
ROBERT SEDGEWICK | KEVIN WAYNE

F O U R T H E D I T I O N

Algorithms

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

Last updated on 8/28/25 10:23  AM

1.5 UNION–FIND

‣ union–find data type
‣ quick-find
‣ quick-union
‣weighted quick-union

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Subtext of today’s lecture (and this course)

Steps to develop a usable algorithm to solve a computational problem.

2

efficient?

yes

model the
problem

design an
algorithm

understand
why not

solve the
problem

try again

no

1.5 UNION–FIND

‣ union–find data type
‣ quick-find
‣ quick-union
‣weighted quick-union
‣ percolationROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Union–find data type

Disjoint sets. A collection of sets containing elements, with each element in exactly one set.

 
Leader. Each set designates one of its elements as leader (to uniquely identify it).

 
 
 
Find. Return the leader of the set containing element .

 
Union. Merge the set containing element with the set containing element .

n

p

p q

4

{ 0 } { 1, 4, 5 } { 2, 3, 6, 7 }

8 elements, 3 disjoint sets

{ 0 } { 1, 2, 3, 4, 5, 6, 7 }

2 disjoint sets

union(2, 5)
leader is 4

find(1) = 4
find(4) = 4
find(5) = 4

no restriction on which element is designated leader
(but leader of a set can’t change unless the set changes)

leader is 6leader is 0 leader is 6

main use case:
are two elements in the same set ?

find(1) = 6
find(2) = 6
find(3) = 6
find(4) = 6
find(5) = 6
find(6) = 6
find(7) = 6

leader is 0

Union–find data type: API

Goal. Design an efficient union–find data type.

・Simplifying assumption: the elements are named .

・The union() and find() operations can be intermixed.

・Number of elements can be huge.

・Number of operations can be huge.

n 0, 1, 2, …, n − 1

n
m

5

public class UF description

UF(int n) initialize with n singleton sets (0 to n − 1)

void union(int p, int q) merge sets containing elements p and q

int find(int p) return the leader of set containing element p

Union–find data type: applications

Disjoint sets can represent:

・Clusters of conducting sites in a composite system.

・Connected components in a graph.

・Interlinked friends in a social network.

・Interconnected devices in a mobile network.

・Equivalent variable names in a Fortran program.

・Adjoining stones of the same color in the game of Hex.

・Contiguous pixels corresponding to same feature in a digital image.

6

see Assignment 1 (Percolation)

blac
k

blac
korange

orange

see Kruskal’s algorithm (MST lecture)

1.5 UNION–FIND

‣ union–find data type
‣ quick-find
‣ quick-union
‣weighted quick-union

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Quick-find

Data structure.

・Integer array leader[] of length n.

・Interpretation: leader[i] is the leader of the set containing element i.

 
 
 
 
 
 
 
 
 
 
Q. How to implement find(p)?

A. Easy, just return leader[p].

8

0 1

0 1

1 8

2 3

8 0

4 5

0 1

6 7

8 8

8 9

leader[]

{ 0, 5, 6 } { 1, 2, 7 } { 3, 4, 8, 9 }

10 elements, 3 disjoint sets

leader[i] = 0 leader[i] = 1 leader[i] = 8

Quick-find

Data structure.

・Integer array leader[] of length n.

・Interpretation: leader[i] is the leader of the set containing element i.

 
 
 
 
 
 
 
 
 
 
Q. How to implement union(p, q)?

A. Change all array elements whose value is leader[p] to leader[q].

9

0 1

0 1

1 8

2 3

8 0

4 5

0 1

6 7

8 8

8 9

leader[]

union(6, 2)

performance issue:
many array elements can change

1 1

0 1

1 8

2 3

8 1

4 5

1 1

6 7

8 8

8 9

or vice versa

public class QuickFindUF {
 private int[] leader;

 public QuickFindUF(int n) {
 leader = new int[n];
 for (int i = 0; i < n; i++)
 leader[i] = i;
 }

 public int find(int p) {
 return leader[p];
 }

 public void union(int p, int q) {
 int leaderP = leader[p];
 int leaderQ = leader[q];
 for (int i = 0; i < leader.length; i++)
 if (leader[i] == leaderP)
 leader[i] = leaderQ;
 }

}

Quick-find: Java implementation

10

initialize leader of each element to itself

change all array elements whose
value is leader[p] to leader[q]

return the leader of p

https://algs4.cs.princeton.edu/15uf/QuickFindUF.java.html

(1 array access)

(n array accesses)

(≥ n array accesses)

https://algs4.cs.princeton.edu/15uf/QuickFindUF.java.html

Quick-find is too slow

Cost model. Number of array accesses (for read or write).

 
 
 
 
 
 
 
 
 
Union is too expensive. Processing any sequence of union() operations 
on elements takes array accesses.

 
 
 
Ex. Performing 109 union() operations on 109 elements might take 30 years.

m
n ≥ mn

11

algorithm initialize union find

quick-find n n 1

worst-case number of array accesses (ignoring leading coe!cient)

quadratic in input size!

1.5 UNION–FIND

‣ union–find data type
‣ quick-find
‣ quick-union
‣weighted quick-union

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Data structure: Forest-of-trees.

・Interpretation: elements in one rooted tree correspond to one set.

・Integer array parent[] of length n, where parent[i] is parent of element i in tree.

 
 
 
 
 
 
 
 
 
 
Q. How to implement find(p)?

A. Use tree roots as leaders return root of tree containing p.⟹

parent of 4 is 9

Quick-union

parent of 3 is 4

0 1

0 1

9 4

2 3

9 6

4 5

6 7

6 7

8 9

8 9

13

5

70 1 6

2

{ 0 } { 1 } { 2, 3, 4, 9 } { 5, 6 } { 7 } { 8 }

10 elements, 6 disjoint sets (6 trees)

find(i) = 9

root of 3 is 9

9

p 33

4

8parent[]

parent of 9 is 9

by convention, we make root point to itself
(but typically suppress from drawing)

Union–find: poll 1

Data structure: Forest-of-trees.

・Interpretation: elements in one rooted tree correspond to one set.

・Integer array parent[] of length n, where parent[i] is parent of element i in tree.

Which is not a valid way to implement union(3, 5) ?

A. Set parent[6] = 9.

B. Set parent[9] = 6.

C. Set parent[3] = 5.

D. Set parent[2] = parent[3] = parent[4] = parent[9] = 6.

14

0 1

0 1

9 4

2 3

9 6

4 5

6 7

6 7

8 9

8 9

5

70 1 8

p

q

6

52

9

4

3

parent[]

3 would no longer be in same tree as 2, 4, and 9

Quick-union

Data structure: Forest-of-trees.

・Interpretation: elements in one rooted tree correspond to one set.

・Integer array parent[] of length n, where parent[i] is parent of element i in tree.  

 
 
 
 
 
 
Q. How to implement union(p, q)?

15

0 1

0 1

9 4

2 3

9 6

4 5

6 7

6 7

8 9

8 9

5

70 1 8

p

q

union(3, 5)

A. Set parent[p’s root] = q’s root.

6

52

9

4

3

or vice versa

Quick-union

Data structure: Forest-of-trees.

・Interpretation: elements in one rooted tree correspond to one set.

・Integer array parent[] of length n, where parent[i] is parent of element i in tree.  

 
 
 
 
 
 
Q. How to implement union(p, q)?

16

0 1

0 1

9 4

2 3

9 6

4 5

6 7

6 7

8 9

8 9

only one array
element changes

70 1 8

p

q

0 1

0 1

9 4

2 3

9 6

4 5

6 7

6 7

8 6

8 9

union(3, 5)

A. Set parent[p’s root] = q’s root.

2

9

4

3

6

5

or vice versa

Quick-union demo

17

0 1 2 3 4 5 6 7 8 9

0 1

0 1

2 3

2 3

4 5

4 5

6 7

6 7

8 9

8 9

Quick-union: Java implementation

public class QuickUnionUF {
 private int[] parent;

 public QuickUnionUF(int n) {
 parent = new int[n];
 for (int i = 0; i < n; i++)
 parent[i] = i;
 }

 public int find(int p) {
 while (p != parent[p])
 p = parent[p];
 return p;
 }

 public void union(int p, int q) {
 int rootP = find(p);
 int rootQ = find(q);
 parent[rootP] = rootQ;
 }

}

set parent of each element to itself
(to create forest of n singleton trees)

follow parent pointers until reach root;
return resulting root

link root of p to root of q

18
https://algs4.cs.princeton.edu/15uf/QuickUnionUF.java.html

https://algs4.cs.princeton.edu/15uf/QuickUnionUF.java.html

Quick-union analysis

Cost model. Number of array accesses (for read or write).

 
Running time.

・ union() takes constant time, given two roots.

・ find() takes time proportional to depth of node in tree.

19

0

2 2 22

1 111

3 x

depth(x) = 3

depth

links on path
from node to root

Quick-union analysis

Cost model. Number of array accesses (for read or write).

 
Running time.

・ union() takes constant time, given two roots.

・ find() takes time proportional to depth of node in tree.

 
 
 
 
 
 
 
 
Union and find are too expensive (if trees get tall). Processing some sequences of

union() and find() operations on elements takes array accesses.

m
n ≥ mn

20

algorithm initialize union find

quick-find n n 1

quick-union n n n

worst-case number of array accesses (ignoring leading coe!cient)

quadratic in input size !

x

worst-case depth = n-1

0

1

2

3

4

5

6

7

8

9

1.5 UNION–FIND

‣ union–find data type
‣ quick-find
‣ quick-union
‣weighted quick-union

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

When linking two trees, which of these strategies is most e"ective?

A. Link the root of the smaller tree to the root of the larger tree.

B. Link the root of the larger tree to the root of the smaller tree.

C. Flip a coin; randomly choose between A and B.

D. All of the above.

Union–find: poll 2

(size = 16, height = 4)
22

smaller tree
(size = 6, height = 2)

larger tree

Weighted quick-union (link-by-size)

Link-by-size. Modify quick-union to avoid tall trees.

・Keep track of size of each tree = number of elements.

・Always link root of smaller tree to root of larger tree.

23

fine alternative: link-by-height
(minimize worst-case depth vs. average depth)

quick-union

might put the
larger tree lower

larger
tree

r1
smaller

tree

r2

weighted quick-union

always puts the
smaller tree lower

larger
tree

r1

smaller
tree

r2

Weighted quick-union: Java implementation

Data structure. Same as quick-union, but maintain extra array size[i]

to count number of elements in the tree rooted at i, initially 1.

・ find(): identical to quick-union.

・ union(): link root of smaller tree to root of larger tree; update size[].

24

public void union(int p, int q) {
 int rootP = find(p);
 int rootQ = find(q);
 if (rootP == rootQ) return;

 if (size[rootP] < size[rootQ]) {
 parent[rootP] = rootQ;
 size[rootQ] += size[rootP];
 }
 else {
 parent[rootQ] = rootP;
 size[rootP] += size[rootQ];
 }

}

link root of smaller tree
to root of larger tree

(and update size)

https://algs4.cs.princeton.edu/15uf/WeightedQuickUnionUF.java.html

p and q already in the same set

https://algs4.cs.princeton.edu/15uf/WeightedQuickUnionUF.java.html
https://algs4.cs.princeton.edu/15uf/WeightedQuickUnionUF.java.html

Quick-union vs. weighted quick-union: larger example

25

Quick-union and weighted quick-union (100 sites, 88 union() operations)

weighted

quick-union

average distance to root: 1.52

average distance to root: 5.11

Quick-union and weighted quick-union (100 sites, 88 union() operations)

weighted

quick-union

average distance to root: 1.52

average distance to root: 5.11

Quick-union and weighted quick-union (100 sites, 88 union() operations)

weighted

quick-union

average distance to root: 1.52

average distance to root: 5.11

Quick-union and weighted quick-union (100 sites, 88 union() operations)

weighted

quick-union

average distance to root: 1.52

average distance to root: 5.11

Quick-union and weighted quick-union (100 sites, 88 union() operations)

weighted

quick-union

average distance to root: 1.52

average distance to root: 5.11

Quick-union and weighted quick-union (100 sites, 88 union() operations)

weighted

quick-union

average distance to root: 1.52

average distance to root: 5.11

Quick-union and weighted quick-union (100 sites, 88 union() operations)

weighted

quick-union

average distance to root: 1.52

average distance to root: 5.11

Quick-union and weighted quick-union (100 sites, 88 union() operations)

weighted

quick-union

average distance to root: 1.52

average distance to root: 5.11

Quick-union and weighted quick-union (100 sites, 88 union() operations)

weighted

quick-union

average distance to root: 1.52

average distance to root: 5.11

Weighted quick-union analysis

Proposition. Depth of any node ≤ . x log2 n

26

 n = 10
depth(x) = 3 ≤ log2n

0

2 2 22

1 111

3 x

depth

Weighted quick-union analysis

Proposition. Depth of any node ≤ .

Pf.

・Depth of x does not change unless root of tree containing is linked to  
the root of a larger tree , forming a new tree .

・When this happens:

– depth of increases by exactly

– size of tree containing at least doubles 
because = +

 ≥ 2 ! .

x log2 n

T1 x
T2 T3

x 1
x

size(T3) size(T1) size(T2)
size(T1)

27

can happen at most log2 n times. Why?

log2 n

1 → 2 → 4 → 8 → 16 → … → n

size of tree containing x
is initially 1

size of tree containing x
can’t exceed n

T2

r2

T1

r1

x

Weighted quick-union analysis

Proposition. Depth of any node ≤ .

Running time.

・ union() takes constant time, given two roots.

・ find() takes time proportional to depth of node in tree.

x log2 n

28

algorithm initialize union find

quick-find n n 1

quick-union n n n

weighted quick-union n log n log n

worst-case number of array accesses (ignoring leading coe!cient)

in this course, log mean logarithm
for some constant base

Summary

Key point. Weighted quick-union empowers us to solve problems that could not otherwise be addressed.  
 
 
 
 
 
 
 
 
 
 
 

Ex. [109 union–find operations on 109 elements]

・Efficient algorithm reduces time from 30 years to 6 seconds.

・Supercomputer won’t help much.
29

order of growth for m ≥ n union–find operations on a set of n elements

algorithm worst-case time

quick-find m n

quick-union m n

weighted quick-union m log n

quick-union + path compression m log n

weighted quick-union + path compression m α(m, n) inverse Ackermann function
(see COS 423)

fastest for percolation?

Lecture Slides © Copyright 2025 Robert Sedgewick and Kevin Wayne

Credits

image source

Game of Hex Wolfram MathWorld

Cluster Labeling Tiberiu Marita

Bob Tarjan Princeton University

Computer and Supercomputer New York Times

https://mathworld.wolfram.com/GameofHex.html
http://users.utcluj.ro/~tmarita/IOC/C6/C6.pdf
https://engineering.princeton.edu/faculty/robert-tarjan
https://www.nytimes.com/interactive/2021/09/03/climate/bitcoin-carbon-footprint-electricity.html

A final thought

31

“ The goal is to come up with algorithms that you can apply

 in practice that run fast, as well as being simple, beautiful,

 and analyzable. ” — Robert Tarjan

