A 1 g Or 1 [h 1IMS ROBERT SEDGEWICK | KEVIN WAYNE

1.5 UNION-FIND

> union—find data type
> quick-find
> quick-union

» weighted quick-union

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Subtext of today’s lecture (and this course)

Steps to develop a usable algorithm to solve a computational problem.

model the
problem
4

design an . (understand
_ try again
algorithm k why not

A

efficient? no

yes

l

solve the
problem

1.5 UNION-FIND

» union—find data type

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Union-find data type

Disjoint sets. A collection of sets containing n elements, with each element in exactly one set.

Leader. Each set designates one of its elements as leader (to uniquely identify it).

main use case.

Find. Return the leader of the set containing element p. «—— .
are two elements in the same set !

Union. Merge the set containing element p with the set containing element g.

find(1) = 6
find(2) = 6
find(3) = 6
find(1) = 4 2:32:; z g
find(4) = 4 find(6) = 6
find(5) = 4 find(7) = 6
/ union(2, 5) /
{o0}y{1, 4,5} {2, 3, 6, 7} tfor{1, 2, 3, 4, 5, 6, 7 }

8 elements, 3 disjoint sets 2 disjoint sets

Union-find data type: API

Goal. Design an efficient union-find data type.
« Simplifying assumption: the n elements are named 0,1,2, ..., n — 1.
* The union() and find() operations can be intermixed.
« Number of elements n can be huge.

« Number of operations m can be huge.

public class UF description
UFCint n) initialize with n singleton sets (0 ton — 1)
void union(int p, int q) merge sets containing elements p and q

int find(int p) return the leader of set containing element p

Union-find data type: applications

Disjoint sets can represent:

* Clusters of conducting sites in a composite system. -« see Assignment 1 (Percolation)

e Connected components in a graph_ < see Kruskal’s algorithm (MST lecture)
 Interlinked friends in a social network.

* |nterconnected devices in a mobile network.

* Equivalent variable names in a Fortran program.

* Adjoining stones of the same color in the game of Hex.

» Contiguous pixels corresponding to same feature in a digital image.

e
<

HE EEEEEE

L

HE N

o N
/\/\/\f§
\/\1;/\/
NN NN

1.5 UNION-FIND

> quick-find
Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Quick-find

Data structure.
* |Integer array leader[] of length n.

* Interpretation: leader[i] is the leader of the set containing element 1.

leader[] 0 1 1 8 8 O O 1 &8 8

leader[1] =0 lTeader[i1] =1 leader[i] =8

/TN /TN AN

{ O! 5! 6 } { l! 2! 7 } { 3! 4! 8! 9 }

10 elements, 3 disjoint sets

Q. How to implement find(p)?
A. Easy, just return leader[p].

Quick-find

Data structure.
* |Integer array leader[] of length n.

* Interpretation: leader[i] is the leader of the set containing element 1.

union(6, 2)

leader[] 1 1 8 81 g 8

T~/

performance issue:
many array elements can change

Q. How to implement union(p, q)?

A. Change all array elements whose value is Teader[p] to Teader[q]. «—— orvice versa

Quick-find: Java implementation

public class QuickFindUF {
private 1nt[] leader;

public QuickFindUF(int n) {
leader = new int[n];
for (Aint 1 =0; 1 < n; 1++)
leader[1] = 1; < initialize leader of each element to itself
} (n array accesses)

public int find(int p) {
return leader|p]; « return the leader of p
} (1 array access)

public void union(int p, 1nt q) {
int leaderP = leader[p];
int leaderQ = leader[qgl;

for (int 1 = 0; 1 < leader.length; 1++) < change all array elements whose

if (leader[i] == leaderP) value is Teader[p] to Teader[q]
(= n array accesses)

leader[1] = leaderQ;

10

https://algs4.cs.princeton.edu/15uf/QuickFindUF.java.html

Quick-find is too slow

Cost model. Number of array accesses (for read or write).

quick-find

worst-case number of array accesses (ignoring leading coefficient)

Union is too expensive. Processing any sequence of m union() operations

on n elements takes > mn array accesses.

|

quadratic in input size!

Ex. Performing 10° union() operations on 10° elements might take 30 years.

11

1.5 UNION-FIND

Algorithms > quick-union

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Quick-union

Data structure: Forest-of-trees.

 Interpretation: elements in one rooted tree correspond to one set.

* |Integer array parent[] of length n, where parent[i] is parent of element i in tree.

parentll 0 1 9 (4)(@) 6 6 7 8 (9 © @

find(i1) =9

AN

{0} {13({2 3, 4,91){5, 6} {73} {8}

10 elements, 6 disjoint sets (6 trees)

Q. How to implement find(p)?

A. Use tree roots as leaders = return root of tree containing p.

parent of 3 is 4
parent of 4 is 9
parent of 9is 9

root of 315 9

()

ONO

13

Union-find: poll 1

Data structure: Forest-of-trees.
* Interpretation: elements in one rooted tree correspond to one set.

* |Integer array parent[] of length n, where parent[i] is parent of element i in tree.

parentf O 1 9 4 9 6 6 7 8 9 @@ 9 @
(2) (&) q

Which is not a valid way to implement union(3, 5) ?

A. Set parent[6] = 9.
B. Setparent[9] = 6.
C. Setparent[3] = 5.

D. Setparent[2] = parent[3] = parent[4] = parent[9] = 6.

14

Quick-union

Data structure: Forest-of-trees.
* Interpretation: elements in one rooted tree correspond to one set.

* |Integer array parent[] of length n, where parent[i] is parent of element i in tree.

union(3, 5) o 1 9 4 9 6 6 7 8 9 @ @ 9 @
(2) (& q

Q. How to implement union(p, q)?

A. Set parent[p’s root] = g’s root.

15

Quick-union

Data structure: Forest-of-trees.
* Interpretation: elements in one rooted tree correspond to one set.

* |Integer array parent[] of length n, where parent[i] is parent of element i in tree.

union(3, 5) O 1 9 4 9 6 6 7 8 n @ @ @

only one array
element changes

Q. How to implement union(p, q)?

A. Set parent[p’s root] = g’s root.

16

Quick-union demo

ORORORORORORONO (&)

o 1 2 3 4 5 6 7 8 9

Quick-union: Java implementation

public class QuickUnionUF {
private 1nt[] parent;

public QuickUnionUF(int n) {
parent = new int[n];
for (Aint 1 =0; 1 < n; 1++)
parent[1] = 1; <

public int find(int p) {
while (p !'= parent|[p])

p = parent[p]; <
return p;

public void union(int p, int q) {
1int rootP = find(p);
int rootQ = find(q);

parent|[rootP| = rootQ; <

set parent of each element to itself
(to create forest of n singleton trees)

follow parent pointers until reach root,
return resulting root

link root of p to root of q

18

https://algs4.cs.princeton.edu/15uf/QuickUnionUF.java.html

Quick-union analysis

Cost model. Number of array accesses (for read or write).

Running time.

* union() takes constant time, given two roots.

* find() takes time proportional to depth of node in tree.

\

links on path
from node to root

2 é% 2 / depth

depth(x) = 3

19

Quick-union analysis

Cost model. Number of array accesses (for read or write).

Running time.

* union() takes constant time, given two roots.

* find() takes time proportional to depth of node in tree.

quick-union n

worst-case number of array accesses (ignoring leading coefficient)

Union and find are too expensive (if trees get tall). Processing some sequences of m

Q-C-0-0-0-0O-0-0-0-0

union() and find() operations on n elements takes > mn array accesses.

\ worst-case depth = n-1

quadratic in input size !

1.5 UNION-FIND

Algorithms
» weighted quick-union
ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Union-find: poll 2

When linking two trees, which of these strategies is most effective?

A. Link the root of the smaller tree to the root of the larger tree.
B. Link the root of the larger tree to the root of the smaller tree.
C. Flip a coin; randomly choose between A and B.

D. All of the above.

Ji\f/ﬁki]

smaller tree

Cg (size = 6, height = 2)

larger tree
(size = 16, height = 4)

22

Weighted quick-union (link-by-size)

Link-by-size. Modify quick-union to avoid tall trees.
« Keep track of size of each tree = number of elements.

« Always link root of smaller tree to root of larger tree. «~—— fine alternative: link-by-height
(minimize worst-case depth vs. average depth)

quick-union weighted quick-union
smaller
tree
larger smaller
tree
l free D always puts the
c;rger smaller tree lower
ree
D might put the

larger tree lower

23

Weighted quick-union: Java implementation

Data structure. Same as quick-union, but maintain extra array size[1i]
to count number of elements in the tree rooted at 1, initially 1.

* find(): identical to quick-union.

* union(): link root of smaller tree to root of larger tree; update size[].

public void union(int p, int q) {
int rootP = find(p);
int rootQ = find(q);

if (rootP == rootQ) return; <«—— pand q already in the same set

if (size[rootP] < sizel[rootQ]) { < link root of smaller tree
parent[rootP] = rootQ: to root of larger tree
size[rootQ] += size[rootP]; (and update size)

¥

else {

parent[rootQ] = rootP;
size[rootP| += sizel[rootQ];

24

https://algs4.cs.princeton.edu/15uf/WeightedQuickUnionUF.java.html
https://algs4.cs.princeton.edu/15uf/WeightedQuickUnionUF.java.html

Quick-union vs. weighted quick-union: larger example

quick-union

SR S
A T

weighted

25

Weighted quick-union analysis

Proposition. Depth of any node x < log,n.

n=10
depth(x) = 3 < log,n

26

Weighted quick-union analysis

Proposition. Depth of any node x < log,n.
Pf.
« Depth of x does not change unless root of tree 7, containing x is linked to
the root of a larger tree 7,, forming a new tree 7.
 When this happens:

. ; ‘7
_ depth of ¥ increases by exactly 1 <—— can happen at most log, n times. Why"

- size of tree containing x at least doubles 1l -2 >4 > 8 ->16-> - > n
_ _
. : : A —~ A
because size(T;) = size(T,) + size(T,) logon
> 2 x size(T).
size of tree containing x size of tree containing x
is initially 1 can’t exceed n

Weighted quick-union analysis

Proposition. Depth of any node x < log, n.

Running time.

* union() takes constant time, given two roots.

* find() takes time proportional to depth of node in tree.

quick-find
quick-union n n n
weighted quick-union n C]Og n) C]Og n) <

worst-case number of array accesses (ignoring leading coefficient)

in this course, 1o0g mean logarithm
for some constant base

28

Summary

Key point. Weighted quick-union empowers us to solve problems that could not otherwise be addressed.

quick-find mn
quick-union mn
weighted quick-union Cm log n)
< fastest for percolation?
< inverse Ackermann function
(see COS 423)

order of growth for m = n union-find operations on a set of n elements

Ex. [10° union-find operations on 10° elements]
» Efficient algorithm reduces time from 30 years to 6 seconds.
* Supercomputer won’t help much.

29

Credits

image source
Game of Hex Wolfram MathWorld
Cluster Labeling Tiberiu Marita
Bob Tarjan Princeton University
Computer and Supercomputer New York Times

Lecture Slides © Copyright 2025 Robert Sedgewick and Kevin Wayne

https://mathworld.wolfram.com/GameofHex.html
http://users.utcluj.ro/~tmarita/IOC/C6/C6.pdf
https://engineering.princeton.edu/faculty/robert-tarjan
https://www.nytimes.com/interactive/2021/09/03/climate/bitcoin-carbon-footprint-electricity.html

A final thought

“The goal is to come up with algorithms that you can apply

in practice that run fast, as well as being simple, beautiful,

and analyzable.” — Robert Tarjan

