
ROBERT SEDGEWICK | KEVIN WAYNE

F O U R T H E D I T I O N

Algorithms

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

Last updated on 9/16/25 11:41  AM

2.1 ELEMENTARY SORTS

‣ rules of the game
‣ selection sort
‣ insertion sort
‣ binary search

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

2.1 ELEMENTARY SORTS

‣ rules of the game
‣ selection sort
‣ insertion sort
‣ binary search

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Sorting problem

Goal. Given an array of elements, rearrange in ascending order by sort key.n

3

Granger Hermione Gryffindor 1998

 Last ▾ First House Year

Weasley Ginny Gryffindor 1999

Weasley Ron Gryffindor 1998

Parkinson Pansy Slytherin 1998

Longbottom Neville Gryffindor 1998

Diggory Cedric Hufflepuff 1996

Chang Cho Ravenclaw 1997

Abbott Hannah Hufflepuff 1998

Malfoy Draco Slytherin 1998

Potter Harry Gryffindor 1998

sorting hat

element

sort key

▾

Sorting problem

Goal. Given an array of elements, rearrange in ascending order by sort key.n

4

element

sort key

Weasley Ginny Gryffindor 1999

Weasley Ron Gryffindor 1998

Parkinson Pansy Slytherin 1998

Longbottom Neville Gryffindor 1998

Diggory Cedric Hufflepuff 1996

Granger Hermione Gryffindor 1998

Chang Cho Ravenclaw 1997

Abbott Hannah Hufflepuff 1998

Malfoy Draco Slytherin 1998

Potter Harry Gryffindor 1998

sorted by key

 Last ▾ First House Year

sorting hat

numerical order (descending)

Video name Views (billions)

Baby Shark Dance 15.59

Despacito 8.65

Wheels on the Bus 7.10

Johny John Yes Papa 7.01

Bath Song 7.00

See You Again 6.56

Shape of You 6.41

Phonics Song 6.28

Uptown Funk 5.48

Gangnam Style 5.46

Familiar examples.  
 
 
 
 
 
 
 
 

 
 
 
Sorting problem. Is well-defined if there is a binary relation that satisfies:

・Transitivity: if both and , then .

・Comparability: either or or both.

⪯
v ⪯ w w ⪯ x v ⪯ x

v ⪯ w w ⪯ v

numerical order (ascending)

Video name Views (billions)

Gangnam Style 5.46

Uptown Funk 5.48

Phonics Song 6.28

Shape of You 6.41

See You Again 6.56

Bath Song 7.00

Johny John Yes Papa 7.01

Wheels on the Bus 7.10

Despacito 8.65

Baby Shark Dance 15.59

Sorting problem

chronological order

5

alphabetical order

mathematically, a “weak order”
(like a “total order” except can have both
 and for distinct elements v and w)

v ⪯ w
w ⪯ v

Sorting problem

Familiar non-examples.
 
 
 
 
 
 
 
 
 
 
 
 
Sorting problem. Is well-defined if there is a binary relation that satisfies:

・Transitivity: if both and , then .

・Comparability: either or or both.

⪯
v ⪯ w w ⪯ x v ⪯ x

v ⪯ w w ⪯ v
6

Ro–sham–bo order
(violates transitivity)

COS 126

COS 226 COS 217

COS 324 COS 333

course prerequisites
(violates comparability)

Sample sort clients

Goal. General-purpose sorting function.
Ex 1. Sort strings in alphabetical order.

public class StringSorter {

 public static void main(String[] args) {

 String[] a = StdIn.readAllStrings();

 Insertion.sort(a);

 for (int i = 0; i < a.length; i++)

 StdOut.println(a[i]);

 }

}

7

~/cos226/sort> more words3.txt

BED BUG !"" DAD YET ZOO … ALL BAD YES

~/cos226/sort> java-algs4 StringSorter < words3.txt

ALL BAD BED BUG DAD … YES YET ZOO !""

[suppressing newlines]

lexicographic order
(Unicode)

Unicode value

⋮ ⋮

A 65

B 66

C 67

D 68

⋮ ⋮

Θ 1,012

⋮ ⋮

! 128,150

⋮ ⋮

Unicode character ordering

Sample sort clients

Goal. General-purpose sorting function.
Ex 2. Sort real numbers in numerical order (ascending).

8

~/cos226/sort> java-algs4 Experiment 10

0.08614716385210452

0.09054270895414829

0.10708746304898642

0.21166190071646818

0.363292849257276

0.460954145685913

0.5340026311350087

0.7216129793703496

0.9003500354411443

0.9293994908845686

public class Experiment {

 public static void main(String[] args) {

 int n = Integer.parseInt(args[0]);

 Double[] a = new Double[n];

 for (int i = 0; i < n; i++)

 a[i] = StdRandom.uniformDouble();

 Insertion.sort(a);

 for (int i = 0; i < n; i++)

 StdOut.println(a[i]);

 }

}

Sample sort clients

Goal. General-purpose sorting function.
Ex 3. Sort playing cards in suit-major order.

9

~/cos226/sort> java-algs4 HandOfCards 13

public class HandOfCards {

 ...

 public static void main(String[] args) {

 int n = Integer.parseInt(args[0]);

 PlayingCard[] cards = deal(n);

 Insertion.sort(cards);

 draw(cards);

 }

}

2
2

4
4

Q
Q

5
5

K
K

4
4

8
8

9
9

Q
Q

5
5

9
9

10
10

A
A

How can a single function sort any type of data?

Goal. General-purpose sorting function.

10

No problem. Whenever you need to
compare two words, give me a call back.

Please sort these Japanese names for me:
あゆみ, アユミ, Ayumi, 歩美, ….

But I don’t speak Japanese and I
don’t know how words are ordered.

オーケー. Just make
sure to use a weak order.

Callbacks

Goal. General-purpose sorting function.
 
Solution. Callback = reference to executable code passed to a function and later executed.

・Client passes array of objects to sort() function.

・The sort() function calls object’s compareTo() method as needed.
 
Implementing callbacks.

・Java: interfaces.

・Python, ML, Javascript: first-class functions.

・C#: delegates.

・C: function pointers.

・C++: class-type functors.

11

effectively, client passes compareTo()
method to sort() function;
the callback occurs when
sort() invokes compareTo()

Java interfaces

Interface. A set of related methods that define some behavior (partial API) for a class.
 
 
 
 
 
 
 
Class that implements interface. Must implement all interface methods.

12

public class String implements Comparable<String> {

 ...

 public int compareTo(String that) {

 ...

 }

}

public interface Comparable<Item> {

 public int compareTo(Item that);

}

interface (java.lang.Comparable)

class promises to
honor the contract

class abides by
the contract

contract: method with this signature
(and prescribed behavior)

Java interfaces: properties

Subtype polymorphism.

・Interfaces are reference types.

・A class that implements an interface is a subtype of that interface.  
 
 

 
Dynamic dispatch. Java determines which interface method to call  
using the type of the referenced object at runtime.  

Q. Why useful?
A. Enables callbacks.

・Design a single method that can sort strings, integers, or dates.

・Iterate over a collection without knowing the underlying representation.

・Intercept and process mouse clicks in a Java app.

・…
13

e.g., can use an object of the subtype instead
of interface type in assignment statements,

method arguments, return values, …

// can assign String object
// to variable of type Comparable
Comparable x = "Hello";

Comparable y = "World";

// calls String compareTo()
int result1 = x.compareTo(y);

// can also assign Date object
// to variable of type Comparable
x = new Date(2025, 02, 11);

y = new Date(1969, 07, 16);

// calls Date compareTo()
int result2 = x.compareTo(y);

public class String implements Comparable<String> {

 ...

 public int compareTo(String that) {

 ...

 }

}

data type implementation (String.java)

Callbacks in Java: roadmap

14

client (StringSorter.java)

public class StringSorter {

 public static void main(String[] args) {

 String[] a = StdIn.readAllStrings();

 Insertion.sort(a);

 ...

 }

}

sort implementation (Insertion.java)

public class Insertion {

 public static void sort(Comparable[] a) {

 ...

 if (a[i].compareTo(a[j]) < 0)

 ...

 }

}

interface (Comparable.java)

public interface Comparable<Item> {

 int compareTo(Item that);

}

key point: sorting code does not
depend upon type of data to be sorted

callback

String[] is a subtype
of Comparable[]

Suppose that the Java architects left out the clause implements Comparable<String>
in the class declaration for String. What would be the consequence?

A. Compile-time error in String.java.

B. Compile-time error in StringSorter.java.

C. Compile-time error in Insertion.java.

D. Run-time exception in Insertion.java.

Elementary sorts: poll 1

15

argument a[] to Insertion.sort(a) must be Comparable[]
(otherwise, Java might try to call compareTo() on an object with no such method)

Insertion.sort() better not break
for a clients that calls it correctly (!)

Comparable API

Requirement. Implement compareTo() so that v.compareTo(w)

・Returns a negative integer if v is less than w.

・Returns a positive integer if v is greater than w.

・Returns zero if v is equal to w.

・Throws an exception if incompatible types (or either is null).
 
 
 
 
 
 
 
 
Built-in comparable types. Integer, Double, String, java.util.Date, …
User-defined comparable types. Implement the Comparable interface.

16

v is greater than w
(return positive integer)

v

w

v is less than w
(return negative integer)

v

w

v is equal to w
(return 0)

v w

API requirement :
the binary relation

v.compareTo(w) <= 0
is a weak order

Date data type. Simplified version of java.util.Date.

public class Date implements Comparable<Date> {

 private final int month, day, year;

 public Date(int m, int d, int y) {

 month = m;

 day = d;

 year = y;

 }

 public int compareTo(Date that) {

 if (this.year < that.year) return -1;

 if (this.year > that.year) return +1;

 if (this.month < that.month) return -1;

 if (this.month > that.month) return +1;

 if (this.day < that.day) return -1;

 if (this.day > that.day) return +1;

 return 0;

 }

}

Implementing the Comparable interface

17

can compare Date objects
only to other Date objects

https://algs4.cs.princeton.edu/12oop/Date.java.html

https://algs4.cs.princeton.edu/12oop/Date.java.html

2.1 ELEMENTARY SORTS

‣ rules of the game
‣ selection sort
‣ insertion sort
‣ binary search

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Selection sort demo

Algorithm. For each index from to :

・Find index of smallest remaining element.

・Swap elements at indices and .

i 0 n − 1
min

i min

19

initial array

Selection sort: visualization

Visualization. Sort vertical bars by length.

20

in order
not yet seen

algorithm position

https://www.toptal.com/developers/sorting-algorithms/selection-sort

https://www.toptal.com/developers/sorting-algorithms/selection-sort

Selection sort invariants

Algorithm. For each index from to :

・Find index of smallest remaining element.

・Swap elements at indices and .
 
 
Invariants.

i 0 n − 1
min

i min

21

sorted i min

smallest i elements …

at start of iteration i

sorted

smallest i + 1 elements …

at end of iteration i

logical conditions that hold repeatedly at
well-defined steps of an algorithm (or program)

Two useful sorting primitives (and a cost model)

Helper functions. Refer to data only through compares and exchanges.
 
 
Compare. Is element v strictly less than element w ?

 
 
 
Exchange. Swap array entries a[i] and a[j].

22

private static boolean less(Comparable v, Comparable w) {

 return v.compareTo(w) < 0;

}

private static void exch(Object[] a, int i, int j) {

 Object swap = a[i];

 a[i] = a[j];

 a[j] = swap;

}

dynamic dispatch: Java calls
the object’s compareTo() method

use as our cost model for sorting

Java arrays are “covariant”
(e.g., String[] is a subtype of Object[])

use interface type as argument:
 can call less() with any class

that implements the Comparable interface

less("aardvark", "zebra") returns true

e.g., no calls to equals()

1 exchange makes
4 array accesses

Selection sort: Java implementation

23

public class Selection {

 public static void sort(Comparable[] a) {

 int n = a.length;

 for (int i = 0; i < n; i++)

 int min = i;

 for (int j = i+1; j < n; j++)

 if (less(a[j], a[min]))

 min = j;

 exch(a, i, min);

 }

 private static boolean less(Comparable v, Comparable w) {

 /* see previous slide */
 }

 private static void exch(Object[] a, int i, int j) {

 /* see previous slide */
 }

}

https://algs4.cs.princeton.edu/21elementary/Selection.java.html

https://algs4.cs.princeton.edu/21elementary/Selection.java.html

Elementary sorts: poll 2

How many compares to selection sort an array of distinct elements in reverse order?

A.

B.

C.

D.

n

∼ n

∼ 1
4 n2

∼ 1
2 n2

∼ n2

24

Q

Q

J

J

9

9

7

7

6

6

4

4

3

3

2

2
n = 8

Selection sort: mathematical analysis

Proposition. Selection sort makes compares and exchanges to sort any array of elements.
Pf. Exactly compares and exchange in iteration .  
 
 
 
 
 
 
 
 
 
 

Running time insensitive to input. Makes compares.
Data movement is minimal. Makes exchanges.
In place. Uses extra space.

∼ 1
2 n2 n n

(n − i − 1) 1 i

Θ(n2)
Θ(n)

Θ(1)
25

Trace of selection sort (array contents just after each exchange)

 a[]
 i min 0 1 2 3 4 5 6 7 8 9 10

 S O R T E X A M P L E

 0 6 S O R T E X A M P L E
 1 4 A O R T E X S M P L E
 2 10 A E R T O X S M P L E
 3 9 A E E T O X S M P L R
 4 7 A E E L O X S M P T R
 5 7 A E E L M X S O P T R
 6 8 A E E L M O S X P T R
 7 10 A E E L M O P X S T R
 8 8 A E E L M O P R S T X
 9 9 A E E L M O P R S T X
10 10 A E E L M O P R S T X

 A E E L M O P R S T X

entries in gray are
in final position

entries in black
are examined to find

the minimum

entries in red
are a[min]

even if input array is sorted

(n − 1) + (n − 2) + … + 1 + 0 ∼ 1
2 n2

2.1 ELEMENTARY SORTS

‣ rules of the game
‣ selection sort
‣ insertion sort
‣ binary search

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Insertion sort demo

Algorithm. For each index to :

・Let be the element at index .

・Repeatedly exchange with each larger element to its immediate left.

i = 0 n − 1
x i

x

27

initial array

Insertion sort invariants

Algorithm. For each index to :

・Let be the element at index .

・Repeatedly exchange with each larger element to its immediate left.
 
Invariants.

i = 0 n − 1
x i

x

28

sorted i untouched

≤ x > x x …

at start of iteration i

sorted untouched

≤ x x > x …

at end of iteration i

public class Insertion {

 public static void sort(Comparable[] a) {

 int n = a.length;

 for (int i = 0; i < n; i++)

 for (int j = i; j > 0; j--)

 if (less(a[j], a[j-1]))

 exch(a, j, j-1);

 else break;

 }

 private static boolean less(Comparable v, Comparable w) {

 /* as before */
 }

 private static void exch(Object[] a, int i, int j) {

 /* as before */
 }

}

Insertion sort: Java implementation

29

https://algs4.cs.princeton.edu/21elementary/Insertion.java.html

https://algs4.cs.princeton.edu/21elementary/Insertion.java.html

Elementary sorts: poll 4

How many compares to insertion sort an array of distinct elements in reverse order?

A.

B.

C.

D.

n

∼ n

∼ 1
4 n2

∼ 1
2 n2

∼ n2

30

Q

Q

J

J

9

9

7

7

6

6

4

4

3

3

2

2
n = 8

Insertion sort: running time analysis

Worst case. Insertion sort makes compares and exchanges 
to sort an array of distinct elements in reverse order.
Pf. Exactly compares and exchanges in iteration .

∼ 1
2 n2 ∼ 1

2 n2

n
i i

31

in order
not yet seen

algorithm position

0 + 1 + … + (n − 2) + (n − 1) ∼ 1
2 n2

https://www.toptal.com/developers/sorting-algorithms/insertion-sort

https://www.toptal.com/developers/sorting-algorithms/insertion-sort

Insertion sort: running time analysis

Best case. Insertion sort makes compares and exchanges  
to sort an array of distinct elements in ascending order.
Pf. Exactly compares and exchanges in each iteration (except first).

n − 1 0
n

1 0

32

in order
not yet seen

algorithm position

https://www.toptal.com/developers/sorting-algorithms/insertion-sort

https://www.toptal.com/developers/sorting-algorithms/insertion-sort

Insertion sort: running time analysis

Good case. Insertion sort takes time on “partially sorted” arrays.
 
Q. Can we formalize what we mean by partially sorted?
A. Yes, in terms of “inversions” (see textbook).

Θ(n)

33

in order
not yet seen

algorithm position

https://www.toptal.com/developers/sorting-algorithms/insertion-sort

https://www.toptal.com/developers/sorting-algorithms/insertion-sort

Insertion sort: practical improvements

Half exchanges. Shift elements over (instead of exchanging).

・Same compares; fewer array accesses.

・No longer uses only less() and exch() to access data.
 
 
 
 
 
 
Binary insertion sort. Use binary search to locate insertion point.

・Now, worst-case number of compares is .

・But worst-case number of array access is still .
∼ n log2 n

Θ(n2)

34

A C H H I M N P Q X Y K B I N A R Y

binary search for first element > K

A C H H I B I N A R YKM N P Q X Y

shift 1 position to right

compares can be very expensive
(relative to data movement),

especially in interpreted languages
(such as Python)

https://github.com/python/cpython/blob/main/Objects/listsort.txt#L745

1.4 ANALYSIS OF ALGORITHMS

‣ rules of the game
‣ selection sort
‣ insertion sort
‣ binary search

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Binary search

Goal. Given a sorted array and a search key, find index of the search key in the array?
 
Binary search. Compare search key with middle element.

・Too small, go left.

・Too big, go right.

・Equal, found.

36

lo

6 13 14 25 33 43 51 53 64 72 84 93 95 96 97

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

hi

sorted array

Binary search: nonverbal algorithm assembly instructions

37

1

3

2

BINÄRY SEARCH idea-instructions.com/binary-search/
v�.�, CC by-nc-sa �.�

2 2

4

Binary search: implementation

Trivial to implement?

・First binary search published in 1946.

・First bug-free one in 1962.

・Jon Bentley experiment: 90% of programmers implement it incorrectly.

・Bug in Java’s Arrays.binarySearch() discovered in 2006.

38

https://ai.googleblog.com/2006/06/extra-extra-read-all-about-it-nearly.html

and in C, C++, …

https://ai.googleblog.com/2006/06/extra-extra-read-all-about-it-nearly.html
https://ai.googleblog.com/2006/06/extra-extra-read-all-about-it-nearly.html

Binary search: implementation

Invariant. If key appears in array a[], then a[lo] ≤ key ≤ a[hi].

39

 // precondition: a[] is sorted
 public static int binarySearch(String[] a, String key) {

 int lo = 0, hi = a.length - 1;

 while (lo <= hi) {

 int mid = lo + (hi - lo) / 2;

 int compare = key.compareTo(a[mid]);

 if (compare < 0) hi = mid - 1;

 else if (compare > 0) lo = mid + 1;

 else return mid;

 }

 return -1;

 }

why not mid = (lo + hi) / 2 ?

https://algs4.cs.princeton.edu/11model/BinarySearch.java.html

https://algs4.cs.princeton.edu/11model/BinarySearch.java.html

Binary search: analysis

Proposition. Binary search makes at most calls to compareTo() to search 
in any sorted array of length .
 
Pf.

・Each iteration of while loop:
– calls compareTo() once
– decreases the length of remaining 

subarray by at least a factor of

1 + log2 n
n

2

40

slightly better than 2×,
due to elimination of a[mid] from subarray

(or early termination of while loop)

1 + log2 n

n → n / 2 → n / 4 → n / 8 → … → 2 → 1
can happen at most times. Why?1 + log2 n

Binary search vs. sequential search

41

3-Sum

3-SUM. Given an array of distinct integers, count number of triples that sum to .
 
Version 0. Takes time in worst case. ✅
Version 1. Takes time in worst case.
Version 2. Takes time in worst case.  

Note. For full credit, use only extra space.

n 0

Θ(n3)
Θ(n2 log n)
Θ(n2)

Θ(1)

42

Algorithm.

・Step 1: Sort the distinct numbers.

・Step 2: For each pair a[i] and a[j]:  
 binary search for x = -(a[i] + a[j]).

 
 
Analysis. Running time is in worst case.

・Step 1: with selection sort.

・Step 2: with binary search.

n

Θ(n2 log n)
Θ(n2)
Θ(n2 log n)

i j a[i] a[j] x

0 1 –40 –20 60

0 2 –40 –10 50

0 3 –40 0 40

0 4 –40 5 35

0 5 –40 10 30

⋮ ⋮ ⋮ ⋮ ⋮
1 2 –20 -10 30

⋮ ⋮ ⋮ ⋮ ⋮
2 3 –10 0 10

⋮ ⋮ ⋮ ⋮ ⋮
5 6 10 30 -40

5 7 10 40 -50

6 7 30 40 -70

3-Sum: a Θ(n2 log n) algorithm

binary search

43

count only if
to avoid both triple counting

and 10 + 10 + −20

i < j < k

input array a[]
 30 -40 -20 -10 40 0 10 5

sorted array a[]
 -40 -20 -10 0 5 10 30 40

 binary searches
in an array of length
Θ(n2)

n

3-Sum

3-SUM. Given an array of distinct integers, count number of triples that sum to .
 
Version 0. Takes time in worst case. ✅
Version 1. Takes time in worst case. ✅
Version 2. Takes time in worst case. [not much harder]  

Note. For full credit, use only extra space.
 
 
Open research problem 1. Design algorithm that takes time or better.
Open research problem 2. Prove that no time algorithm is possible.

n 0

Θ(n3)
Θ(n2 log n)
Θ(n2)

Θ(1)

Θ(n1.999)
Θ(n)

44

Summary

Comparable interface. Java framework for comparing elements.
 
Selection sort. Makes compares; exchanges.  
Insertion sort. Makes compares and exchanges in the worst case.
Binary insertion sort. Makes compares; exchanges in the worst case.
 
Binary search. Search a sorted array using compares in worst case.

Θ(n2) Θ(n)
Θ(n2)

Θ(n log n) Θ(n2)

Θ(log n)

45

Lecture Slides © Copyright 2025 Robert Sedgewick and Kevin Wayne

Credits

46

media source license

Sorting Hat Hannah Hill CC BY-NC 4.0

Airport Departures Adobe Stock education license

iPhone Contacts StackOverflow

Playing Cards Google Code public domain

Rock, Paper, Scissors Daily Mail

Anime Boy freesvg.org public domain

Anime Girl freesvg.org public domain

Call Back Icon

Balance Adobe Stock education license

Selection Sort Visualization Toptal

Insertion Sort Visualization Toptal

https://creativecommons.org/licenses/by-nc/4.0/
https://stock.adobe.com/images/airport-timetable-departure-flight-information-updating-international-flights/184905960
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stackoverflow.com/questions/18577462/how-to-make-a-tableview-divided-into-sections-by-letter-like-the-contacts-app
https://code.google.com/archive/p/vector-playing-cards/downloads
https://creativecommons.org/share-your-work/public-domain/
https://www.dailymail.co.uk/news/article-503337/Scissors-psychological-winner-rock-paper-playground-game-scientists-say.html
https://freesvg.org/cartoon-anime-boy
https://creativecommons.org/share-your-work/public-domain/
https://freesvg.org/vector-clip-art-of-anime-girl-with-long-hair
https://creativecommons.org/share-your-work/public-domain/
https://stock.adobe.com/images/balance-justice-1/12326620
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://www.toptal.com/developers/sorting-algorithms/selection-sort
https://www.toptal.com/developers/sorting-algorithms/insertion-sort

Lecture Slides © Copyright 2025 Robert Sedgewick and Kevin Wayne

Credits

47

media source license

Jon Bentley Amazon

Binary Search IDEA idea-instructions.com CC BY-NC-SA 4.0

Binary vs. Sequential Search Silicon Valley S6E4

Compare A and B Adobe Stock education license

Selection Sort Graphic Adobe Stock education license

Insertion Sort Graphic Adobe Stock education license

Insertion Sort Dance AlgoRythmics

https://www.amazon.com/stores/author/B001CDCVUG
https://idea-instructions.com/binary-search/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://www.hbo.com/silicon-valley
https://stock.adobe.com/images/symbol-for-the-scales-of-the-logo-of-comparison-of-two-opposites-icon-to-compare-two-products/299238070
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/selection-sort-algorithm-color-icon-vector-selection-sort-algorithm-sign-isolated-symbol-illustration/1117575020
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/insertion-sort-algorithm-color-icon-vector-insertion-sort-algorithm-sign-isolated-symbol-illustration/1117573763
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://www.youtube.com/watch?v=ROalU379l3U

https://www.youtube.com/watch?v=ROalU379l3U

Insertion sort with Romanian folk dance

48

https://www.youtube.com/watch?v=ROalU379l3U

