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Sorting problem

Goal. Given an array of n elements, rearrange in ascending order by sort key.

s e v

Longbottom Neville Gryffindor 1998
Weasley Ron Gryffindor 1998
Abbott Hannah Hufflepuff 1998
element > Potter Harry Gryffindor 1998
Chang Cho Ravenclaw 1997
Granger Hermione Gryffindor 1998
sort key > Malfoy Draco Slytherin 1998 sorting hat
Diggory Cedric Hufflepuff 1996
Weasley Ginny Gryffindor 1999

Parkinson Pansy Slytherin 1998
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Sorting problem

Familiar examples.

Video name Views (billions) 4
Gangnam Style 546
i : Uptown Funk 548
International Departures
Phonics Song 6.28
Flight No  Destination Remarks
Daisy Alfano Shape Of YOM 6 .41
- CX7183 Berlin
Elair Bocrs P34 I London See You Again 6.56
Chang Benjamin BA372 Paris Boarding
Nickolas Brien AY6554 New York Boarding Bath Song 7.00
Clint Brosnahan KL3160 San Francisco Boarding
— BA8903 Manchester See ticket desk ]ohny John Yes Papa 701
BA710 Los Angeles Check-in open
Emogene Cardinale v > e
on 2
T QF3371 o Keng P Wheels on the Bus 7.10
MA4866 Barcelona Check-in at kiosks
Deanne Charles
CX7221 Copenhagen Check-in at kiosks Despacito 8 65
Baby Shark Dance 15.59

chronological order

alphabetical order numerical order (ascending)

Sorting problem. Is well-defined if there is a binary relation < that satisfies:

* Transitivity: if both v <w and w <x, then v < x.

< mathematically, a “weak order”
(like a “total order” except can have both v < w
and w < v for distinct elements v and w)

 Comparability: either v <w or w <v or both.



Sorting problem

Familiar non-examples.

COS 324 COS 333
COS 226 COS 217
COS 126

course prerequisites
(violates comparability)

Scissors Paper

cut paper wraps
Rap stone

Stone
blunts
SCissors

Ro-sham-bo order
(violates transitivity)



Sample sort clients

Goal. General-purpose sorting function.

= . . l c h. d
Ex 1. Sort strings in alphabetical order. - exicographic oraer

(Unicode)
public class StringSorter { Unicode value
public static void main(String[] args) {
String[] a = StdIn.readAl1Strings();
Insertion.sort(a); A 65
for (int 1 = 0; 1 < a.length; 1++) B 66
StdOut.printin(alil);
1 C 67
) D 68
@, 1,012
~/cos226/sort> more words3.txt
BED BUG %@ DAD YET Z0O .. ALL BAD YES
¢ 4 128,150

~/cos226/sort> java-algs4 StringSorter < words3.txt
ALL BAD BED BUG DAD .. YES YET Z0O ¥ &5

[suppressing newlines]

Unicode character ordering



Sample sort clients

Goal. General-purpose sorting function.

Ex 2. Sort real numbers in numerical order (ascending).

~/cos226/sort> java-algs4 Experiment 10
.08614716385210452
.09054270895414829
.10708746304898642
.21166190071646818
.363292849257276
.460954145685913
.5340026311350087
.7216129793703496
.9003500354411443
.9293994908845686

public class Experiment {
public static void main(String[] args
int n Integer.parselnt(args|0
Double[] a = new Doubleln
for (int 1 0; 1 n; 1
ali StdRandom.uniformDouble
Insertion.sort(a
for (int 1 0; 1 n; 1
StdOut.printin(al

0
0
0
0
0
0
0
0
0
0




Sample sort clients

Goal. General-purpose sorting function.

Ex 3. Sort playing cards in suit-major order.

public class HandOfCards { ~/cos226/sort> java-algs4 HandOfCards 13

public static void main(String[] args) {
int n = Integer.parselnt(args[0]);
PlayingCard|[ ] cards = deal(n);
Insertion.sort(cards);
draw(cards) ;




How can a single function sort any type of data?

Goal. General-purpose sorting function.

-

(&

Please sort these Japanese names for me:
HPFH+, 71=, Ayumi, 553, ...

N a

/ -

But I don’t speak Japanese and 1
don’t know how words are ordered.

~

(&

No problem. Whenever you need to
compare two words, give me a call back.

N

/

-

7 —2 —. Just make
sure to use a weak order.

~

J

10



Callbacks

Goal. General-purpose sorting function.

Solution. Callback = reference to executable code passed to a function and later executed.

* Client passes array of objects to sort() function.

_ _ , < effectively, client passes compareTo()
* The sort() function calls object’s compareTo() method as needed. method to sort() function;

the callback occurs when
sort() invokes compareTo()

Implementing callbacks.
» Java: interfaces.
 Python, ML, Javascript: first-class functions.
 C#: delegates.
 C: function pointers.

e C++: class-type functors.

11



Java interfaces

Interface. A set of related methods that define some behavior (partial API) for a class.

interface (java.lang.Comparable)

public interface Comparable<Item> {

public int compareTo(Item that); < contract. method with this signature
) (and prescribed behavior)

Class that implements interface. Must implement all interface methods.

public class String implements Comparable<String> { <« class promises to
honor the contract

public 1nt compareTo(String that) {

D ——

class abides by
the contract

}

12



Java interfaces: properties

Subtype polymorphism.

Interfaces are reference types.

* A class that implements an interface is a subtype of that interface.

Dynamic dispatch. Java determines which interface method to call

using the type of the referenced object at runtime.

Q. Why useful?

A. Enables callbacks.

Design a single method that can sort strings, integers, or dates.

Iterate over a collection without knowing the underlying representation.

Comparable x
Comparable y

int

int

"Hello";
"World";

resultl = x.compareTo(y) ;

new Date(2025, 02, 11);
new Date(1969, 07, 16);

result?2 = x.compareTo(y);

13



Callbacks in Java: roadmap

client (StringSorter.java)

public class StringSorter {
public static void main(String[] args) {
String[] a = StdIn.readAl11Strings();
Insertion.sort(a);

Stringl[] is a subtype
of Comparable[]
sort implementation (Insertion.java)

public class Insertion {
public static void sort(Comparable[] a) {

T callback
1f (a[1].compareTo(al[j]) < 0)

A

key point: sorting code does not
depend upon type of data to be sorted

interface (Comparable.java)

public interface Comparable<Item> {
int compareTo(Item that);

data type implementation (String.java)

public class String implements Comparable<String>

public 1nt compareTo(String that) 1{

{

14



Elementary sorts: poll 1

Suppose that the Java architects left out the clause implements Comparable<String>

in the class declaration for String. What would be the consequence?

A. Compile-time error in String.java.
B. Compile-time error in StringSorter. java.
C. Compile-time error in Insertion.java.

D. Run-time exception in Insertion. java.

15



Comparable API

Requirement. Implement compareTo() so that v.compareTo (w)

« Returns a negative integer if v is less than w. APl requirement:
o _ _ _ . the binary relation

» Returns a positive integer if v is greater than w. v.compareTo(w) <= 0
: : is a weak order

» Returns zero if v is equal to w.

 Throws an exception if incompatible types (or either is null).

v is less than w v is equal to w Vv is greater than w
(return negative integer) (return 0) (return positive integer)

Built-in comparable types. Integer, Double, String, java.util.Date, ...

User-defined comparable types. Implement the Comparable interface.

16



Implementing the Comparable interface

Date data type. Simplified version of java.util.Date.

public class Date 1mplements Comparable<Date> {

private final int month, day, year;

public Date(int m, 1nt d, 1nt y) {

m;

month =
day = d;
year =Yy,

public 1nt compareTo(Date that) {

1f (this.
1f (this.
1t (this.
1t (this.
1t (this.
1f (this.
return O;

year
year
month
month
day
day

<

>
<
>
<
>

T

T
t
t
t
T

nat.
nat.
nat.
nat.
nat.

nat.

year )
year )
month)
month)

day )
day )

return
return
return
return
return
return

can compare Date objects
only to other Date objects

17
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Selection sort demo

Algorithm. For each index ifromOton —1:
« Find index min of smallest remaining element.

* Swap elements at indices i and min.

Z,&*.s !2: &z | 3 & & 24.*4. in &
L B e & & & &

y PR * ¥ *
® ¥ | vTey ¥ ¥ | ¥ * ¥ | v ¥

N

initial array

s &

¥
¥ %

19



Selection sort: visualization

Visualization. Sort vertical bars by length.

https://www.toptal.com/developers/sorting-algorithms/selection-sort

A

algorithm position
in order

not yet seen

20


https://www.toptal.com/developers/sorting-algorithms/selection-sort

Selection sort invariants

Algorithm. For each index ifromOton —1:
« Find index min of smallest remaining element.

* Swap elements at indices i and min.

lnvariants.

at start of iteration i

sorted i

min

smallest i elements

at end of iteration i

sorted

smallest i + 1 elements

21



Two useful sorting primitives (and a cost model)

Helper functions. Refer to data only through compares and exchanges. - e.g., no calls to equals ()

N/

use as our cost model for sorting

Compare. Is element v strictly less than element w ?

private static boolean less(Comparable v, Comparable w) { =« less("aardvark", "zebra") returns true
return v.compareTo(w) < O;

| |

dynamic dispatch: Java calls use interface type as argument:
the object’s compareTo() method can call 1ess () with any class
that implements the Comparab’le interface

Exchange. Swap array entries a[i] and a[j].

private static void exch(Object[] a, 1nt 1, 1nt J) {

Object swap = ali]l;

o o \ . 1 exchange makes
2 [-'_ I =aljl; 4 array accesses
aljl = swap; Java arrays are “covariant”

1 (e.g., String[] is a subtype of Object[])



Selection sort: Java implementation

public class Selection {

public static void sort(Comparable[] a) {

int n = a.length;
for (int 1 =0; 1 < n; 1++)

int min = 1;

for (Aint J = 1+1; J < n; J++)

1f (less(alj]l, almin]))
min = J;
exch(a, 1, min);

private static boolean less(Comparable v, Comparable w) {

private static void exch(Object[] a, 1nt 1, 1nt j) {


https://algs4.cs.princeton.edu/21elementary/Selection.java.html

Elementary sorts: poll 2

How many compares to selection sort an array of n distinct elements in reverse order?

A. ~n
| )
B. ~ —
o n
| )
C. N
D ~ n*

24



Selection sort: mathematical analysis

. : 1
Proposition. Selection sort makes ~ Enz compares and n exchanges to sort any array of n elements.

Pf. Exactly (n —i— 1) compares and 1 exchange in iteration ..

™~~~
m=1D+m=-2+ ...+ 1+0 ~ >n?
al entries in black

imn 0 1 2 3 4 5 6 7 8 910 are examined to find

S ORTEXAMPLE ~ the minimiun
0 6 S 0O R T E X A M P L E o
1 4 0O R TEXSMP L E /e’;fg’f[fn’j:]ed
2 10 R T O X S M P L E
3 9 T 0O X S M P L R
4 / O X S M P T R
5 / X S 0O P T R
6 8 S X P T R
/ 10 X S T R
8 8 L entries in gray are
9 9 T X

= in final position

=
o
=
o
X X

A E E L M O P R S

—]

Running time insensitive to input. Makes O(n?) compares. <—— even if input array is sorted
Data movement is minimal. Makes ®(n) exchanges.

In place. Uses O(1) extra space.



2.1 ELEMENTARY SORTS
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Insertion sort demo

Algorithm. For eachindexi=0ton—1:
* Let x be the element at index 1.

« Repeatedly exchange x with each larger element to its immediate left.

initial array

27



Insertion sort invariants

Algorithm. For eachindexi=0ton—1:
 Let x be the element at index i.

« Repeatedly exchange x with each larger element to its immediate left.

lnvariants.

at start of iteration i

sorted i untouched

at end of iteration i

sorted : untouched




Insertion sort: Java implementation

public class Insertion {

public static void sort(Comparable[] a) {
int n = a.length;
for (int 1 =0; 1 < n; 1++)
for (int j =1; 3 >0; J--)
if (less(aljl, alj-11))
exchCa, 3, J-1);
else break;

private static boolean less(Comparable v, Comparable w) {

private static void exch(Object[] a, 1nt 1, 1nt J) {

29


https://algs4.cs.princeton.edu/21elementary/Insertion.java.html

Elementary sorts: poll 4

How many compares to insertion sort an array of n distinct elements in reverse order?

A. ~n
| )
B. ~ —
o n
| )
C. N
D ~ n*

30



Insertion sort: running time analysis

. 1 1
Worst case. Insertion sort makes ~ Enz compares and ~ N

to sort an array of »n distinct elements in reverse order.

Pf. Exactly i compares and exchanges in iteration i.

N\

O+1+...+nn-2)+mn-1) ~ =n

A
I

https://www.toptal.com/developers/sorting-algorithms/insertion-sort

> exchanges

algorithm position
in order

not yet seen

1
2

2

31


https://www.toptal.com/developers/sorting-algorithms/insertion-sort

Insertion sort: running time analysis

Best case. Insertion sort makes n — 1 compares and 0 exchanges
to sort an array of n distinct elements in ascending order.

Pf. Exactly 1 compares and 0 exchanges in each iteration (except first).

A algorithm position
II IS in order
lll not yet seen
A Vs

32


https://www.toptal.com/developers/sorting-algorithms/insertion-sort

Insertion sort: running time analysis

Good case. Insertion sort takes ®(n) time on “partially sorted” arrays.

Q. Can we formalize what we mean by partially sorted?

A. Yes, in terms of “inversions” (see textbook).

A algorithm position
ll I EEEmSS——— in order
I ' CEEEE not yet seen

https://www.toptal.com/developers/sorting-algorithms/insertion-sort

33


https://www.toptal.com/developers/sorting-algorithms/insertion-sort

Insertion sort: practical improvements

Half exchanges. Shift elements over (instead of exchanging).
« Same compares; fewer array accesses.

* No longer uses only Tess() and exch() to access data.

shift 1 position to right

A CHHTIMNWPA QIXYK

Binary insertion sort. Use binary search to locate insertion point.

« Now, worst-case number of compares is ~ nlog, n.

» But worst-case number of array access is still (7).

ACHHI@NPQXYK

binary search for first element > K

compares can be very expensive
(relative to data movement),
especially in interpreted languages
(such as Python)

34


https://github.com/python/cpython/blob/main/Objects/listsort.txt#L745

1.4 ANALYSIS OF ALGORITHMS

Algorithms

> binary search
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Binary search

Goal. Given a sorted array and a search key, find index of the search key in the array?
Binary search. Compare search key with middle element.
* Too small, go left.

* Too big, go right.
* Equal, found.

sorted array

0 1 2 3 4 5 6 / 8 9 10 11 12 13 14

36



Binary search: nonverbal algorithm assembly instructions

BINARY SEARCH

37



Binary search: implementation

Trivial to implement?
* First binary search published in 1946.
* First bug-free one in 1962.
* Jon Bentley experiment: 90% of programmers implement it incorrectly.

 Bug in Java’s Arrays.binarySearch() discovered in 2006.

AN

and in C,C++, ...

Extra, Extra - Read All About It: Nearly All Binary Searches

and Mergesorts are Broken
Friday, June 02, 2006

Posted by Joshua Bloch, Software Engineer

| remember vividly Jon Bentley's first Algorithms lecture at CMU, where he asked all of us incoming
Ph.D. students to write a binary search, and then dissected one of our implementations in front of the
class. Of course it was broken, as were most of our implementations. This made a real impression
on me, as did the treatment of this material in his wonderful Programming Pearls (Addison-Wesley,
1986; Second Edition, 2000). The key lesson was to carefully consider the invariants in your
programs.

38


https://ai.googleblog.com/2006/06/extra-extra-read-all-about-it-nearly.html
https://ai.googleblog.com/2006/06/extra-extra-read-all-about-it-nearly.html

Binary search: implementation

Invariant. If key appears in array a[], then a[l1o] < key < a[hi].

public static int binarySearch(String[] a, String key) {
int lo = 0, hi1 = a.length - 1;
while (lo <= hi1) {
int mid = lo + (h1 - lo) / 2;
1nt compare = key.compareTo(a/mid]);
1f (compare < 0) hi = mid - 1;
else 1t (compare > 0) lo = mid + 1;
else return mid;

}

return -1;


https://algs4.cs.princeton.edu/11model/BinarySearch.java.html

Binary search: analysis

Proposition. Binary search makes at most 1 + log,n calls to compareTo() to search
in any sorted array of length n.

Pf.

» Each iteration of while loop:
- calls compareTo() once

- decreases the Iength of remaining <—— can happen at most 1 + log, n times. Why??

/2 / 4 /8 o) 1
subarray by at least a factor of 2 B EIL = @s = B = e = 2=
S _
| o
1 +log, n

slightly better than 2X,
due to elimination of a[mid] from subarray
(or early termination of while loop)

40



Binary search vs. sequential search

)

. Hendricks 112)
. Hendricks 113)
. Hendricks 114)
. Hendricks 115)

1nt index = 0;

while (!element.equals(sortedlList.get(index))

&& sortedlList.size() > ++index);

return index < sortedlList.size() ? index :

_1;

41



3-Sum

3-SuM. Given an array of » distinct integers, count number of triples that sum to 0.
Version 0. Takes ®(n°) time in worst case.
Version 1. Takes O(n”logn) time in worst case.

Version 2. Takes ®(n°) time in worst case.

Note. For full credit, use only ®(1) extra space.

42



3-Sum: a ©(n2 log n) algorithm

Algorithm.
e Step 1: Sort the n distinct numbers.

« Step 2: For each pair a[i] and a[j]:

binary search for x = -(a[i] + a[j]).

Analysis. Running time is ©(n”logn) in worst case.

. Step 1: ®(n?) with selection sort.
. Step 2: O(n’logn) with binary search.

T

®(n?) binary searches
in an array of length n

input array a[]

30 -40 -20 -10 40 O 10 5
sorted array al]
-40 -20 -10 O 5 10 30 40
binary search
L ] ali] alj] X
0 1 -40 -20
0 2 -40 -10
0 3 _40 0
0) 4 -40 5
0 5 _40 10
1 2 20 -10
5 6 10 30 -40
5 / 10 40
6 / 30 40

43



3-Sum &3

3-SuM. Given an array of » distinct integers, count number of triples that sum to 0.
Version 0. Takes ®(n°) time in worst case.
Version 1. Takes O(n”logn) time in worst case.

Version 2. Takes ®(n°) time in worst case.

Note. For full credit, use only ®(1) extra space.

@,

ven research problem 1. Design algorithm that takes ®(n'°"?) time or better.

Open research problem 2. Prove that no ®(n) time algorithm is possible.

44



Summary

Comparable interface. Java framework for comparing elements.

Selection sort. Makes ©(n?) compares; ®(n) exchanges.

Insertion sort. Makes ®(n°) compares and exchanges in the worst case.

Binary insertion sort. Makes ©(nlogn) compares; O(n?) exchanges in the worst case.

Binary search. Search a sorted array using ®(logn) compares in worst case.

A e e

==  dlw e

] [Eaarcs
COMPARE EENEEE F101, 63

FEEEEEE FEEEEE
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Adobe Stock

Toptal

Toptal

public domain

public domain

education license

Lecture Slides © Copyright 2025 Robert Sedgewick and Kevin Wayne
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Insertion sort with Romanian folk dance

al0] a[1] af2] a[3] al4] a[5] a[6] a[7] al8] al9]

nik e i ﬂﬁuua

bl

———

p— | — —— —— — g | — R

https:/ /www.youtube.com/watch?v=R0alU379I3U
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