insertion sort mergesort

Bottom line. Great algorithms are better than supercomputers.

Mergesort analysis: number of compares

Proposition. Mergesort uses < nlog,n compares to sort any array of length n.

Pf sketch. The number of compares C(n) to mergesort any array of length »

satisfies the recurrence:

Cn) < C([n/2]) + C(|n/2]) + (n—1) forn> 1, with C(1) = 0.

sort sort merge
left half right half

proposition holds even when n is not a power of 2
(but analysis cleaner in this case)

For simplicity. Assume n is a power of 2 and solve this recurrence:

D(n) = 2D(n/2) + n, for n > 1, with D(1) = 0.

14

Divide-and-conquer recurrence

Proposition. If D(n) satisfies D(n) = 2D(n/2) + n for n > 1, with D(1) = 0, then D(n) = nlog, n.

Pf by picture. [assuming n is a power of 2]

D(n) n =n
/ \
D(n/?2) D(n/?2) 2 (n/2) = n
RN RN
D(n/4) D(n/4) D(n/4) D(n/4) 4 (n/4) = n
AT AYEATA
= n

D(n/8) Dn/8) Dm/8 Dn/8 Dmn/8) Dn/8) D(n/8) D(n/8) 8(n/8)

[D) =nlog, n]

15

Mergesort analysis: number of array accesses

Proposition. Mergesort makes ®(nlogn) array accesses.

Pf sketch. The number of array accesses A(n) satisfies the recurrence:

An) = A([n/2]) + A([n/2]) + ©®(n) forn >1, with A(1) =0.

Divide-and-conquer. Any algorithm with the following structure takes ®(nlogn) time:

public static void f(int n) {
1if (n == 0) return:
f(n/2);
f(n/2);

linear(n); <«<—— do ©O) work

solve two problems of half the size

Famous examples. FFT, closest pair, hidden-line removal, Kendall-tau distance, ...

16

Mergesort analysis: memory

Proposition. Mergesort uses ®(n) extra space.

Pf.

 The length of the aux[] array is n.
() ()

« The max depth of the function-call stack (for recursion) is log, n.

all |A|C|D|G|H| 1l |U|V|IB|E|J|O|P|Q|R|T
function-call tree
aux|[]
Def. A sorting algorithm is in—-place if it uses ®(logn) extra space (or less). < essentially negligible

_ _ (includes memory for any recursive calls)
Ex. Insertion sort and selection sort.

Challenge 1 (not hard). Merge using an aux[] array of length %n (instead of n).
Challenge 2 (very hard). Merge using only ®(logn) or ®(1) extra space.

17

Mergesort: poll 2

Consider the following modified version of mergesort.

How much total memory is allocated (and deallocated) over all recursive calls?

A. BO) private static void sort(Comparable[] a, 1nt lo, 1nt hi) {
1if (hi1 <= 1lo) return:

B. O(nlogn) int mid = lo + (hi1 - lo) / 2;
intn=hi - lo + 1;

C. @(n2) Comparable[] aux = new Comparable[n];
sort(a, lo, mid); \

D. 62" sort(a, mid+l, hi); allocates array in
merge(a, aux, lo, mid, hi); recursive method

18

Mergesort: practical improvement

Use insertion sort for small subarrays.

* Mergesort has too much overhead for tiny subarrays.

* Cutoff to insertion sort for = 12 items. < Java system sort
uses cutoff value =7

private static void sort(...) {

if (hi <= 1o + CUTOFF - 1) {

: : makes mergesort
Insertion.sort(a, lo, h1); < 5

about 20% faster

return;

int mid = lo + (h1 - lo) / 2;
sort (a, aux, lo, mid);

sort (a, aux, mid+1, hi);
merge(a, aux, lo, mid, hi);

original array

.|I|||||"m first subarray
||I||II|”“ second subarray
I —
il
"uH"""
_“.uIH|"|"|"|"|"| second merge
.uu||II||||||“""I"IIIIIIIIIII"""“““ third merge

mergesort with cutoff to insertion sort
(n = 48, cutoff = 12)

19

2.2 MERGESORT

> bottom-up mergesort

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Bottom-up mergesort

Basic plan.
« Pass through array, merging subarrays of length 1.

« Repeat for subarrays of length 2,4, 8, ...

al[1]
O 1 2 3 4 5 6 7 8 910 11 12 13 14
<7 =1 M E R G E S O R T E X A M P L
merge(a, aux, O, O, 1) E M
merge(a, aux, 2, 2, 3) G R
merge(a, aux, 4, 4, 5) E S
merge(a, aux, 6, 6, 7) O R
merge(a, aux, 8, 8, 9) E T
merge(a, aux, 10, 10, 11) A X
merge(a, aux, 12, 12, 13) M P
merge(a, aux, 14, 14, 15) E
sz=2
merge(a, aux, O, 1, 3) E G M R
merge(a, aux, 4, 5, 7) E O R S
merge(a, aux, &8, 9, 11) A E T X
merge(a, aux, 12, 13, 15) E L M
sz=4
merge(a, aux, O, 3, 7) E E G M O R R S
merge(a, aux, &8, 11, 15) A E E L M P T
sz=8

merge(a, aux, 0, 7, 15) A E E E E G L MM O P R R S T

Bottom-up mergesort: Java implementation

public class MergeBU {

private static void merge(...) {

public static void sort(Comparable[] a) {
int n = a.length;
Comparable|[] aux = new Comparable[n];
for (int sz = 1; sz < n; sz = sz+sz)‘k/////
for (int 1o = 0; 1o < n-sz; 1o += sz+sz)
merge(a, aux, lo, lo+sz-1, Math.min(lo+sz+sz-1, n-1));

length of subarrays
to merge

Proposition. At most nlog, n compares; O(n) extra space.

Bottom line. Simple and non-recursive version of mergesort.

22

Mergesort: poll 3

Which is faster in practice for n = 2°Y, top-down mergesort or bottom-up mergesort?

A. Top-down (recursive) mergesort.
B. Bottom-up (non-recursive) mergesort.
C. No difference.

D. [don't know.

23

Natural mergesort

ldea. Exploit pre-existing order by identifying naturally occurring runs.

input

1 5 10 16 3 4 23 9 13 2 / 8 12
first run

1 5 10 16
second run

merge two runs

1 3 4 5 10 16 23

Tradeoff. Fewer passes vs. extra compares per pass to identify runs.

14

24

Timsort (2002)

* Natural mergesort.

* Use binary insertion sort to make initial runs (if needed).

« A few more clever optimizations.

This describes an adaptive, stable, natural mergesort, modestly called
timsort (hey, I earned 1t <wink>). It has supernatural performance on many
kinds of partially ordered arrays (less than 1g(n!) comparisons needed, and

as few as n-1), yet as fast as Python's previous highly tuned samplesort
hybrid on random arrays.

In a nutshell, the main routine marches over the array once, left to right,
alternately identifying the next run, then merging it into the previous

runs "intelligently"”. Everything else is complication for speed, and some Tim Peters
hard-won measure of memory efficiency.

Consequence. Only ®(n) compares to sort many arrays with pre-existing order.
Widely used. Python, Java, Android, Swift, Rust, V8 JavaScript, ...

25

Timsort bug (February 2015)

Envisage About Envisage Follow Envisage Dissemination Login Q

Proving that Android’s, Java's and
Python's sorting algorithm is broken (and
showing how to fix it)

O February 24,2015 @ Envisage Written by Stijn de Gouw. a $s

Tim Peters developed the Timsort hybrid sorting algorithm in 2002. It is a clever combina-
tion of ideas from merge sort and insertion sort, and designed to perform well on real world
data. TimSort was first developed for Python, but later ported to Java (where it appears as
java.util.Collections.sort and java.util.Arrays.sort) by Joshua Bloch (the designer of Java
Collections who also pointed out that most binary search algorithms were broken). TimSort
is today used as the default sorting algorithm for Android SDK, Sun’s JDK and OpenJDK.
Given the popularity of these platforms this means that the number of computers, cloud
services and mobile phones that use TimSort for sorting is well into the billions.

http://envisage-project.eu/proving-android-java-and-python-sorting-algorithm-is-broken-and-how-to-fix-it

http://envisage-project.eu/proving-android-java-and-python-sorting-algorithm-is-broken-and-how-to-fix-it/
http://envisage-project.eu/proving-android-java-and-python-sorting-algorithm-is-broken-and-how-to-fix-it

Timsort bug (May 2018)

a
-
ql
\Y,

Details
Type:
Status:
Priority:
Resolution:
Affects Version/s:
Fix Version/s:
Component/s:
Labels:
Subcomponent:
Introduced In Version:

Resolved In Build:

JDK / JDK-8203864
Execution error in Java's Timsort

B Bug
El P3

Fixed
None
11

core-libs

None
java.util:collections
6

b20

Description

Carine Pivoteau wrote:

While working on a proper complexity analysis of
the algorithm, we realised that there was an error in
the last paper reporting such a bug (http://envisage-
project.eu/wp-content/uploads/2015/02/sorting.pdf).
This implies that the correction implemented in the
Java source code (changing Timsort stack size) is
wrong and that it is still possible to make it break.
This is explained in full details in our analysis:
https://arxiv.org/pdf/1805.08612.pdf.

We understand that coming upon data that actually
causes this error is very unlikely, but we thought
you'd still like to know and do something about it.
As the authors of the previous article advocated for,
we strongly believe that you should consider
modifying the algorithm as explained in their article
(and as was done in Python) rather than trying to fix
the stack size.

27

http://envisage-project.eu/proving-android-java-and-python-sorting-algorithm-is-broken-and-how-to-fix-it/
https://bugs.openjdk.java.net/browse/JDK-8203864

Powersort (October 2022)

Algorithmic progress is ongoing. A version of Timsort that optimizes order of merges.

24 Oct 2022

Powe Yso rt in web| |teaching| |algorithms
official Python 3.11 release

Our sorting method Powersort is used as
default | 1ist.sort() |algorithm in CPython,
the reference implementation of the Python
programming language.

See my PyCon US talk for the full story.
Here’s the entry from the official Python
changelog:

bpo-34561: List sorting now uses the merge-ordering strategy from Munro and Wild’s
powersort () . Unlike the former strategy, this is provably near-optimal in the entropy of the
distribution of run lengths. Most uses of | 1ist.sort () | probably won't see a significant time
difference, but may see significant improvements in cases where the former strategy was
exceptionally poor. However, as these are all fast linear-time approximations to a problem that’s
inherently at best quadratic-time to solve truly optimally, it’s also possible to contrive cases where
the former strategy did better.

28

http://envisage-project.eu/proving-android-java-and-python-sorting-algorithm-is-broken-and-how-to-fix-it/
https://www.wild-inter.net/posts/powersort-in-python-3.11

Sorting summary

in-place? stable? typical remarks

selection \'e

m «
«

5 n? 5 n? 5 n? n exchanges

use for small n

v 1 2 1 2
n A n 21 or partially sorted

O(n log n) guarantee;

v Yanlog,n nlog,n nlog,n
stable
v . nlog, n nlog, n improves n.fzei."gesart
when pre-existing order
v n nlog,n nlog,n holy sorting grail

number of compares to sort an array of n elements (tilde notation)

29

2.2 MERGESORT

Al gor ithms > sorting complexity

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Computational complexity

A framework to study efficiency of algorithms for solving a particular problem X.

term

description

example (X = sorting)

model of computation

cost model

upper bound

lower bound

optimal algorithm

specifies memory
and primitive operations

primitive operation cOunts

cost guarantee provided by
some algorithm for a problem

proven limit on cost guarantee
for all algorithms for a problem

algorithm with best possible
cost guarantee for a problem

|

lower bound ~ upper bound

comparison tree <

compares

~nlog, n

<

can gain knowledge about input
only through pairwise compares
(e.g., Java’s Comparable framework)

from mergesort

31

Comparison tree (for n

= 3 distinct keys a, b, and ¢)

yes

yes

/
_ach |

€S no

(e.g., sequence of exchanges)

/ /
abc ﬁ bac J

height of pruned comparison tree =
worst-case number of compares

code between compares

/

yes

\ / \
M cha

cab

one (and only one) reachable leaf corresponds to each each possible ordering

Compare-based lower bound for sorting

Proposition. In the worst case, any compare-based sorting algorithm must make

at least log,(n!) ~ nlog,n compares.

lower bound holds even

Pf / for this special kind of input
« Assume array consists of n distinct values.

* n! different orderings — n! reachable leaves.
* Worst-case number of compares = height /2 of pruned comparison tree.

» Binary tree of height # has < 2" leaves.

1&&%@& T

n! reachable leaves /

< 2" leaves

ol

33

Compare-based lower bound for sorting

Proposition. In the worst case, any compare-based sorting algorithm must make

at least log,(n!) ~ nlog,n compares.

Pf.
« Assume array consists of n distinct values.

* n! different orderings — n! reachable leaves.
* Worst-case number of compares = height /2 of pruned comparison tree.

» Binary tree of height # has < 2" leaves.

2" > # reachable leaves = n!

—> h > log,(n!)

~ nlog, n

34

Computational complexity

A framework to study efficiency of algorithms for solving a particular problem X.

term description example (X = sorting)

specifies memory

model of computation comparison tree

and primitive operations

cost model primitive operation counts # compares

cost guarantee provided by

upper bound ~nlog, n
PP some algorithm for a problem 52
lower bound proven limit. on cost guarantee (N nlog, n)
for all algorithms for a problem
lgorith th best bl
optimal algorithm ALSOTLITIM WILRL DEST pOSSIDIC (mergesort)

cost guarantee for a problem

First goal of algorithm design: optimal algorithms.

35

Computational complexity results in context

Compares? Mergesort is optimal with respect to number compares.

Space? Mergesort is not optimal with respect to space usage.

Lesson. Use theory as a guide.

1
2
Ex 2. Design sorting algorithm that makes ®(nlogn) compares and uses (1) extra space.

Ex 1. Design sorting algorithm that makes ~ —nlog,n compares in worst case?

36

B

)Y

Commercial break (sponsored by &}t

)

r

37

http://www.apple.com

Complexity results in context (continued)

Lower bound may not hold if the algorithm can exploit:

* The initial order of the input array.

Ex: insertion sort makes only ©(n) compares on partially sorted arrays.

* The distribution of key values.

Ex: 3-way quicksort makes only ®(n) compares on arrays

with only a few distinct key values. [next lecture]
 The representation of the keys.

Ex: MSD radix sort takes linear time to sort integers (or strings);

it accesses the keys via individual digits (or characters), not key compares.

38

2.2 MERGESORT

Algorithms
» asymptotic notations

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Asymptotic notations

| 15 n?
tilde leading 12 42 4+3n420 < ignore
(~) term lower-order terms
bn?+ nlog,n
1 2 tilde
2 .
: , notation
big Theta order of @(nz) 7 2 4) e S A O-notation
(©) growth s 23 leading coefficient N\ l
n- —>aSn
exact
run-time
10 n2 time l
big O upper
O(n? 22 n < O(n?) or smaller
(0) bound (n%) 1 \
0g, 1
Q-notation
big O 1/2 I’l2 >
ig Omega lower input size n
Q(n? n3+3n 2 P
(Q) bOl/tnd () « @(n)07‘ larger

271

41

Mergesort: poll 4

Which of the following correctly describes the function (1) = 3n> + 30n?

A. ~n?

B. ©O(n)

C. O’ .
D. All of the above.

E. None of the above.

42

Sorting lower bound

Interviewer. Give a formal description of the sorting lower bound for sorting arrays of n elements.

43

Summary

Mergesort. Makes O(nlogn) compares (and array accesses) in the worst case.

Sorting lower bound. In the worst case, any compare-based sorting algorithm

makes Q(nlogn) compares.

Divide-and-conquer. Divide a problem into two (or more) subproblems;

solve each subproblem independently; combine results.

]| 11
MERGE SORT MERGE SORT

V Y

Credits

media source license
Jon von Neumann IAS / Alan Richards
Computer and Supercomputer New York Times
Mergesort Visualization Toptal
Tim Peters unknown
Flexing Arm freepik.com

Theory vs. Practice Ela Sjolie

Skittles Sorting Machine Rolf R. Bakke

Fast Skittles Sorting Machine Kazumichi Moriyama

Mergesort Instructions IDEA CCBY-NC-SA 40
Impossible Stamp Adobe Stock education license
Divide-and-Congquer Tiles wallpapercrafter.com

Lecture Slides © Copyright 2025 Robert Sedgewick and Kevin Wayne

https://www.chronicle.com/article/early-computings-deal-with-the-devil
https://www.nytimes.com/interactive/2021/09/03/climate/bitcoin-carbon-footprint-electricity.html
https://www.toptal.com/developers/sorting-algorithms/selection-sort
https://www.freepik.com/icon/strong_418278
https://elasjoliedotcom.files.wordpress.com/2011/03/theory_practice_tree.jpg
https://www.youtube.com/watch?v=tSEHDBSynVo
https://www.youtube.com/watch?v=-_JdQZTQuTI#ws
https://stock.adobe.com/images/impossible-stamp-set-impossible-square-grunge-sign/406633267
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://wallpapercrafter.com/1898086-divide-and-conquer-conquer--divide-blocks-scrabble.html

A final thought

MERGE SORT

