A 1 g Or 1 [h 1IMS ROBERT SEDGEWICK | KEVIN WAYNE

2.1 ELEMENTARY SORTS

> rules of the game
» selection sort
» insertion sort

> binary search

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

2.1 ELEMENTARY SORTS

> rules of the game

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Sorting problem

Goal. Given an array of n elements, rearrange in ascending order by sort key.

s e v

Longbottom Neville Gryffindor 1998
Weasley Ron Gryffindor 1998
Abbott Hannah Hufflepuff 1998
element > Potter Harry Gryffindor 1998
Chang Cho Ravenclaw 1997
Granger Hermione Gryffindor 1998
sort key > Malfoy Draco Slytherin 1998 sorting hat
Diggory Cedric Hufflepuff 1996
Weasley Ginny Gryffindor 1999

Parkinson Pansy Slytherin 1998

Sorting problem

Goal. Given an array of n elements, rearrange in ascending order by sort key.

e e v

Abbott Hannah Hufflepuff 1998

Chang Cho Ravenclaw 1997

Granger Hermione Gryffindor 1998

Diggory Cedric Hufflepuff 1996

Longbottom Neville Gryffindor 1998

sort key > Malfoy Draco Slytherin 1998
Parkinson Pansy Slytherin 1998 sorting hat

element > Potter Harry Gryffindor 1998

Weasley Ron Gryffindor 1998

Weasley Ginny Gryffindor 1999

|

sorted by key

Sorting problem

Familiar examples.

Video name Views (billions) 4
Gangnam Style 546
i : Uptown Funk 548
International Departures
Phonics Song 6.28
Flight No Destination Remarks
Daisy Alfano Shape Of YOM 6 .41
- CX7183 Berlin
Elair Bocrs P34 I London See You Again 6.56
Chang Benjamin BA372 Paris Boarding
Nickolas Brien AY6554 New York Boarding Bath Song 7.00
Clint Brosnahan KL3160 San Francisco Boarding
— BA8903 Manchester See ticket desk]ohny John Yes Papa 701
BA710 Los Angeles Check-in open
Emogene Cardinale v > e
on 2
T QF3371 o Keng P Wheels on the Bus 7.10
MA4866 Barcelona Check-in at kiosks
Deanne Charles
CX7221 Copenhagen Check-in at kiosks Despacito 8 65
Baby Shark Dance 15.59

chronological order

alphabetical order numerical order (ascending)

Sorting problem. Is well-defined if there is a binary relation < that satisfies:

* Transitivity: if both v <w and w <x, then v < x.

< mathematically, a “weak order”
(like a “total order” except can have both v < w
and w < v for distinct elements v and w)

 Comparability: either v <w or w <v or both.

Sorting problem

Familiar non-examples.

COS 324 COS 333
COS 226 COS 217
COS 126

course prerequisites
(violates comparability)

Scissors Paper

cut paper wraps
Rap stone

Stone
blunts
SCissors

Ro-sham-bo order
(violates transitivity)

Sample sort clients

Goal. General-purpose sorting function.

= . . l c h. d
Ex 1. Sort strings in alphabetical order. - exicographic oraer

(Unicode)
public class StringSorter { Unicode value
public static void main(String[] args) {
String[] a = StdIn.readAl1Strings();
Insertion.sort(a); A 65
for (int 1 = 0; 1 < a.length; 1++) B 66
StdOut.printin(alil);
1 C 67
) D 68
@, 1,012
~/cos226/sort> more words3.txt
BED BUG %@ DAD YET Z0O .. ALL BAD YES
¢ 4 128,150

~/cos226/sort> java-algs4 StringSorter < words3.txt
ALL BAD BED BUG DAD .. YES YET Z0O ¥ &5

[suppressing newlines]

Unicode character ordering

Sample sort clients

Goal. General-purpose sorting function.

Ex 2. Sort real numbers in numerical order (ascending).

~/cos226/sort> java-algs4 Experiment 10
.08614716385210452
.09054270895414829
.10708746304898642
.21166190071646818
.363292849257276
.460954145685913
.5340026311350087
.7216129793703496
.9003500354411443
.9293994908845686

public class Experiment {
public static void main(String[] args
int n Integer.parselnt(args|0
Double[] a = new Doubleln
for (int 1 0; 1 n; 1
ali StdRandom.uniformDouble
Insertion.sort(a
for (int 1 0; 1 n; 1
StdOut.printin(al

0
0
0
0
0
0
0
0
0
0

Sample sort clients

Goal. General-purpose sorting function.

Ex 3. Sort playing cards in suit-major order.

public class HandOfCards { ~/cos226/sort> java-algs4 HandOfCards 13

public static void main(String[] args) {
int n = Integer.parselnt(args[0]);
PlayingCard|[] cards = deal(n);
Insertion.sort(cards);
draw(cards) ;

How can a single function sort any type of data?

Goal. General-purpose sorting function.

-

(&

Please sort these Japanese names for me:
HPFH+, 71=, Ayumi, 553, ...

N a

/ -

But I don’t speak Japanese and 1
don’t know how words are ordered.

~

(&

No problem. Whenever you need to
compare two words, give me a call back.

N

/

-

7 —2 —. Just make
sure to use a weak order.

~

J

10

Callbacks

Goal. General-purpose sorting function.

Solution. Callback = reference to executable code passed to a function and later executed.

* Client passes array of objects to sort() function.

_ _ , < effectively, client passes compareTo()
* The sort() function calls object’s compareTo() method as needed. method to sort() function;

the callback occurs when
sort() invokes compareTo()

Implementing callbacks.
» Java: interfaces.
 Python, ML, Javascript: first-class functions.
 C#: delegates.
 C: function pointers.

e C++: class-type functors.

11

Java interfaces

Interface. A set of related methods that define some behavior (partial API) for a class.

interface (java.lang.Comparable)

public interface Comparable<Item> {

public int compareTo(Item that); < contract. method with this signature
) (and prescribed behavior)

Class that implements interface. Must implement all interface methods.

public class String implements Comparable<String> { <« class promises to
honor the contract

public 1nt compareTo(String that) {

D ——

class abides by
the contract

}

12

Java interfaces: properties

Subtype polymorphism.

Interfaces are reference types.

* A class that implements an interface is a subtype of that interface.

Dynamic dispatch. Java determines which interface method to call

using the type of the referenced object at runtime.

Q. Why useful?

A. Enables callbacks.

Design a single method that can sort strings, integers, or dates.

Iterate over a collection without knowing the underlying representation.

Comparable x
Comparable y

int

int

"Hello";
"World";

resultl = x.compareTo(y) ;

new Date(2025, 02, 11);
new Date(1969, 07, 16);

result?2 = x.compareTo(y);

13

Callbacks in Java: roadmap

client (StringSorter.java)

public class StringSorter {
public static void main(String[] args) {
String[] a = StdIn.readAl11Strings();
Insertion.sort(a);

Stringl[] is a subtype
of Comparable[]
sort implementation (Insertion.java)

public class Insertion {
public static void sort(Comparable[] a) {

T callback
1f (a[1].compareTo(al[j]) < 0)

A

key point: sorting code does not
depend upon type of data to be sorted

interface (Comparable.java)

public interface Comparable<Item> {
int compareTo(Item that);

data type implementation (String.java)

public class String implements Comparable<String>

public 1nt compareTo(String that) 1{

{

14

Elementary sorts: poll 1

Suppose that the Java architects left out the clause implements Comparable<String>

in the class declaration for String. What would be the consequence?

A. Compile-time error in String.java.
B. Compile-time error in StringSorter. java.
C. Compile-time error in Insertion.java.

D. Run-time exception in Insertion. java.

15

Comparable API

Requirement. Implement compareTo() so that v.compareTo (w)

« Returns a negative integer if v is less than w. APl requirement:
o _ _ _ . the binary relation

» Returns a positive integer if v is greater than w. v.compareTo(w) <= 0
: : is a weak order

» Returns zero if v is equal to w.

 Throws an exception if incompatible types (or either is null).

v is less than w v is equal to w Vv is greater than w
(return negative integer) (return 0) (return positive integer)

Built-in comparable types. Integer, Double, String, java.util.Date, ...

User-defined comparable types. Implement the Comparable interface.

16

Implementing the Comparable interface

Date data type. Simplified version of java.util.Date.

public class Date 1mplements Comparable<Date> {

private final int month, day, year;

public Date(int m, 1nt d, 1nt y) {

m;

month =
day = d;
year =Yy,

public 1nt compareTo(Date that) {

1f (this.
1f (this.
1t (this.
1t (this.
1t (this.
1f (this.
return O;

year
year
month
month
day
day

<

>
<
>
<
>

T

T
t
t
t
T

nat.
nat.
nat.
nat.
nat.

nat.

year)
year)
month)
month)

day)
day)

return
return
return
return
return
return

can compare Date objects
only to other Date objects

17

https://algs4.cs.princeton.edu/12oop/Date.java.html

2.1 ELEMENTARY SORTS

» selection sort

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Selection sort demo

Algorithm. For each index ifromOton —1:
« Find index min of smallest remaining element.

* Swap elements at indices i and min.

Z,&*.s !2: &z | 3 & & 24.*4. in &
L B e & & & &

y PR * ¥ *
® ¥ | vTey ¥ ¥ | ¥ * ¥ | v ¥

N

initial array

s &

¥
¥ %

19

Selection sort: visualization

Visualization. Sort vertical bars by length.

https://www.toptal.com/developers/sorting-algorithms/selection-sort

A

algorithm position
in order

not yet seen

20

https://www.toptal.com/developers/sorting-algorithms/selection-sort

Selection sort invariants

Algorithm. For each index ifromOton —1:
« Find index min of smallest remaining element.

* Swap elements at indices i and min.

lnvariants.

at start of iteration i

sorted i

min

smallest i elements

at end of iteration i

sorted

smallest i + 1 elements

21

Two useful sorting primitives (and a cost model)

Helper functions. Refer to data only through compares and exchanges. - e.g., no calls to equals ()

N/

use as our cost model for sorting

Compare. Is element v strictly less than element w ?

private static boolean less(Comparable v, Comparable w) { =« less("aardvark", "zebra") returns true
return v.compareTo(w) < O;

| |

dynamic dispatch: Java calls use interface type as argument:
the object’s compareTo() method can call 1ess () with any class
that implements the Comparab’le interface

Exchange. Swap array entries a[i] and a[j].

private static void exch(Object[] a, 1nt 1, 1nt J) {

Object swap = ali]l;

o o \ . 1 exchange makes
2 [-'_ I =aljl; 4 array accesses
aljl = swap; Java arrays are “covariant”

1 (e.g., String[] is a subtype of Object[])

Selection sort: Java implementation

public class Selection {

public static void sort(Comparable[] a) {

int n = a.length;
for (int 1 =0; 1 < n; 1++)

int min = 1;

for (Aint J = 1+1; J < n; J++)

1f (less(alj]l, almin]))
min = J;
exch(a, 1, min);

private static boolean less(Comparable v, Comparable w) {

private static void exch(Object[] a, 1nt 1, 1nt j) {

https://algs4.cs.princeton.edu/21elementary/Selection.java.html

Elementary sorts: poll 2

How many compares to selection sort an array of n distinct elements in reverse order?

A. ~n
|)
B. ~ —
o n
|)
C. N
D ~ n*

24

Selection sort: mathematical analysis

. : 1
Proposition. Selection sort makes ~ Enz compares and n exchanges to sort any array of n elements.

Pf. Exactly (n —i— 1) compares and 1 exchange in iteration ..

™~~~
m=1D+m=-2+ ...+ 1+0 ~ >n?
al entries in black

imn 0 1 2 3 4 5 6 7 8 910 are examined to find

S ORTEXAMPLE ~ the minimiun
0 6 S 0O R T E X A M P L E o
1 4 0O R TEXSMP L E /e’;fg’f[fn’j:]ed
2 10 R T O X S M P L E
3 9 T 0O X S M P L R
4 / O X S M P T R
5 / X S 0O P T R
6 8 S X P T R
/ 10 X S T R
8 8 L entries in gray are
9 9 T X

= in final position

=
o
=
o
X X

A E E L M O P R S

—]

Running time insensitive to input. Makes O(n?) compares. <—— even if input array is sorted
Data movement is minimal. Makes ®(n) exchanges.

In place. Uses O(1) extra space.

2.1 ELEMENTARY SORTS

Al g0 rithmes » insertion sort

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Insertion sort demo

Algorithm. For eachindexi=0ton—1:
* Let x be the element at index 1.

« Repeatedly exchange x with each larger element to its immediate left.

initial array

27

Insertion sort invariants

Algorithm. For eachindexi=0ton—1:
 Let x be the element at index i.

« Repeatedly exchange x with each larger element to its immediate left.

lnvariants.

at start of iteration i

sorted i untouched

at end of iteration i

sorted : untouched

Insertion sort: Java implementation

public class Insertion {

public static void sort(Comparable[] a) {
int n = a.length;
for (int 1 =0; 1 < n; 1++)
for (int j =1; 3 >0; J--)
if (less(aljl, alj-11))
exchCa, 3, J-1);
else break;

private static boolean less(Comparable v, Comparable w) {

private static void exch(Object[] a, 1nt 1, 1nt J) {

29

https://algs4.cs.princeton.edu/21elementary/Insertion.java.html

Elementary sorts: poll 4

How many compares to insertion sort an array of n distinct elements in reverse order?

A. ~n
|)
B. ~ —
o n
|)
C. N
D ~ n*

30

Insertion sort: running time analysis

. 1 1
Worst case. Insertion sort makes ~ Enz compares and ~ N

to sort an array of »n distinct elements in reverse order.

Pf. Exactly i compares and exchanges in iteration i.

N\

O+1+...+nn-2)+mn-1) ~ =n

A
I

https://www.toptal.com/developers/sorting-algorithms/insertion-sort

> exchanges

algorithm position
in order

not yet seen

1
2

2

31

https://www.toptal.com/developers/sorting-algorithms/insertion-sort

Insertion sort: running time analysis

Best case. Insertion sort makes n — 1 compares and 0 exchanges
to sort an array of n distinct elements in ascending order.

Pf. Exactly 1 compares and 0 exchanges in each iteration (except first).

A algorithm position
II IS in order
lll not yet seen
A Vs

32

https://www.toptal.com/developers/sorting-algorithms/insertion-sort

Insertion sort: running time analysis

Good case. Insertion sort takes ®(n) time on “partially sorted” arrays.

Q. Can we formalize what we mean by partially sorted?

A. Yes, in terms of “inversions” (see textbook).

A algorithm position
ll I EEEmSS——— in order
I ' CEEEE not yet seen

https://www.toptal.com/developers/sorting-algorithms/insertion-sort

33

https://www.toptal.com/developers/sorting-algorithms/insertion-sort

Insertion sort: practical improvements

Half exchanges. Shift elements over (instead of exchanging).
« Same compares; fewer array accesses.

* No longer uses only Tess() and exch() to access data.

shift 1 position to right

A CHHTIMNWPA QIXYK

Binary insertion sort. Use binary search to locate insertion point.

« Now, worst-case number of compares is ~ nlog, n.

» But worst-case number of array access is still (7).

ACHHI@NPQXYK

binary search for first element > K

compares can be very expensive
(relative to data movement),
especially in interpreted languages
(such as Python)

34

https://github.com/python/cpython/blob/main/Objects/listsort.txt#L745

1.4 ANALYSIS OF ALGORITHMS

Algorithms

> binary search

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Binary search

Goal. Given a sorted array and a search key, find index of the search key in the array?
Binary search. Compare search key with middle element.
* Too small, go left.

* Too big, go right.
* Equal, found.

sorted array

0 1 2 3 4 5 6 / 8 9 10 11 12 13 14

36

Binary search: nonverbal algorithm assembly instructions

BINARY SEARCH

37

Binary search: implementation

Trivial to implement?
* First binary search published in 1946.
* First bug-free one in 1962.
* Jon Bentley experiment: 90% of programmers implement it incorrectly.

 Bug in Java’s Arrays.binarySearch() discovered in 2006.

AN

and in C,C++, ...

Extra, Extra - Read All About It: Nearly All Binary Searches

and Mergesorts are Broken
Friday, June 02, 2006

Posted by Joshua Bloch, Software Engineer

| remember vividly Jon Bentley's first Algorithms lecture at CMU, where he asked all of us incoming
Ph.D. students to write a binary search, and then dissected one of our implementations in front of the
class. Of course it was broken, as were most of our implementations. This made a real impression
on me, as did the treatment of this material in his wonderful Programming Pearls (Addison-Wesley,
1986; Second Edition, 2000). The key lesson was to carefully consider the invariants in your
programs.

38

https://ai.googleblog.com/2006/06/extra-extra-read-all-about-it-nearly.html
https://ai.googleblog.com/2006/06/extra-extra-read-all-about-it-nearly.html

Binary search: implementation

Invariant. If key appears in array a[], then a[l1o] < key < a[hi].

public static int binarySearch(String[] a, String key) {
int lo = 0, hi1 = a.length - 1;
while (lo <= hi1) {
int mid = lo + (h1 - lo) / 2;
1nt compare = key.compareTo(a/mid]);
1f (compare < 0) hi = mid - 1;
else 1t (compare > 0) lo = mid + 1;
else return mid;

}

return -1;

https://algs4.cs.princeton.edu/11model/BinarySearch.java.html

Binary search: analysis

Proposition. Binary search makes at most 1 + log,n calls to compareTo() to search
in any sorted array of length n.

Pf.

» Each iteration of while loop:
- calls compareTo() once

- decreases the Iength of remaining <—— can happen at most 1 + log, n times. Why??

/2 / 4 /8 o) 1
subarray by at least a factor of 2 B EIL = @s = B = e = 2=
S _
| o
1 +log, n

slightly better than 2X,
due to elimination of a[mid] from subarray
(or early termination of while loop)

40

Binary search vs. sequential search

)

. Hendricks 112)
. Hendricks 113)
. Hendricks 114)
. Hendricks 115)

1nt index = 0;

while (!element.equals(sortedlList.get(index))

&& sortedlList.size() > ++index);

return index < sortedlList.size() ? index :

_1;

41

3-Sum

3-SuM. Given an array of » distinct integers, count number of triples that sum to 0.
Version 0. Takes ®(n°) time in worst case.
Version 1. Takes O(n”logn) time in worst case.

Version 2. Takes ®(n°) time in worst case.

Note. For full credit, use only ®(1) extra space.

42

3-Sum: a ©(n2 log n) algorithm

Algorithm.
e Step 1: Sort the n distinct numbers.

« Step 2: For each pair a[i] and a[j]:

binary search for x = -(a[i] + a[j]).

Analysis. Running time is ©(n”logn) in worst case.

. Step 1: ®(n?) with selection sort.
. Step 2: O(n’logn) with binary search.

T

®(n?) binary searches
in an array of length n

input array a[]

30 -40 -20 -10 40 O 10 5
sorted array al]
-40 -20 -10 O 5 10 30 40
binary search
L] ali] alj] X
0 1 -40 -20
0 2 -40 -10
0 3 _40 0
0) 4 -40 5
0 5 _40 10
1 2 20 -10
5 6 10 30 -40
5 / 10 40
6 / 30 40

43

3-Sum &3

3-SuM. Given an array of » distinct integers, count number of triples that sum to 0.
Version 0. Takes ®(n°) time in worst case.
Version 1. Takes O(n”logn) time in worst case.

Version 2. Takes ®(n°) time in worst case.

Note. For full credit, use only ®(1) extra space.

@,

ven research problem 1. Design algorithm that takes ®(n'°"?) time or better.

Open research problem 2. Prove that no ®(n) time algorithm is possible.

44

Summary

Comparable interface. Java framework for comparing elements.

Selection sort. Makes ©(n?) compares; ®(n) exchanges.

Insertion sort. Makes ®(n°) compares and exchanges in the worst case.

Binary insertion sort. Makes ©(nlogn) compares; O(n?) exchanges in the worst case.

Binary search. Search a sorted array using ®(logn) compares in worst case.

A e e

== dlw e

] [Eaarcs
COMPARE EENEEE F101, 63

FEEEEEE FEEEEE

45

Credits

media source license
Sorting Hat Hannah Hill CCBY-NC4.0
Airport Departures Adobe Stock education license
iPhone Contacts StackOverflow
Playing Cards Google Code public domain
Rock, Paper, Scissors Daily Mail

Anime Boy
Anime Girl
Call Back Icon
Balance
Selection Sort Visualization

Insertion Sort Visualization

freesvg.org

freesvg.org

Adobe Stock

Toptal

Toptal

public domain

public domain

education license

Lecture Slides © Copyright 2025 Robert Sedgewick and Kevin Wayne

https://creativecommons.org/licenses/by-nc/4.0/
https://stock.adobe.com/images/airport-timetable-departure-flight-information-updating-international-flights/184905960
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stackoverflow.com/questions/18577462/how-to-make-a-tableview-divided-into-sections-by-letter-like-the-contacts-app
https://code.google.com/archive/p/vector-playing-cards/downloads
https://creativecommons.org/share-your-work/public-domain/
https://www.dailymail.co.uk/news/article-503337/Scissors-psychological-winner-rock-paper-playground-game-scientists-say.html
https://freesvg.org/cartoon-anime-boy
https://creativecommons.org/share-your-work/public-domain/
https://freesvg.org/vector-clip-art-of-anime-girl-with-long-hair
https://creativecommons.org/share-your-work/public-domain/
https://stock.adobe.com/images/balance-justice-1/12326620
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://www.toptal.com/developers/sorting-algorithms/selection-sort
https://www.toptal.com/developers/sorting-algorithms/insertion-sort

Credits

media source license
Jon Bentley Amazon
Binary Search IDEA idea-instructions.com CCBY-NC-SA 40

Binary vs. Sequential Search Silicon Valley S6E4

Compare A and B Adobe Stock education license
Selection Sort Graphic Adobe Stock education license
Insertion Sort Graphic Adobe Stock education license

Insertion Sort Dance AlgoRythmics

Lecture Slides © Copyright 2025 Robert Sedgewick and Kevin Wayne

https://www.amazon.com/stores/author/B001CDCVUG
https://idea-instructions.com/binary-search/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://www.hbo.com/silicon-valley
https://stock.adobe.com/images/symbol-for-the-scales-of-the-logo-of-comparison-of-two-opposites-icon-to-compare-two-products/299238070
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/selection-sort-algorithm-color-icon-vector-selection-sort-algorithm-sign-isolated-symbol-illustration/1117575020
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/insertion-sort-algorithm-color-icon-vector-insertion-sort-algorithm-sign-isolated-symbol-illustration/1117573763
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://www.youtube.com/watch?v=ROalU379l3U

Insertion sort with Romanian folk dance

al0] a[1] af2] a[3] al4] a[5] a[6] a[7] al8] al9]

nik e i ﬂﬁuua

bl

———

p— | — —— —— — g | — R

https:/ /www.youtube.com/watch?v=R0alU379I3U

https://www.youtube.com/watch?v=ROalU379l3U

