A 1 g Or 1 [h 1IMS ROBERT SEDGEWICK | KEVIN WAYNE

1.3 STACKS AND QUEUES I
» linked lists

> stack implementation

» queue implementation

» iterators

ROBERT SEDGEWICK | KEVIN WAYNE > Java COIIeCh.O”S

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Stacks and queues

Fundamental data types.
» Value: collection of objects.

 Operations: add, remove, iterate, size, test if empty.

ush 0
Stack. Remove the item most recently added. : \ jp P
Queue. Remove the item least recently added. -
E
D
C
B
enquene == | F E D | C B | A | == dequeue A
stack

Programming assignment 2

Deque. Remove either the most recently or the least recently added item.

Randomized queue. Remove a random item.

DEQES, e

M
i RAN ZED
e QUEUES

Your job.

« Step 1. Identify a data structure that meets the performance requirements.
think carefully about step 1

« Step 2. Implement it from scratch. before proceeding to step 2

1.3 STACKS AND QUEUES I

» linked lists

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Linked lists

Last lecture. Use a resizable array to implement all operations in amortized ©(1) time.

This lecture. Use a singly linked list to implement all operations in ©(1) time in the worst case.

Singly linked list.
 Each node stores an item and a link/pointer to the next node in the sequence.
* Last node links to null.

e Maintain link first to first node.

item l

IIIII - \
first > "have" / |

"dream"

/ ® > null

/
7
7
-~
_ -

null terminated

holds link to
first node

link to
next node

Possible memory representation of an array

Java array. The elements in an array are stored contiguously in memory.

Consequences.
» Accessing array element i takes ©(1) time.

« Cannot change the length of an array.

reference variable a[] memory
(holds memory address of elements) / address
286 all / 304 array elements
‘ 4 ‘ 304 ‘ ‘ llIll ‘ llhavell | llall "dr'eam"
\ memory representation
length of array

(using poetic license)

Possible memory representation of a singly linked list

Java linked list. The nodes in a singly linked list are stored non-contiguously in memory.

Consequences.
* Accessing i"* node in a singly linked list takes ©() time.

« Easy to change the length of a singly linked list.

memory address

of Node object memory address

\ of next node
286 first 304 / 318 330
["have" [330 | [304] ["1] 286 | "dream”] 0 | [mam [318]
I \ T memory representation
L Node object null reference (using poetic license)

(holds memory address of Node object)

Creating a singly linked lists in Java

Node data type. Each Node object contains:
 An item.

* A reference to the next Node in the sequence.

first

IIIII

"have"

Q

O

public class Node {
private String 1tem;
private Node next;

Node data type

irem

® » next node

Node object

"dream"

N

° > null

o

Node
Node
Node
Node

o N T Q

a.ltem

O N T 9 O N T

.1tem
.1tem
.1tem
.hext
.hext
.hext
.hext

first

new Node();
new Node():
new Node();

new Node();
s
"have";
I
"dream" ;

creating a 4-node linked list

Traversing a singly linked list

Goal. Systematically process each element in a singly linked list.

Solution. For loop idiom.

first

first; x !'= null; x

for (Node x =
StdOut.printin(x.i1tem);
}
IIIII
"have"
° >
®

X.next) 1

X

"dream"

> null

Stacks and queues Il: poll 1

What does the following code fragment do to the singly linked list below?

first.next = first.next.next;

A. Deletes node containing "I".

B. Deletes node containing "have".

C. Deletes node containing "a".

D. Leaves the linked list unchanged.

first >

llIII

"have"

"dream"

> null

10

Linked data structures: context

Null-terminated singly linked list.

O—O—0O0—0O—0

Circular singly linked list.

T

Parentlinkt;e./qQ

Doubly linked list. [2 links per node]

Binary tree. [2 links per node]

O

Directed graph. [many links per node]

>
>

12

1.3 STACKS AND QUEUES I

> stack implementation

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Stacks and queuves Il: poll 2

How to efficiently implement a stack with a singly linked list?

least recently added
A. Y

l

T >

have

B most recently added

l

dream

today >

dream

today

—> null

C. Both A and B.

D. Neither A nor B.

have

14

Stack: linked-list implementation

* Maintain link first to first node in a singly linked list.
* Push new item before first.

* Pop item from first.

most recently added

!

! —» today ———{ dream ——— a —»| have ———

—> null

1

first

Stack implementation with a linked list: pop

singly linked list _ dream -

9 oL B > a public class Node {

o > . . have . private String 1item;
o > private Node next;
null
}

save item to return

. . . . 't
String i1tem = first.item; Hem

® —> next node

Node object

delete first node first —

first = first.next; . | have I

] null

garbage collector reclaims memory
when no remaining references

return saved item

return 1tem;

Stack implementation with a linked list:

push

save a link to the list

Node oldFirst = first;

create a hew node at the front

first = new Node();

first

first

oldFirst

\

initialize the instance variables in the new Node

first.item
first.next

"dream";
oldFirst:

first

a
> have
® > 1
e >
null
oldFirst
null
> a
null have
® > T
®
null
oldFirst
dream
> a
° have
® > I

null

public class Node {
private String 1tem;
private Node next;

item

° —>» next node

Node object

17

Stack: linked-list implementation

public class LinkedStack<Item> {
private Node first = null;

private class Node {

private Item 1tem; <
private Node next;

public boolean isEmpty() {
return first == null;

public void push(Item i1tem) {
Node oldFirst = first;

first = new Node(); <«
first.item = item;
first.next = oldFirst;

public Item pop() {
Item item = first.item;
first = first.next;
return item:

use generics

private nested class
(access modifiers for instance variables of such a class don’t matter)

no Node constructor defined explicitly —
Java supplies a default no-argument constructor
(which initializes instance variables to default values)

18

Stack: linked-list implementation performance

Proposition. Every operation takes ©(1) time.

Proposition. A LinkedStack with n items has n Node objects and uses ~ 40n bytes.

private class Node {
private Item item;
private Node next;

nested class

object
overhead

extra
overhead

1tem

next

> references

16 bytes (object overhead)

8 bytes (non-static nested class extra overhead)
8 bytes (reference to I1tem)

8 bytes (reference to Node)

40 bytes per stack Node

Remark. This counts the memory for the stack itself, including the string references.

[but not the memory for the string objects, which the client allocates }]

19

Stack implementations: resizable array vs. linked list

Tradeoffs. Can implement a stack with either a resizable array or a linked list; client can use either.

Q. Which is more efficient?
A. It depends.
Linked-list implementation. PP

* O(1) worst-case performance guarantee.

* More memory.

Resizable-array implementation.
* O(1) amortized performance guarantee.
* Less memory.

 Better use of cache.

"dream"

>

"have"

"have"

"dream"

null

—> null

null

20

1.3 STACKS AND QUEUES I
» linked lists

~ stack implementation

Algorithms » queue implementation
~iterators

ROBERT SEDGEWICK | KEvIN WAYNE > JGVG COIIeCh.OnS

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Stacks and quevues Il: poll 3

How to efficiently implement a queue with a singly linked list?

A. least recently added most recently added
I ———> have —— a — dream ———| today ——— qull

B most recently added least recently added
today —| dream —— a ——— have —— I —— qull

C. Both A and B.

D. Neither A nor B.

22

Queve: linked-list implementation

* Maintain one link first to first node in a singly linked list.

e Maintain another link Tast to last node.

 Dequeue from first.

 Enqueue after last.

least recently added

l

I ——»

have

1

first

dream

today

most recently added

l

— !

—

1

last

null

23

Queue dequeve: linked-list implementation

Remark. Code is identical to pop().

singly linked list

save item to return

String item = first.item;

delete first node

first = first.next;

return saved item

return 1tem;

first >

have

first —

last

dream

have

null

last

dream

null

public class Node {
private String 1tem;
private Node next;

nested class

24

Queue enqueue: linked-list implementation

save a link to the last node

Node oldLast = last:

create a new node at the end

last = new Node();
last.1tem = "dream";

link together

oldLast.next = last;

first

first

oldLast

last

\ |

public class Node {
private String 1tem;
private Node next;

nested class

last

dream

null

T
have
° a
o >
null
oldLast
| I \
first have
® > a
e >
null
oldLast
\\\ last
I }
have
° a
® > dream
o >

null

25

Queve: linked-list implementation

public class LinkedQueue<Item> {
private Node first, last;

private class Node {

¥

public boolean isEmpty() {
return first == null;

¥

public void enqueue(Item 1tem) {
Node oldLast = last;
last = new Node();
last.1tem = 1tem;
last.next = null;

1f (isEmpty()) first = last; <
else oldLast.next = last;

public Item dequeue() {
Ttem 1item = first.item;
first = first.next;

1f (isEmpty()) last = null; <
return item;

corner case. add to an empty queue
(don’t forget to update first)

corner case: remove down to an empty queue

(avoid loitering)

26

1.3 STACKS AND QUEUES I

Algorithms

» iterators

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

lteration

Design challenge. Allow a client to access sequentially (iterate over) the items in a collection,

without exposing the collection’s internal representation.

stack (resizable-array representation)

i n
al] T have a dream today ! null null
0 1 2 3 4 5 6 7
stack (linked-list representation)
fipst Current
N
! ——— today ——{ dream ——— a +—| have ——

—> null

Java solution. Use a foreach loop.

28

Foreach loop

Java provides elegant syntax for iterating over the items in a collection.

“foreach” loop (shorthand) equivalent code (longhand)

Stack<String> stack = new Stack<>(); Stack<String> stack = new Stack<>();

for (String s : stack) { Iterator<String> i1terator = stack.iterator();
// do something with s while (i1terator.hasNext()) {

} String s = 1terator.next();

// do something with s

To provide clients the ability to iterate with a foreach loop:

* Collection must have a method iterator(), which returns an Iterator object.

 An Iterator object represents the state of a traversal. - e.g., current spot in sequence
- the hasNext () returns true unless the traversal is complete

- the next() method returns the next item in the traversal

29

lterator and lterable interfaces S,

Java interface = set of related methods that
define some behavior (partial API)

Java defines two interfaces that facilitate foreach loops. -«
 Tterable interface: iterator() method that returns an Iterator.
« Tterator interface: next() and hasNext() methods.

« Each interface is parameterized using generics.

java.lang.lterable interface java.util.lterator interface
public interface Iterable<Item> { public interface Iterator<Item> {
Tterator<Item> i1terator(); boolean hasNext();
} Item next();
¥
“Iam a collection that can be traversed with a foreach loop.” “ I represent the state of one traversal.”

ensures that the (implicit) call to
iterator () will succeed at run time

Type safety. Foreach loop won’t compile unless collection is Iterable (or an array). <

30

Stack iterator: resizable-array implementation

import java.util.Iterator;

_ : _ _ collection implements
import java.util.NoSuchElementException;

/ the Iterable interface

public class ResizableArrayStack<Item>implements Iterable<Item> {
private int n;
private Item[] a;

object you return
public Iterator<Item> iterator() { must implements the
return new ReverseArraylterator(); «—— Iterator interface al]
| l
private class ReverseArraylterator implements Iterator<Item> {
private int 1 = ?—1;

public boolean hasNext() {

return 1 >= 0; ,
1 in outer class

code in inner class can
access instance variables

public Item next() {
1f ('hasNext()) throw new NoSuchElementException();
return al[i--]: \\\

} Iterator API says to throw

¥ this exception if called after
¥ traversal is complete

I

have

d

dream

3

today

4

null

6

null

/

31

Stack iterator: linked-list implementation (in Intelli))

import java.util.Iterator;
import java.util.NoSuchElementException;

public class LinkedStack<Item> 1mplements Iterable<Item> 1
private Node first;

LIS current
public Iterator<Item> 1iterator() { \\\ l
return new LinkedIterator();
} dream

private class LinkedIterator implements Iterator<Item> {
private Node current = first;

public boolean hasNext() {
return current != null;

public Item next() {
1f ('hasNext()) throw new NoSuchElementException();
Item 1tem = current.item;
current = current.next;
return item;

have

—> null

Stacks and queues II: poll 4 .

Suppose that you add A, B, and C to a stack (linked list or resizable array), in that order.

What does the following code fragment do?

for (String s : stack)
for (String t : stack)
StdOut.printin(s + "-" + t);

A. Prints A-A A-B A-C B-A B-B B-C C-A C-B C-C
B. Prints C-C C-B C-A B-C B-B B-A A-C A-B A-A
C. Run-time exception.

D. Depends on the implementation.

33

Stacks and queues Il: poll 5

Suppose that you add A, B, and C to a stack (linked list or resizable array), in that order.

What does the following code fragment do?

for (String s : stack) {
StdOut.println(s);
StdOut.printin(stack.pop());

stack.push(s); \\
} modifies stack

A. Prints CCBBAA
B. Prints CCB CAB

Prints CCCCCCCC ...

o 0

Run-time exception.

E. Depends on the implementation.

34

lteration: concurrent modification

Q. What should happen if a client modifies a collection while traversing it?

A. A fail-fast iterator throws a java.util.ConcurrentModificationException.

concurrent modification

for (String s stack
stack.push(s

35

Java iterators summary

lterator and lterable. Two Java interfaces that allow a client to iterate over the items in a collection,

without exposing the collection’s internal representation.
Stack<String> stack = new Stack<>();

for (String s : stack) {

}

This course.
* Yes: use iterators in client code.

* Yes: implement iterators (Assignment 2 only).

36

1.3 STACKS AND QUEUES I

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE > Java COIIeCh.OnS

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Java collections framework =

OVERVIEW MODULE PACKAGE USE TREE DEPRECATED INDEX HELP

Java's libraries for collection data types.

+ java.util.LinkedList [doubly linked list]

java.lang.Object
[java.util.AbstractCollection<E>

* java.util.Arraylist ‘resizable array] e

Type Parameters:

E - the type of elements in this list

All Implemented Interfaces:
Serializable, Cloneable, Iterable<E>, Collection<E>, List<E>, RandomAccess

Direct Known Subclasses:
AttributelList, RoleList, RoleUnresolvedList

public class ArrayList<E>
extends AbstractList<E>
implements List<E>, RandomAccess, Cloneable, Serializable

Resizable-array implementation of the List interface. Implements all optional list
operations, and permits all elements, including null. In addition to implementing the
List interface, this class provides methods to manipulate the size of the array that is
used internally to store the list. (This class is roughly equivalent to Vector, except
that it is unsynchronized.)

The size, isEmpty, get, set, iterator, and listIterator operations run in
constant time. The add operation runs in amortized constant time, that is, adding n
elements requires O(n) time. All of the other operations run in linear time (roughly
speaking). The constant factor is low compared to that for the LinkedList
implementation.

This course. Implement from scratch (once).

Beyond. Basis for understanding performance guarantees.

Best practices.

OVERVIEW MODULE PACKAGE [@E.C58 USE TREE DEPRECATED INDEX HELP

ALL CLASSES SEARCH: | O_ |
\

SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

Module java.base
Package java.util

Class LinkedList<E>

java.lang.Object
java.util.AbstractCollection<E>
java.util.AbstractList<E>
java.util.AbstractSequentialList<E>
java.util.LinkedList<E>

Type Parameters:

E - the type of elements held in this collection

All Implemented Interfaces:

Serializable, Cloneable, Iterable<E>, Collection<E>, Deque<E>,
List<E>, Queue<E>

public class LinkedList<E>
extends AbstractSequentiallList<E>
implements List<E>, Deque<E>, Cloneable, Serializable

Doubly-linked list implementation of the List and Deque interfaces.
Implements all optional list operations, and permits all elements (including
null).

All of the operations perform as could be expected for a doubly-linked list.
Operations that index into the list will traverse the list from the beginning
or the end, whichever is closer to the specified index.

* Use Stack and Queue from algs4.jar for stacks and queues to improve design and efficiency.

 Use java.util.ArrayList or java.util.LinkedList when other ops needed.

(but remember that some ops are inefficient)

COS 226 story (from Assignment 1)

Goal. Generate random open sites in an n-by-n percolation system

and repeat until system percolates.

Jenny.
* Pick (row, col) uniformly at random; if already open, repeat.
. Takes O(n?) time.

Kenny.
. Create a java.util.ArrayList to store the n” blocked sites.
* Pick an index at random and delete.
. Takes ®(n*) time.

Lesson. Don’t use a library until you understand its API!

This course. Can’t use a library until we’ve implemented it in class.

Kenny

Why is my progra

m so slow ?

39

Stacks and queues summary

Fundamental data types.
» Value: collection of objects.
 Operations: add, remove, iterate, size, test if empty.

Stack. [LIFO] Remove the item most recently added.

Queue. [FIFO] Remove the item least recently added.

Efficient implementations.
« Resizable array.

* Singly linked list.

40

Credits

image source license
Assignment Logo Kathleen Ma ’18 by author
Stack of Books Adobe Stock Education License
Long Queue Line Adobe Stock Education License
People Standing in Line Adobe Stock Education License
Stack of Sweaters Adobe Stock Education License
Programmer Icon Jaime Botero public domain
ChatGPT Phone Adobe Stock Education License

Lecture Slides © Copyright 2025 Robert Sedgewick and Kevin Wayne

https://stock.adobe.com/images/tall-pile-of-books-lots-various-isolated-transparent-background-photo-png-file/546470718
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/people-queuing-up-in-a-long-queue-line/135762482
https://stock.adobe.com/enterprise-conditions#educationLicenses
http://people%20standing%20in%20line%20By%20Olga%20Tik%20https://stock.adobe.com/images/queue-people-are-standing-in-line-vector-image-of-people-from-the-back-a-crowd-of-people/479350972
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/stack-of-sweaters/28195940
https://stock.adobe.com/enterprise-conditions#educationLicenses
http://www.clker.com/clipart-programmer-1.html
https://wiki.creativecommons.org/wiki/public_domain
https://stock.adobe.com/images/chatgpt-vector-mockup-smartphone-screen-concept-template-with-logo-login-signup-new-chat-prompt-interface-openai-chatbot-screen-interface-template-on-iphone/580095635
https://stock.adobe.com/enterprise-conditions#educationLicenses

A final thought

“ Linked lists, nodes connected with care,
Arrays resizing, with memory to spare.

Organizing data, their only need,

Helping us, with efficiency indeed. ”

