
ROBERT SEDGEWICK | KEVIN WAYNE

F O U R T H E D I T I O N

Algorithms

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

Last updated on 1/29/26 10:44  AM

1.4 ANALYSIS OF ALGORITHMS

‣ introduction

‣ running time (experimental analysis)

‣ running time (mathematical models)

‣memory usage

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

1.4 ANALYSIS OF ALGORITHMS

‣ introduction

‣ running time (experimental analysis)

‣ running time (mathematical models)

‣memory usage
ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Running time

3

how many times
do you have to turn

the crank?

“ As soon as an Analytical Engine exists, it will necessarily guide the future
 course of the science. Whenever any result is sought by its aid, the question
 will then arise—By what course of calculation can these results be arrived
 at by the machine in the shortest time ? ” — Charles Babbage (1864)

https://vimeo.com/49080293

https://vimeo.com/49080293

Running time

4

Ada Lovelace’s algorithm
to compute Bernoulli numbers

on Analytical Engine (1843)

“ As soon as an Analytical Engine exists, it will necessarily guide the future
 course of the science. Whenever any result is sought by its aid, the question
 will then arise—By what course of calculation can these results be arrived
 at by the machine in the shortest time ? ” — Charles Babbage (1864)

An algorithmic success story

Goal. Multiply two polynomials of degree .  
 

・Applications: JPEG compression, MRI, astrophysics, and more.

・Grade-school algorithm: operations.

・FFT algorithm: operations, enabling modern technology.

n

Θ(n2)
Θ(n log n)

5

John
Tukey

James
Cooley

Ph
ot

o
C

re
di

t:
Pr

in
ce

to
n

U
ni

ve
rs

it
y,

 R
ob

er
t

M
at

th
ew

s

8T

16T

32T

64T

time

1K 2K 4K 8Ksize

quadratic

linearithmic

linear
8T

16T

32T

64T

time

1K 2K 4K 8Ksize

quadratic

linearithmic

linear

limit on
available time

(x3 + x2 − 2x + 1) ⋅ (3x3 − x2 + 2x + 1) = 3x6 + 2x5 − 5x4 + 8x3 − 4x2 + 1

Another algorithmic success story?

6

Q1. Will my program handle on large, real-world inputs?
Q2. If not, how can I analyze and improve its performance?
 
 
 
 
 
 
 
 
 
 
 
 
 
Our approach: a combination of experiments and mathematical modeling.

The core challenge

7

Why is my program so slow? Why does it run out of memory?

Example: 3-SUM problem

Goal. Given an array of distinct integers, count triples such that .
 
 
 
 
 
 
 
Context. Arises in in computational geometry (and even in computer games!)
Open problem. What is the optimal running time for solving 3-SUM ?

n i < j < k a[i] + a[j] + a[k] = 0

8

~/cos226/analysis> more 8ints.txt
8
30 -40 -20 -10 40 0 10 5

~/cos226/analysis> java ThreeSum 8ints.txt
4

a[i] a[j] a[k] sum

1 30 −40 10 0 ✔

2 30 −20 −10 0 ✔

3 −40 40 0 0 ✔

4 −10 0 10 0 ✔

3-SUM problem: brute-force algorithm

9

public class ThreeSum {

 public static int count(int[] a) {
 int n = a.length;
 int count = 0;
 for (int i = 0; i < n; i++)
 for (int j = i+1; j < n; j++)
 for (int k = j+1; k < n; k++)
 if (a[i] + a[j] + a[k] == 0)
 count++;
 return count;
 }

 public static void main(String[] args) {
 In in = new In(args[0]);
 int[] a = in.readAllInts();
 StdOut.println(count(a));
 }
}

count distinct triples that sum to 0

assume no integer overflow

1.4 ANALYSIS OF ALGORITHMS

‣ introduction

‣ running time (experimental analysis)

‣ running time (mathematical models)

‣memory usage
ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Measuring running time

Experiment. Measure the program’s running time on inputs of different sizes.
 
Observation. The running time increases with the input size .T(n) n

~/cos226/analysis> java ThreeSum 1Kints.txt
70

~/cos226/analysis> java ThreeSum 2Kints.txt
528

~/cos226/analysis> java ThreeSum 3Kints.txt
1670

tick tick

tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick

tick tick tick tick tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick tick tick tick tick
tick tick tick tick tick tick

11

Measuring running time

Experiment. Measure the program’s running time on inputs of different sizes.
 
Observation. The running time increases with the input size .T(n) n

12

† Apple M2 Pro with 32 GB memory
 running OpenJDK 11 on MacOS Ventura

n time (seconds) †

1,000 0.21

1,500 0.71

2,000 1.63

2,500 3.11

3,000 5.43

4,000 12.8

5,000 25.0

7,500 84.4

10,000 199.3

Data analysis: running time vs. input size

Visualization. Plot the running time versus the input size .
 
 
 
 
 
 
 
 
 
 
 
 
Hypothesis.	 The running time follows a power law: seconds.

Questions.	 How can we test this hypothesis? How can we estimate and ?

Answer.	 Doubling test, .

T(n) n

T(n) = a × nb

a b
T(n)

T(n/2) = 2b

13

ru
nn

in
g

tim
e

 T
(n

)

50

100

150

200

input size n

2K 4K 6K 8K 10K

Machine invariance

Hypothesis. For a fixed algorithm, the running times on different computers are the same  
 up to a multiplicative constant factor.
 
Note. That constant factor can be large, sometimes several orders of magnitude.

14

1970s
(VAX-11/780)

2020s
(Macbook Pro M2)

10,000× faster

What affects the running time?

System independent effects.

・Algorithm.

・Input data.
 
 
System dependent effects.

・Hardware:	 CPU, memory, cache, …

・Software:	 compiler, interpreter, garbage collector, …

・System:	 operating system, network, other apps, …
 
 
 
 
 
 
Bad news. Getting accurate timing measurements can be difficult.

15

determines leading coefficient a
in power law T(n) = a × nb

determines exponent b
in power law T(n) = a × nb

system-dependent effects
can introduce noise

1.4 ANALYSIS OF ALGORITHMS

‣ introduction

‣ running time (experimental analysis)

‣ running time (mathematical models)

‣memory usage
ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Mathematical model of running time

Model. The running time = ∑ .

・Frequency of operation: depends on the algorithm and the specific input.

・Cost of operation: depends on hardware, software, system, and low-level implementation details.
 
 
 
 
 
 
 
 
 
 
 
 
Warning. For arbitrary programs, frequencies may be impossible to determine.

(frequency of operation) × (cost of operation)

17

© 2023 The New York Times Company

NYTCo Contact Us Accessibility Work with us Advertise T Brand Studio Your Ad Choices Privacy Policy Terms of Service Terms of Sale Site Map Help Subscriptions

Donald Knuth at his home in Stanford, Calif. He is a notorious perfectionist and has offered
to pay a reward to anyone who finds a mistake in any of his books. Brian Flaherty for The

New York Times

By Siobhan Roberts

Dec. 17, 2018

For half a century, the Stanford computer scientist Donald Knuth,

who bears a slight resemblance to Yoda — albeit standing 6-foot-4

and wearing glasses — has reigned as the spirit-guide of the

algorithmic realm.

He is the author of “The Art of Computer Programming,” a

continuing four-volume opus that is his life’s work. The first volume

debuted in 1968, and the collected volumes (sold as a boxed set for

about $250) were included by American Scientist in 2013 on its list

of books that shaped the last century of science — alongside a

special edition of “The Autobiography of Charles Darwin,” Tom

Wolfe’s “The Right Stuff,” Rachel Carson’s “Silent Spring” and

monographs by Albert Einstein, John von Neumann and Richard

Feynman.

With more than one million copies in print, “The Art of Computer

Programming” is the Bible of its field. “Like an actual bible, it is

long and comprehensive; no other book is as comprehensive,” said

Peter Norvig, a director of research at Google. After 652 pages,

volume one closes with a blurb on the back cover from Bill Gates:

“You should definitely send me a résumé if you can read the whole

thing.”

The volume opens with an excerpt from “McCall’s Cookbook”:

Here is your book, the one your thousands of letters have asked

us to publish. It has taken us years to do, checking and

rechecking countless recipes to bring you only the best, only the

interesting, only the perfect.

Inside are algorithms, the recipes that feed the digital age —

although, as Dr. Knuth likes to point out, algorithms can also be

found on Babylonian tablets from 3,800 years ago. He is an

esteemed algorithmist; his name is attached to some of the field’s

most important specimens, such as the Knuth-Morris-Pratt string-

searching algorithm. Devised in 1970, it finds all occurrences of a

given word or pattern of letters in a text — for instance, when you

hit Command+F to search for a keyword in a document.

[Like the Science Times page on Facebook. | Sign up for the

Science Times newsletter.]

Now 80, Dr. Knuth usually dresses like the youthful geek he was

when he embarked on this odyssey: long-sleeved T-shirt under a

short-sleeved T-shirt, with jeans, at least at this time of year. In

those early days, he worked close to the machine, writing “in the

raw,” tinkering with the zeros and ones.

“Knuth made it clear that the system could actually be understood

all the way down to the machine code level,” said Dr. Norvig.

Nowadays, of course, with algorithms masterminding (and

undermining) our very existence, the average programmer no

longer has time to manipulate the binary muck, and works instead

with hierarchies of abstraction, layers upon layers of code — and

often with chains of code borrowed from code libraries. But an elite

class of engineers occasionally still does the deep dive.

“Here at Google, sometimes we just throw stuff together,” Dr.

Norvig said, during a meeting of the Google Trips team, in

Mountain View, Calif. “But other times, if you’re serving billions of

users, it’s important to do that efficiently. A 10-per-cent

improvement in efficiency can work out to billions of dollars, and in

order to get that last level of efficiency, you have to understand

what’s going on all the way down.”

Or, as Andrei Broder, a distinguished scientist at Google and one of

Dr. Knuth’s former graduate students, explained during the

meeting: “We want to have some theoretical basis for what we’re

doing. We don’t want a frivolous or sloppy or second-rate

algorithm. We don’t want some other algorithmist to say, ‘You guys

are morons.’”

The Google Trips app, created in 2016, is an “orienteering

algorithm” that maps out a day’s worth of recommended touristy

activities. The team was working on “maximizing the quality of the

worst day” — for instance, avoiding sending the user back to the

same neighborhood to see different sites. They drew inspiration

from a 300-year-old algorithm by the Swiss mathematician

Leonhard Euler, who wanted to map a route through the Prussian

city of Königsberg that would cross each of its seven bridges only

once. Dr. Knuth addresses Euler’s classic problem in the first

volume of his treatise. (He once applied Euler’s method in coding a

computer-controlled sewing machine.)

A New Generation of Chatbots

Following Dr. Knuth’s doctrine helps to ward off moronry. He is

known for introducing the notion of “literate programming,”

emphasizing the importance of writing code that is readable by

humans as well as computers — a notion that nowadays seems

almost twee. Dr. Knuth has gone so far as to argue that some

computer programs are, like Elizabeth Bishop’s poems and Philip

Roth’s “American Pastoral,” works of literature worthy of a Pulitzer.

He is also a notorious perfectionist. Randall Munroe, the xkcd

cartoonist and author of “Thing Explainer,” first learned about Dr.

Knuth from computer-science people who mentioned the reward

money Dr. Knuth pays to anyone who finds a mistake in any of his

books. As Mr. Munroe recalled, “People talked about getting one of

those checks as if it was computer science’s Nobel Prize.”

Dr. Knuth’s exacting standards, literary and otherwise, may

explain why his life’s work is nowhere near done. He has a wager

with Sergey Brin, the co-founder of Google and a former student

(to use the term loosely), over whether Mr. Brin will finish his

Ph.D. before Dr. Knuth concludes his opus.

The dawn of the algorithm

At age 19, Dr. Knuth published his first technical paper, “The

Potrzebie System of Weights and Measures,” in Mad magazine. He

became a computer scientist before the discipline existed, studying

mathematics at what is now Case Western Reserve University in

Cleveland. He looked at sample programs for the school’s IBM 650

mainframe, a decimal computer, and, noticing some inadequacies,

rewrote the software as well as the textbook used in class. As a

side project, he ran stats for the basketball team, writing a

computer program that helped them win their league — and

earned a segment by Walter Cronkite called “The Electronic

Coach.”

During summer vacations, Dr. Knuth made more money than

professors earned in a year by writing compilers. A compiler is like

a translator, converting a high-level programming language

(resembling algebra) to a lower-level one (sometimes arcane

binary) and, ideally, improving it in the process. In computer

science, “optimization” is truly an art, and this is articulated in

another Knuthian proverb: “Premature optimization is the root of

all evil.”

Eventually Dr. Knuth became a compiler himself, inadvertently

founding a new field that he came to call the “analysis of

algorithms.” A publisher hired him to write a book about compilers,

but it evolved into a book collecting everything he knew about how

to write for computers — a book about algorithms.

“By the time of the Renaissance, the origin of this word was in

doubt,” it began. “And early linguists attempted to guess at its

derivation by making combinations like algiros [painful] +

arithmos [number].’” In fact, Dr. Knuth continued, the namesake is

the 9th-century Persian textbook author Abū ‘Abd Allāh
Muhammad ibn Mūsā al-Khwārizmī, Latinized as Algorithmi.

Never one for half measures, Dr. Knuth went on a pilgrimage in

1979 to al-Khwārizmī’s ancestral homeland in Uzbekistan.

When Dr. Knuth started out, he intended to write a single work.

Soon after, computer science underwent its Big Bang, so he

reimagined and recast the project in seven volumes. Now he metes

out sub-volumes, called fascicles. The next installation, “Volume 4,

Fascicle 5,” covering, among other things, “backtracking” and

“dancing links,” was meant to be published in time for Christmas. It

is delayed until next April because he keeps finding more and more

irresistible problems that he wants to present.

In order to optimize his chances of getting to the end, Dr. Knuth has

long guarded his time. He retired at 55, restricted his public

engagements and quit email (officially, at least). Andrei Broder

recalled that time management was his professor’s defining

characteristic even in the early 1980s.

Dr. Knuth typically held student appointments on Friday mornings,

until he started spending his nights in the lab of John McCarthy, a

founder of artificial intelligence, to get access to the computers

when they were free. Horrified by what his beloved book looked

like on the page with the advent of digital publishing, Dr. Knuth had

gone on a mission to create the TeX computer typesetting system,

which remains the gold standard for all forms of scientific

communication and publication. Some consider it Dr. Knuth’s

greatest contribution to the world, and the greatest contribution to

typography since Gutenberg.

This decade-long detour took place back in the age when

computers were shared among users and ran faster at night while

most humans slept. So Dr. Knuth switched day into night, shifted

his schedule by 12 hours and mapped his student appointments to

Fridays from 8 p.m. to midnight. Dr. Broder recalled, “When I told

my girlfriend that we can’t do anything Friday night because

Friday night at 10 I have to meet with my adviser, she thought,

‘This is something that is so stupid it must be true.’”

When Knuth chooses to be physically present, however, he is 100-

per-cent there in the moment. “It just makes you happy to be

around him,” said Jennifer Chayes, a managing director of

Microsoft Research. “He’s a maximum in the community. If you

had an optimization function that was in some way a combination

of warmth and depth, Don would be it.”

Sunday with the algorithmist

Dr. Knuth lives in Stanford, and allowed for a Sunday visitor. That

he spared an entire day was exceptional — usually his availability

is “modulo nap time,” a sacred daily ritual from 1 p.m. to 4 p.m. He

started early, at Palo Alto’s First Lutheran Church, where he

delivered a Sunday school lesson to a standing-room-only crowd.

Driving home, he got philosophical about mathematics.

“I’ll never know everything,” he said. “My life would be a lot worse

if there was nothing I knew the answers about, and if there was

nothing I didn’t know the answers about.” Then he offered a tour of

his “California modern” house, which he and his wife, Jill, built in

1970. His office is littered with piles of U.S.B. sticks and adorned

with Valentine’s Day heart art from Jill, a graphic designer. Most

impressive is the music room, built around his custom-made, 812-

pipe pipe organ. The day ended over beer at a puzzle party.

Puzzles and games — and penning a novella about surreal

numbers, and composing a 90-minute multimedia musical pipe-

dream, “Fantasia Apocalyptica” — are the sorts of things that

really tickle him. One section of his book is titled, “Puzzles Versus

the Real World.” He emailed an excerpt to the father-son team of

Martin Demaine, an artist, and Erik Demaine, a computer scientist,

both at the Massachusetts Institute of Technology, because Dr.

Knuth had included their “algorithmic puzzle fonts.”

“I was thrilled,” said Erik Demaine. “It’s an honor to be in the

book.” He mentioned another Knuth quotation, which serves as the

inspirational motto for the biannual “FUN with Algorithms”

conference: “Pleasure has probably been the main goal all along.”

But then, Dr. Demaine said, the field went and got practical.

Engineers and scientists and artists are teaming up to solve real-

world problems — protein folding, robotics, airbags — using the

Demaines’s mathematical origami designs for how to fold paper

and linkages into different shapes.

Of course, all the algorithmic rigmarole is also causing real-world

problems. Algorithms written by humans — tackling harder and

harder problems, but producing code embedded with bugs and

biases — are troubling enough. More worrisome, perhaps, are the

algorithms that are not written by humans, algorithms written by

the machine, as it learns.

Programmers still train the machine, and, crucially, feed it data.

(Data is the new domain of biases and bugs, and here the bugs and

biases are harder to find and fix). However, as Kevin Slavin, a

research affiliate at M.I.T.’s Media Lab said, “We are now writing

algorithms we cannot read. That makes this a unique moment in

history, in that we are subject to ideas and actions and efforts by a

set of physics that have human origins without human

comprehension.” As Slavin has often noted, “It’s a bright future, if

you’re an algorithm.”

All the more so if you’re an algorithm versed in Knuth. “Today,

programmers use stuff that Knuth, and others, have done as

components of their algorithms, and then they combine that

together with all the other stuff they need,” said Google’s Dr.

Norvig.

“With A.I., we have the same thing. It’s just that the combining-

together part will be done automatically, based on the data, rather

than based on a programmer’s work. You want A.I. to be able to

combine components to get a good answer based on the data. But

you have to decide what those components are. It could happen

that each component is a page or chapter out of Knuth, because

that’s the best possible way to do some task.”

Lucky, then, Dr. Knuth keeps at it. He figures it will take another 25

years to finish “The Art of Computer Programming,” although that

time frame has been a constant since about 1980. Might the

algorithm-writing algorithms get their own chapter, or maybe a

page in the epilogue? “Definitely not,” said Dr. Knuth.

“I am worried that algorithms are getting too prominent in the

world,” he added. “It started out that computer scientists were

worried nobody was listening to us. Now I’m worried that too

many people are listening.”

A version of this article appears in print on Dec. 18, 2018, Section D, Page 1 of the New York edition with the headline:
The Yoda of Silicon Valley. Order Reprints | Today’s Paper | Subscribe

READ 155 COMMENTS

Give this article 155

Dr. Knuth at the California Institute of Technology, where
he received his Ph.D. in 1963. Jill Knuth

Dr. Knuth in 1981, looking at the 1957 Mad magazine issue that
contained his first technical article. He was 19 when it was
published. Jill Knuth

“The Art of Computer Programming,” volumes 1-4. “Send me a
résumé if you can read the whole thing,” Bill Gates wrote in a
blurb. Brian Flaherty for The New York Times

Dr. Knuth discussing typefaces with Hermann Zapf, the type designer. Many consider Dr. Knuth's work on
the TeX computer typesetting system to be the greatest contribution to typography since
Gutenberg. Bettmann, via Getty Images

Dr. Knuth at his desk at home in 1999. Jill Knuth A few notes. Brian Flaherty for The New York Times

Give this article 155

PROFILES IN SCIENCE

Donald Knuth, master of algorithms, reflects on 50 years
of his opus-in-progress, “The Art of Computer

Programming.”

The Yoda of Silicon
Valley

Account

A brave new world. A new crop of chatbots powered by artificial intelligence

has ignited a scramble to determine whether the technology could upend the

economics of the internet, turning today’s powerhouses into has-beens and

creating the industry’s next giants. Here are the bots to know:

© 2023 The New York Times Company

NYTCo Contact Us Accessibility Work with us Advertise T Brand Studio Your Ad Choices Privacy Policy Terms of Service Terms of Sale Site Map Help Subscriptions

Donald Knuth at his home in Stanford, Calif. He is a notorious perfectionist and has offered
to pay a reward to anyone who finds a mistake in any of his books. Brian Flaherty for The

New York Times

By Siobhan Roberts

Dec. 17, 2018

For half a century, the Stanford computer scientist Donald Knuth,

who bears a slight resemblance to Yoda — albeit standing 6-foot-4

and wearing glasses — has reigned as the spirit-guide of the

algorithmic realm.

He is the author of “The Art of Computer Programming,” a

continuing four-volume opus that is his life’s work. The first volume

debuted in 1968, and the collected volumes (sold as a boxed set for

about $250) were included by American Scientist in 2013 on its list

of books that shaped the last century of science — alongside a

special edition of “The Autobiography of Charles Darwin,” Tom

Wolfe’s “The Right Stuff,” Rachel Carson’s “Silent Spring” and

monographs by Albert Einstein, John von Neumann and Richard

Feynman.

With more than one million copies in print, “The Art of Computer

Programming” is the Bible of its field. “Like an actual bible, it is

long and comprehensive; no other book is as comprehensive,” said

Peter Norvig, a director of research at Google. After 652 pages,

volume one closes with a blurb on the back cover from Bill Gates:

“You should definitely send me a résumé if you can read the whole

thing.”

The volume opens with an excerpt from “McCall’s Cookbook”:

Here is your book, the one your thousands of letters have asked

us to publish. It has taken us years to do, checking and

rechecking countless recipes to bring you only the best, only the

interesting, only the perfect.

Inside are algorithms, the recipes that feed the digital age —

although, as Dr. Knuth likes to point out, algorithms can also be

found on Babylonian tablets from 3,800 years ago. He is an

esteemed algorithmist; his name is attached to some of the field’s

most important specimens, such as the Knuth-Morris-Pratt string-

searching algorithm. Devised in 1970, it finds all occurrences of a

given word or pattern of letters in a text — for instance, when you

hit Command+F to search for a keyword in a document.

[Like the Science Times page on Facebook. | Sign up for the

Science Times newsletter.]

Now 80, Dr. Knuth usually dresses like the youthful geek he was

when he embarked on this odyssey: long-sleeved T-shirt under a

short-sleeved T-shirt, with jeans, at least at this time of year. In

those early days, he worked close to the machine, writing “in the

raw,” tinkering with the zeros and ones.

“Knuth made it clear that the system could actually be understood

all the way down to the machine code level,” said Dr. Norvig.

Nowadays, of course, with algorithms masterminding (and

undermining) our very existence, the average programmer no

longer has time to manipulate the binary muck, and works instead

with hierarchies of abstraction, layers upon layers of code — and

often with chains of code borrowed from code libraries. But an elite

class of engineers occasionally still does the deep dive.

“Here at Google, sometimes we just throw stuff together,” Dr.

Norvig said, during a meeting of the Google Trips team, in

Mountain View, Calif. “But other times, if you’re serving billions of

users, it’s important to do that efficiently. A 10-per-cent

improvement in efficiency can work out to billions of dollars, and in

order to get that last level of efficiency, you have to understand

what’s going on all the way down.”

Or, as Andrei Broder, a distinguished scientist at Google and one of

Dr. Knuth’s former graduate students, explained during the

meeting: “We want to have some theoretical basis for what we’re

doing. We don’t want a frivolous or sloppy or second-rate

algorithm. We don’t want some other algorithmist to say, ‘You guys

are morons.’”

The Google Trips app, created in 2016, is an “orienteering

algorithm” that maps out a day’s worth of recommended touristy

activities. The team was working on “maximizing the quality of the

worst day” — for instance, avoiding sending the user back to the

same neighborhood to see different sites. They drew inspiration

from a 300-year-old algorithm by the Swiss mathematician

Leonhard Euler, who wanted to map a route through the Prussian

city of Königsberg that would cross each of its seven bridges only

once. Dr. Knuth addresses Euler’s classic problem in the first

volume of his treatise. (He once applied Euler’s method in coding a

computer-controlled sewing machine.)

A New Generation of Chatbots

Following Dr. Knuth’s doctrine helps to ward off moronry. He is

known for introducing the notion of “literate programming,”

emphasizing the importance of writing code that is readable by

humans as well as computers — a notion that nowadays seems

almost twee. Dr. Knuth has gone so far as to argue that some

computer programs are, like Elizabeth Bishop’s poems and Philip

Roth’s “American Pastoral,” works of literature worthy of a Pulitzer.

He is also a notorious perfectionist. Randall Munroe, the xkcd

cartoonist and author of “Thing Explainer,” first learned about Dr.

Knuth from computer-science people who mentioned the reward

money Dr. Knuth pays to anyone who finds a mistake in any of his

books. As Mr. Munroe recalled, “People talked about getting one of

those checks as if it was computer science’s Nobel Prize.”

Dr. Knuth’s exacting standards, literary and otherwise, may

explain why his life’s work is nowhere near done. He has a wager

with Sergey Brin, the co-founder of Google and a former student

(to use the term loosely), over whether Mr. Brin will finish his

Ph.D. before Dr. Knuth concludes his opus.

The dawn of the algorithm

At age 19, Dr. Knuth published his first technical paper, “The

Potrzebie System of Weights and Measures,” in Mad magazine. He

became a computer scientist before the discipline existed, studying

mathematics at what is now Case Western Reserve University in

Cleveland. He looked at sample programs for the school’s IBM 650

mainframe, a decimal computer, and, noticing some inadequacies,

rewrote the software as well as the textbook used in class. As a

side project, he ran stats for the basketball team, writing a

computer program that helped them win their league — and

earned a segment by Walter Cronkite called “The Electronic

Coach.”

During summer vacations, Dr. Knuth made more money than

professors earned in a year by writing compilers. A compiler is like

a translator, converting a high-level programming language

(resembling algebra) to a lower-level one (sometimes arcane

binary) and, ideally, improving it in the process. In computer

science, “optimization” is truly an art, and this is articulated in

another Knuthian proverb: “Premature optimization is the root of

all evil.”

Eventually Dr. Knuth became a compiler himself, inadvertently

founding a new field that he came to call the “analysis of

algorithms.” A publisher hired him to write a book about compilers,

but it evolved into a book collecting everything he knew about how

to write for computers — a book about algorithms.

“By the time of the Renaissance, the origin of this word was in

doubt,” it began. “And early linguists attempted to guess at its

derivation by making combinations like algiros [painful] +

arithmos [number].’” In fact, Dr. Knuth continued, the namesake is

the 9th-century Persian textbook author Abū ‘Abd Allāh
Muhammad ibn Mūsā al-Khwārizmī, Latinized as Algorithmi.

Never one for half measures, Dr. Knuth went on a pilgrimage in

1979 to al-Khwārizmī’s ancestral homeland in Uzbekistan.

When Dr. Knuth started out, he intended to write a single work.

Soon after, computer science underwent its Big Bang, so he

reimagined and recast the project in seven volumes. Now he metes

out sub-volumes, called fascicles. The next installation, “Volume 4,

Fascicle 5,” covering, among other things, “backtracking” and

“dancing links,” was meant to be published in time for Christmas. It

is delayed until next April because he keeps finding more and more

irresistible problems that he wants to present.

In order to optimize his chances of getting to the end, Dr. Knuth has

long guarded his time. He retired at 55, restricted his public

engagements and quit email (officially, at least). Andrei Broder

recalled that time management was his professor’s defining

characteristic even in the early 1980s.

Dr. Knuth typically held student appointments on Friday mornings,

until he started spending his nights in the lab of John McCarthy, a

founder of artificial intelligence, to get access to the computers

when they were free. Horrified by what his beloved book looked

like on the page with the advent of digital publishing, Dr. Knuth had

gone on a mission to create the TeX computer typesetting system,

which remains the gold standard for all forms of scientific

communication and publication. Some consider it Dr. Knuth’s

greatest contribution to the world, and the greatest contribution to

typography since Gutenberg.

This decade-long detour took place back in the age when

computers were shared among users and ran faster at night while

most humans slept. So Dr. Knuth switched day into night, shifted

his schedule by 12 hours and mapped his student appointments to

Fridays from 8 p.m. to midnight. Dr. Broder recalled, “When I told

my girlfriend that we can’t do anything Friday night because

Friday night at 10 I have to meet with my adviser, she thought,

‘This is something that is so stupid it must be true.’”

When Knuth chooses to be physically present, however, he is 100-

per-cent there in the moment. “It just makes you happy to be

around him,” said Jennifer Chayes, a managing director of

Microsoft Research. “He’s a maximum in the community. If you

had an optimization function that was in some way a combination

of warmth and depth, Don would be it.”

Sunday with the algorithmist

Dr. Knuth lives in Stanford, and allowed for a Sunday visitor. That

he spared an entire day was exceptional — usually his availability

is “modulo nap time,” a sacred daily ritual from 1 p.m. to 4 p.m. He

started early, at Palo Alto’s First Lutheran Church, where he

delivered a Sunday school lesson to a standing-room-only crowd.

Driving home, he got philosophical about mathematics.

“I’ll never know everything,” he said. “My life would be a lot worse

if there was nothing I knew the answers about, and if there was

nothing I didn’t know the answers about.” Then he offered a tour of

his “California modern” house, which he and his wife, Jill, built in

1970. His office is littered with piles of U.S.B. sticks and adorned

with Valentine’s Day heart art from Jill, a graphic designer. Most

impressive is the music room, built around his custom-made, 812-

pipe pipe organ. The day ended over beer at a puzzle party.

Puzzles and games — and penning a novella about surreal

numbers, and composing a 90-minute multimedia musical pipe-

dream, “Fantasia Apocalyptica” — are the sorts of things that

really tickle him. One section of his book is titled, “Puzzles Versus

the Real World.” He emailed an excerpt to the father-son team of

Martin Demaine, an artist, and Erik Demaine, a computer scientist,

both at the Massachusetts Institute of Technology, because Dr.

Knuth had included their “algorithmic puzzle fonts.”

“I was thrilled,” said Erik Demaine. “It’s an honor to be in the

book.” He mentioned another Knuth quotation, which serves as the

inspirational motto for the biannual “FUN with Algorithms”

conference: “Pleasure has probably been the main goal all along.”

But then, Dr. Demaine said, the field went and got practical.

Engineers and scientists and artists are teaming up to solve real-

world problems — protein folding, robotics, airbags — using the

Demaines’s mathematical origami designs for how to fold paper

and linkages into different shapes.

Of course, all the algorithmic rigmarole is also causing real-world

problems. Algorithms written by humans — tackling harder and

harder problems, but producing code embedded with bugs and

biases — are troubling enough. More worrisome, perhaps, are the

algorithms that are not written by humans, algorithms written by

the machine, as it learns.

Programmers still train the machine, and, crucially, feed it data.

(Data is the new domain of biases and bugs, and here the bugs and

biases are harder to find and fix). However, as Kevin Slavin, a

research affiliate at M.I.T.’s Media Lab said, “We are now writing

algorithms we cannot read. That makes this a unique moment in

history, in that we are subject to ideas and actions and efforts by a

set of physics that have human origins without human

comprehension.” As Slavin has often noted, “It’s a bright future, if

you’re an algorithm.”

All the more so if you’re an algorithm versed in Knuth. “Today,

programmers use stuff that Knuth, and others, have done as

components of their algorithms, and then they combine that

together with all the other stuff they need,” said Google’s Dr.

Norvig.

“With A.I., we have the same thing. It’s just that the combining-

together part will be done automatically, based on the data, rather

than based on a programmer’s work. You want A.I. to be able to

combine components to get a good answer based on the data. But

you have to decide what those components are. It could happen

that each component is a page or chapter out of Knuth, because

that’s the best possible way to do some task.”

Lucky, then, Dr. Knuth keeps at it. He figures it will take another 25

years to finish “The Art of Computer Programming,” although that

time frame has been a constant since about 1980. Might the

algorithm-writing algorithms get their own chapter, or maybe a

page in the epilogue? “Definitely not,” said Dr. Knuth.

“I am worried that algorithms are getting too prominent in the

world,” he added. “It started out that computer scientists were

worried nobody was listening to us. Now I’m worried that too

many people are listening.”

A version of this article appears in print on Dec. 18, 2018, Section D, Page 1 of the New York edition with the headline:
The Yoda of Silicon Valley. Order Reprints | Today’s Paper | Subscribe

READ 155 COMMENTS

Give this article 155

Dr. Knuth at the California Institute of Technology, where
he received his Ph.D. in 1963. Jill Knuth

Dr. Knuth in 1981, looking at the 1957 Mad magazine issue that
contained his first technical article. He was 19 when it was
published. Jill Knuth

“The Art of Computer Programming,” volumes 1-4. “Send me a
résumé if you can read the whole thing,” Bill Gates wrote in a
blurb. Brian Flaherty for The New York Times

Dr. Knuth discussing typefaces with Hermann Zapf, the type designer. Many consider Dr. Knuth's work on
the TeX computer typesetting system to be the greatest contribution to typography since
Gutenberg. Bettmann, via Getty Images

Dr. Knuth at his desk at home in 1999. Jill Knuth A few notes. Brian Flaherty for The New York Times

Give this article 155

PROFILES IN SCIENCE

Donald Knuth, master of algorithms, reflects on 50 years
of his opus-in-progress, “The Art of Computer

Programming.”

The Yoda of Silicon
Valley

Account

A brave new world. A new crop of chatbots powered by artificial intelligence

has ignited a scramble to determine whether the technology could upend the

economics of the internet, turning today’s powerhouses into has-beens and

creating the industry’s next giants. Here are the bots to know:

halting problem

Example: one-sum problem

Q. How many operations does this code perform as a function of the input size ?n

18

operation cost (ns) † frequency

variable declaration 2 / 5 2

assignment statement 1 / 5 2

less than compare 1 / 5 n + 1

equality test 1 / 10 n

array read 1 / 10 n

increment 1 / 10 n to 2n

† representative estimates (with a bit of poetic license)

painful to count exactly

in practice, depends on
caching, bounds checking, …

(see COS 217)

int count = 0;
for (int i = 0; i < n; i++)
 if (a[i] == 0)
 count++;

Simplification 1: cost model

Cost model. Pick one elementary operation as a proxy for running time.

19

array accesses, compares, API calls,
floating-point operations, …

int count = 0;
for (int i = 0; i < n; i++)
 if (a[i] == 0)
 count++;

operation cost (ns) † frequency

variable declaration 2 / 5 2

assignment statement 1 / 5 2

less than compare 1 / 5 n + 1

equality test 1 / 10 n

array read 1 / 10 n

increment 1 / 10 n to 2 n

cost model = array accesses

“inner loop”

Simplification 2: asymptotic notation

Tilde notation.	 Ignore lower-order terms.
Big Theta notation.	 Ignore both lower-order terms and the leading constant.
 
 
 
 
 
 
 
 
 
 
 
Rationale.

・For large , lower-order terms have negligible effect.

・For small , the value is so small that we don’t care.
n
n

20

function
tilde

notation
big Theta

4 n5 + 20 n3 + 16 ～ 4 n5 Θ(n5)

0.01 n2 + 10 n4 / 3 + 100 log8 n ～ 0.01 n2 Θ(n2)

2n + n5 ～ 2n Θ(2n)

⅙ n3 − ½ n2 + ⅓ n ～ ⅙ n3 Θ(n3)

discard lower-order terms

rigorous definitions involve limits

“order of growth”

(e.g., n = 1,000: 166.667 million vs. 166.167 million)

1K

T

2T

4T

8T

64T

512T

logarithmic

ex
po

ne
nt

ia
l

constant

lin
ea

rit
hmic

lin
ea

r

qu
ad

ra
tic

cu
bi

c

2K 4K 8K 512K

100T

200T

500T

logarithmic

exponential

constant

size

size

lin
ea

rit
hmic

lin
ea

r

100K 200K 500K

ti
m

e
ti

m
e

Typical orders of growth

log-log plot

standard plot

cubic
quadratic

Which of the following correctly describes the function ?

A.

B.

C.

D.

E.

f(n) = n log2 n + 3n2 + 10n

∼ 10 n

∼ n log2 n

∼ n2

Θ(n log n)

Θ(n2)

Analysis of algorithms: poll 1

21

Q. Approximately how many operations as a function of input size ?
 
 
 
 
 
 
 
Step 1. Pick a cost model: array accesses.
Step 2. Count array accesses:
 
 

Nested loops.

・Independent loops: analyze separately and multiply.

・Dependent loops: write a sum (and simplify).

n

Example: 2-SUM analysis

22

int count = 0;
for (int i = 0; i < n; i++)
 for (int j = i+1; j < n; j++)
 if (a[i] + a[j] == 0)
 count++;

(n − 1) + (n − 2) + 0+ … + 1

=
n (n − 1)

2

i = 0
j = 1, …, n − 1

i = 1
j = 2, …, n − 1

+ (n − 3)

i = 2
j = 3, …, n − 1

i = n − 2
j = n − 1

i = n − 1
no j

2 ×
n (n − 1)

2
∼ 1 n2 .

body inner loop makes
2 array accesses

“inner loop”

Claim.
 
Proof.

0 + 1 + … + (n − 2) + (n − 1) = 1
2 n (n − 1) .

Triangular sum

23

(n − 1) + (n − 2) + (n − 3) + … + 2 + 1 + 0 = (n − 1) 𐄂 (n /2)

n − 1

n − 1
n − 1

sum of each pair number of pairs
(assume n is even)

1 + 2 + n − 1+ 3 + …

Example: 3-SUM analysis

Q. Approximately many operations as a function of input size ?
 
 
 
 
 
 
 
 
Step 1. Pick a cost model: array accesses.
Step 2. Count the number of array accesses:  
 
 

Bottom line. Using a cost model and asymptotic notation makes analysis manageable.

n

24

see COS 240

int count = 0;
for (int i = 0; i < n; i++)
 for (int j = i+1; j < n; j++)
 for (int k = j+1; k < n; k++)
 if (a[i] + a[j] + a[k] == 0)
 count++;

(n
3) =

n (n − 1) (n − 2)
3!

∼ 1
6 n3

“inner loop”

Θ(n3) .

Common orders of growth

25

order of growth emoji name typical code pattern description example

Θ(1) 😍 constant a = b + c; statement add two
numbers

Θ(log n) 😎 logarithmic
for (int i = n; i > 0; i /= 2)

{ ... }
repeatedly divide

in half
binary
search

Θ(n) 😁 linear
 for (int i = 0; i < n; i++)
 { ... }

single
loop

find the
maximum

Θ(n log n) 😀 linearithmic mergesort divide-and-
conquer mergesort

Θ(n2) 😕 quadratic
 for (int i = 0; i < n; i++)
 for (int j = 0; j < n; j++)
 { ... }

double
loop

check
all pairs

Θ(n3) ☹ cubic

 for (int i = 0; i < n; i++)
 for (int j = 0; j < n; j++)
 for (int k = 0; k < n; k++)
 { ... }

triple
loop

check
all triples

Θ(2n) 👿 exponential towers of Hanoi brute-force
search

check
all subsets

 
Triangular sum.	
 
 
Geometric sum.	
 
 
Geometric sum′.	  
 

 
Logarithmic identities.  
 
 

1 + 2 + 3 + … + n ∼ 1
2 n2

1 + 2 + 4 + 8 + … + n = 2n − 1

n +
n
2

+
n
4

+ … + 1 = 2n − 1

Useful discrete sums and identities

26

n is a power of 2 n / 2

n / 4
n / 8

n / 16
n / 32

n

logb x =
log2 x
log2 b

log2 x + log2 y = log2(xy)

change of base

What is the order of growth of the running time as a function of ?
 

 

A.

B.

C.

D.

E.

n

∼ 1
2 n2 log2 n

∼ 1
2 n4 log2 n

∼ n4 log2 n

∼ 1
2 n6

∼ 2 n6

Analysis of algorithms: poll 2 (midterm f25)

27

int count = 0;
for (int i = 0; i < n*n; i++)
 for (int j = i+1; j < n*n; j++)
 for (int k = 1; k <= n*n; k = k*2)
 count++;

each k loop increases count ~ log2 (n
2) = 2 log2 n times

(k loop independent of i and j loops)

let m = n2. k loop executed ~ ½ m2 = ½ n4 times
(must analyze i and j loops jointly because j loop depends on i)

how would the answer
change if k = k * 4 ?

~ log4 (n
2) = log2 (n

2) / log2 4
 = 2 log2 n / 2
 = log2 n

Analysis of algorithms: poll 3

What is the order of growth of the running time as a function of ?
 
 
 

 

A.

B.

C.

D.

n

Θ(n)

Θ(n log n)

Θ(n2)

Θ(2n)
1

28

int count = 0;
for (int i = n; i >= 1; i = i/2)
 for (int j = 1; j <= i; j++)
 count++;

n

for simplicity, assume n is a power of 2

= 2n − 1

 + n /2 + n /4 + n /8 + … +

cannot analyze i and j loops independently
(because j loop depends on i)

geometric sum

i = n
j = 1, …, n

i = n / 2
j = 1, …, n / 2

i = n / 4
j = 1, …, n / 4

i = n / 8
j = 1, …, n / 8

i = 1
j = 1

Example: hungry rat (midterm f22)

A rat in a sewer pipe is searching for food. If the nearest food source is n steps to the right
of its starting location, how many steps will it take to reach it using the given strategy?

Strategy 1: Take 1 step right, return to start, take 1 step left, return to start.  
 Repeat with 2, 3, 4, 5… steps until food found.

29

 ~ 4 × ½ n2

triangular sum

= 4 × (1 + 2 + 3 + … + n) − 3n

3 2 1 1 2 3 44

 = Θ(n2)

+ 4 × 2 … + 4 × (n − 1) + n

n = 3

food!

4 × 1

right, back,
left, back

can ignore for Θ-notation

+ 4 × 3 +

Analysis of algorithms: poll 4

A rat in a sewer pipe is searching for food. If the nearest food source is n steps to the right
of its starting location, how many steps will it take to reach it using the given strategy?

Strategy 2: Take 1 step right, return to start, take 1 step left, return to start.  
 Repeat with 2, 4, 8, 16… steps until food found.

30

 = 4 (2n − 1) − 3n

geometric sum

= 4 × (1 + 2 + 4 + 8 + … + n/2 + n) − 3n = Θ(n)

A. Θ(log n)

B. Θ(n)

C. Θ(n log n)

D. Θ(n2)

E. Θ(2n)

+ 4 × 2 … + 4 × n /2 + n4 × 1

right, back,
left, back

+ 4 × 4

can ignore for Θ-notation

+ 4 × 8 +

assume n is a power of 2

1.4 ANALYSIS OF ALGORITHMS

‣ introduction

‣ running time (experimental analysis)

‣ running time (mathematical models)

‣memory usage
ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Memory basics: bits, bytes, and pointers

Bit. A single binary digits (or).
 
 
 
 
 
 
 
 
 
 
 
Assumption. Running on a 64-bit machine with 8-byte pointers.

0 1

32

some JVMs “compress” pointers
to 4 bytes to avoid this cost

term symbol size

byte B 8 bits

kilobyte KB 103 bytes

megabyte MB 106 bytes

gigabyte GB 109 bytes

terabyte TB 1012 bytes

0 🙁

1 🙂

some systems use powers of 2
(e.g., 1 MB = 220 bytes)

Typical memory usage of primitive types and arrays in Java

33

type bytes

boolean 1

byte 1

char 2

int 4

float 4

long 8

double 8

primitive types

type bytes

boolean[] ~ 1 n

int[] ~ 4 n

double[] ~ 8 n

one-dimensional arrays (length n)

type bytes

boolean[][] ~ 1 n2

int[][] ~ 4 n2

double[][] ~ 8 n2

two-dimensional arrays
(n-by-n array of arrays)

array overhead = 24 bytes

type bytes

object reference 8

64-bit machine

Typical memory usage for objects in Java

Objects memory = sum of memory for instance variables + overheads
 
Ex. Each Date object uses 32 bytes of memory.

Array declaration is 8 bytes.

When dates contains n elements, it uses Θ(n) bytes.

34

4 bytes (int)
4 bytes (int)

16 bytes (object overhead)

32 bytes

4 bytes (int)

4 bytes (padding, round to a multiply of 8 bytes)

public class Integer
{
 private int x;
...
}

Typical object memory requirements

object
overhead

public class Node
{
 private Item item;
 private Node next;
...
}

public class Counter
{
 private String name;
 private int count;
...
}

24 bytesinteger wrapper object

counter object

node object (inner class)

32 bytes

int
value

int
value

String
reference

public class Date
{
 private int day;
 private int month;
 private int year;
...
}

date object

x

object
overhead

name

count

40 bytes

references

object
overhead

extra
overhead

item

next

32 bytes

int
values

object
overhead

year
month
day

padding

padding

padding

public class Date {
 private int day;
 private int month;
 private int year;

 ...
}

Date[] dates; reference

class pointer, garbage collector bits,
lock state, hash code, …

Analysis of algorithms: poll 5

How much memory does a WeightedQuickUnionUF object use as a function of ?  

A. bytes

B. bytes

C. bytes

D. bytes

n

∼ 4n

∼ 8n

∼ 4n2

∼ 8n2

35

public class WeightedQuickUnionUF {

 private int[] parent;
 private int[] size;
 private int count;

 public WeightedQuickUnionUF(int n) {

 parent = new int[n];
 size = new int[n];

 count = 0;
 for (int i = 0; i < n; i++)
 parent[i] = i;
 for (int i = 0; i < n; i++)
 size[i] = 1;
 }
 ...
}

Lecture Slides © Copyright 2026 Robert Sedgewick and Kevin Wayne

Credits

image source license

Charles Babbage The Illustrated London News public domain

Babbage Enginine in Operation xRez Studio

Algorithm for the Analytical Engine Ada Lovelace public domain

Ada Lovelace and Book Moore Allen & Innocent

Galaxies Colliding SaltyMikan

James Cooley IEEE

John Tukey Princeton University

Programmer Icon Jaime Botero public domain

Head in the Clouds Ellis Nadler education

Student Raising Hand classroomclipart.com educational use

Running Time pano.si

Analog Stopwatch Adobe Stock education license

https://upload.wikimedia.org/wikipedia/commons/d/d2/Charles_Babbage_1860.jpg
https://creativecommons.org/share-your-work/public-domain/
https://vimeo.com/49080293
https://commons.wikimedia.org/wiki/File:Diagram_for_the_computation_of_Bernoulli_numbers.jpg
https://creativecommons.org/share-your-work/public-domain/
https://www.smithsonianmag.com/smart-news/sold-rare-copy-ada-lovelaces-groundbreaking-computer-algorithm-180969753/
https://www.youtube.com/watch?v=W-csPZKAQc8
https://ethw.org/File:James_W._Cooley_3529.jpg
https://www.stat.berkeley.edu/~brill/Papers/TukeyJohnWBMemoir.pdf
http://www.clker.com/clipart-programmer-1.html
https://wiki.creativecommons.org/wiki/public_domain
https://www.cartoonstock.com/directory/j/job_ladder.asp?expanded=CS301226
https://www.cartoonstock.com/pricing
https://classroomclipart.com/image/vector-clipart/girl-raising-hand-in-classroom-sitting-at-desk-27815.htm
https://classroomclipart.com/image/pages/copyright-information.html
https://stock.adobe.com/images/classic-mechanical-analog-stopwatch-isolated-on-white/309832639
https://stock.adobe.com/enterprise-conditions#educationLicenses

Lecture Slides © Copyright 2026 Robert Sedgewick and Kevin Wayne

Credits

image source license

Analog Stopwatch Adobe Stock education license

Apple M4 Chip Apple

Macbook Pro M2 Apple

Scientific Method Sue Cahalane by author

Laboratory Apparatus pixabay.com public domain

Dissected Rat Allen Lew CC BY 2.0

Harmonic Integral Wikimedia public domain

Geometric Series Wikimedia CC BY-SA 3.0

Recursive Load Marek Bennett

The Yoda of Silicon Valley New York Times

Babbage’s Analytical Engine Science Museum, London CC BY-SA 2.0

Alan Turing Science Museum, London

https://stock.adobe.com/images/classic-mechanical-analog-stopwatch-isolated-on-white/309832639
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://www.apple.com/newsroom/2024/05/apple-introduces-m4-chip/
https://www.consumerreports.org/electronics-computers/laptops-chromebooks/apple-macbook-pro-14-10-core-m2-pro/m408688/
https://www.teacherspayteachers.com/Product/The-Scientific-Method-Owl-Scientists-431456
https://pixabay.com/photos/laboratory-apparatus-equipment-217041/
https://wiki.creativecommons.org/wiki/public_domain
https://commons.wikimedia.org/wiki/File:Cut_rat_2.jpg
https://creativecommons.org/licenses/by/2.0/
https://commons.wikimedia.org/wiki/File:Integral_Test.svg
https://wiki.creativecommons.org/wiki/public_domain
https://commons.wikimedia.org/wiki/File:Geometrische_reihe.svg
https://creativecommons.org/licenses/by-sa/3.0/
https://marekbennett.com/2014/03/06/recursive-load/
https://www.nytimes.com/2018/12/17/science/donald-knuth-computers-algorithms-programming.html
https://commons.wikimedia.org/wiki/File:Babbages_Analytical_Engine,_1834-1871._(9660574685).jpg
https://creativecommons.org/licenses/by-sa/2.0/
https://blog.sciencemuseum.org.uk/the-multiple-lives-of-alan-turing/

A final thought

38

“ It is convenient to have a measure of the amount of work involved in a

 computing process, even though it be a very crude one. We may count up

 the number of times that various elementary operations are applied in the

 whole process and then give them various weights.” — Alan Turing (1947)

