A 1 g Or 1 [ h 1IMS ROBERT SEDGEWICK | KEVIN WAYNE

1.3 STACKS AND QUEUES |

» APls

> array implementations
> resizable arrays

» amortized analysis

ROBERT SEDGEWICK | KEVIN WAYNE > generics

https://algs4.cs.princeton.edu


https://algs4.cs.princeton.edu

1.3 STACKS AND QUEUES |

» APls

Algorithms

https://algs4.cs.princeton.edu


https://algs4.cs.princeton.edu

Stacks and queues

Fundamental data types.

» Value: collection of objects.
 Operations: add, remove, iterate, size, test if empty.
* |Intent is clear when we add.

* Which item do we remove?

add F E D C B A = rernove

add

N

T

> | o N O m

stack

remove

/!

Stack. Remove the item most recently added. «—— LIFO = “last in first out”

Queue. Remove the item least recently added. <—— FiFo = “first in first out”




Function-call stack demo

- double square(double a) {

return a*a;

}

variable a

value 3.0

square(3.0)

hypotenuse(3.0, 4.0)

function-call stack



Stack applications

 Rendering text and graphics: PostScript, PDF, ...
 Web browser history: back button.

* Function calls: Java virtual machine, Linux kernel, ...
 Undo: text editors, photo editors, games,

 Compilers: evaluating expressions, parsing syntax, balanced parentheses, ...

Compil
Fle Edit Display Modify Window He Limopies lledinioues
Undo N\ Ctrl+2
Redo Ctrl+Y , :
S oL s ;
- Cirl +X Bl y'%
u/ - - o . 2
Ctrl+C Alfred V. Aho /%«.@?
— ¥ R(]\’i SCthi 5 '3 Y :f;:
Cirl +v Jeffrey D. Ullman ' ’;L},j?i
'-!«“‘“ 4




Queue applications

* Media playlists: jukebox, Spotify, Netflix, Peloton, ...
 Requests on a shared resource: printer, CPU, GPU, ...

* Asynchronous data transfer: file I/O, pipes, sockets, ...

« Data buffers: sound card, streaming video, input devices, ...

« Simulations of the real world: customer service, traffic analysis, baggage claim, ...

Im Not Lazg
Packets to be sent
through this interface> Packets sent
>
Queue Interface \\. '
N CCCCOREEN (U@l o ¢
Sending queue '

4

U100

Just Buﬁcering...



Data type design: API, client, and implementation

Separate client and implementation via API.

Client (3 AP| (€= |mplementation

_______________________________________________________________________________________

APl: operations that characterize the behavior of a data type.
Client: code that uses a data type through its API.

Implementation: code that implements the APl operations.

_______________________________________________________________________________________

Benefits.
* Design: develop and maintain reusable code.

 Performance: substitute faster implementations.

Ex. Stack, queue, priority queue, symbol table, set, union-find, ...



Stack API

lable with javac-algs4
Stack data type. Our textbook data type for stacks. -« avardbie wiit javac-algs
and java-algs4 commands

“generic type parameter’” 25 pop

/

public class Stack<Item> description \ 4

/

Stack() create an empty stack F
void push(Item 1tem) add a new item to the stack E
. D

Item pop() remove and return the item most recently added
C

boolean 1i1sEmpty() is the stack empty?

B
A

Performance goals. Every operation takes ®(1) time; stack with n items uses ®(n) memory.



Queue API

available with javac-algs4

Queue data type. Our textbook data type for queues. -

and java-algs4 commands

enqueue =3 | H F E D C B A —  dequeue

public class Queue<Item> description
Queue () create an empty queue
void enqueue(Item 1tem) add a new item to the queue
Item dequeue() remove and return the item least recently added
boolean 1sEmpty() is the queue empty?

Performance goals. Every operation takes ®(1) time; queue with n items uses ®(n) memory.



Warmup client

Goal. Read strings from standard input and print in reverse order.

access library import edu.princeton.cs.algs4.Stack; “type argument”
inalgs4.jar —— import edu.princeton.cs.algs4.StdIn; pears
. , _ _ (can be any reference type)
(typically omitted) import edu.princeton.cs.algs4.StdOut;

public class Reverse {
public static void

Stack<String> stack = new Stack<String>(); < declare and

create stack

while (!StdIn.isEmpty()) {
String s = StdIn.readString();
stack.push(s);

read strings from
< standard input and
push onto stack

}

while (!stack.isEmpty()) { |
String s = stack.pop(); papcdl;ﬂvngs
StdOut.print(s + " "); < and print to

1 standard output

StdOut.printin();

~/cos226/stacks> javac-algs4 Reverse.java

~/cos226/stacks> java-algs4 Reverse
I have a dream today

<Ctrl-D>

today dream a have I

10



1.3 STACKS AND QUEUES |

> array implementations

Algorithms

https://algs4.cs.princeton.edu


https://algs4.cs.princeton.edu

Stack APl (warmup)

Warmup APIl. Stack of strings data type, with fixed maximum capacity.

public class FixedCapacityStackOfStrings

FixedCapacityStackOfStrings(int capacity)

void push(String item)

String pop()

boolean isEmpty()

|

artificial limit
(stay tuned)

create an empty stack

add a new string to stack

remove and return the string
most recently added

is the stack empty?

12



Stacks and queues |: poll 1

How to implement efficiently a fixed-capacity stack with an array?

least recently added

A. |
1 have d dream today ! null null null null
B most recently added

!

! today dream a have I null null null null

C. Both A and B.

D. Neither A nor B.

13



Fixed-capacity stack: array implementation

 Use array a[] to store n items on stack.
* Push: add new item at a[n].

* Pop: remove item from a[n-1].

least recently added

l

al] I have a dream today ! -l

Defect. Stack overflows when n exceeds capacity.

stack
overflow

null

null

null

capacity = 10

14



Fixed-capacity stack: array implementation

public class FixedCapacityStackOfStrings {

private String[] a;
private int n = 0;

public FixedCapacityStackOfStrings(int capacity) {

a = new String[capacity];

public boolean isEmpty() {
return n == 0;

public void push(String 1tem) {
aln++| = 1tem;

} I

public String pop() {
return al--nj;

J 1

post-increment operator:
use as index into array;
then increment n

pre-decrement operator:
decrement n;
then use as index into array

15



Stack considerations

Underflow. Throw exception if pop() called when stack is empty.
Overflow. Use “resizable array” to avoid overflow.

Null items. For simplicity, we allow nul11 items to be added.

Loitering. Holding an object reference when it is no longer needed.

T have a dream today ! null null null null
n
public String pop() { public String pop() {
return al--n]j; String 1tem = aln-1];
1 aln-1] = null;
n--,
loitering return 1tem;
}

no loitering

NO
LOITERING

VIOLATORS
WILL BE
PROSECUTED

16



Fixed-capacity queue: array implementation

Goal. Implement a queue using a fixed-capacity array so that all operations take ®(1) time.

least recently added

!

al] I h d d | dequeue ()
ave d ream today : null null null null is inefficient
0 1 2 3 4 5 6 7 8 9
n
most recently added

enqueue ()

al] ! today dream a have I null null null null — o .
is inefficient

0 1 2 3 2 5 6 / 8 o)

n

17



Fixed-capacity queue: array implementation demo

Goal. Implement a queue using a fixed-capacity array so that all operations take ®(1) time.

least recently

added
null 1 have
1 2 3
first

d

most recently

added

!

dream

5

null

6

last

null

/

null

8

null

9

18



Fixed-capacity queue: array implementation

public class FixedCapacityQueueOfStrings {
private String[] a;
private int first = 0;
private int last = 0;

public FixedCapacityQueueOfStrings(int capacity) {
a = new String[capacity];

public void enqueue(String i1tem) {
allast]| = 1tem;
last++;

1f (last == a.length) last = O; « circular

wraparound

public String dequeue() {
first++;
1t (first == a.length) first = 0;
return al[first];

19



1.3 STACKS AND QUEUES |

Al oor ithms > resizable arrays

https://algs4.cs.princeton.edu


https://algs4.cs.princeton.edu

Stacks and queues I: poll 2

How to grow and shrink the array length?

A. Increase by 1 before each push;

decrease by 1 after each pop.

B. Increase by 2 x in push when array becomes full;

decrease by 2 x in pop when array becomes 50% full.

C. Either A or B.

D. Neither A nor B.

21



Stack: resizable-array implementation

Problem. Requiring client to provide maximum capacity does not implement API!
Q. How to grow and shrink the array automatically? —
referred to as a {resizable, dynamic, extendable} array
Naive approach.
* Push: increase length of array a[] by 1.

 Pop: decrease length of array a[] by 1.

Too expensive.
* Need to copy all items to a new array, for each push/pop.
* Array accessestoadditemk: 1 +2(k-1)

* Array accesses to add firstnitems: » + Q+4+6+...+2(n-1) ~ n’.

|

®(n?) infeasible
for large n

Challenge. Ensure that array resizing happens infrequently.

22



Stack: resizable-array implementation

Q. How to grow the array?

“geometric expansion”

A. If array is full, create a new array of twice the length, and copy items.

public class ResizableArrayStackOfStrings {
private String[] a;
private int n = 0;

public ResizableArrayStackOfStrings() {
a = new String[1l];
}

public void push(String 1tem) {
1f (n == a.length) resize(2 * a.length);
aln++| = 1tem;

}

private void resize(int capacity) {
String[] copy = new String[capacity];
for (int 1 =0; 1 < n; 1++)
copy[i] = ali]l;
a = Copy,

<

if the array if full,
double its length

helper method
(to resize the array)

23



Stack: resizable-array implementation

Q. How to grow the array?

“geometric expansion”

A. If array is full, create a new array of twice the length, and copy items.

Cost is reasonable.

» Still need to copy all items to a new array but, now, that happens infrequently.

 Array accesses to add first n =2'items: n + 2+4+8+16+...+n) ~ 3n.

Q. Can | use a growth factor other than a =2 ?

A. Yes. Classic time-space tradeoff.

|

O(n) feasible
for large n
language data type o
Java ArraylList 1.5
C++ vector 1.5
Python 1ist 1.125

24



Stack: resizable-array implementation

Q. How to shrink the array?

First try.

* Push: double length of array a[] when array is full.

 Pop: halve length of array a[] when array is one-half full.

Too expensive for some sequences of operations.
 Push n = 2" items to make array full; then, alternate n push and pop operations.

« Each alternating operation triggers an array resizing and takes ®(n) time.

full I have a dream
push("today") I have a dream  today null null null
pop() I have 2 dream

push(™") I have a dream ! null null null

25



Stack: resizable-array implementation

Q. How to shrink the array?

Efficient solution.

* Push: double length of array a[] when array is full.

 Pop: halve length of array a[] when array is one-quarter full.

public String pop() {
String 1tem = al--n];

aln] = null;

if (n > 0 & n == a.length/4) if the array is
resize(a.length/2); « one-quarter full,

return item: halve its length

so, on average, each of the m
operation takes O(1) time

l

Proposition. Starting from an empty stack, any sequence of m push/pop operations takes ©(m) time.

Intuition. After array resizes to length n, at least ®(n) push/pop operations before next array resizing.



Stack resizable-array: memory usage

Proposition. A ResizableArrayStackOfStrings with n items use between ~ 8n and ~ 32n bytes of memory.
* Always between 25% and 100% full.

« ~ 8n when full. - array length = n ]
 ~ 32n when one-quarter full. [ array length = 4n ]
public class ResizableArrayStackOfStrings {

private Stringl[] a; <« 8 bytes x array length

private int n = 0;

Remark. This counts the memory for the stack itself, including the string references.

[ but not the memory for the string objects, which the client allocates }]

27



1.3 STACKS AND QUEUES |

Algorithms

» amortized analysis

https://algs4.cs.princeton.edu


https://algs4.cs.princeton.edu




Worst-case analysis

Worst-case running time. Longest running time for an individual operation.
* Gold standard in analysis of algorithms.

- applies to all inputs (of a given size)

- provides an ironclad performance guarantee
- standardizes way to compare different algorithms

* Can be unduly pessimistic.

™~

e.g., when an expensive operation is rare

operation worst

construct O(1)

stack = new ResizableArrayStackOfInts();
push O(n) for (int 1 = 0; i < n; i++) {

stack.push(i); «—__ O(n) worst case
pop On) |

resizable-array stack with n items takes ®(n) time in the worst case, not ©(n?)



Amortized analysis

Amortized analysis. Provides a worst-case running time for a sequence of operations.

* Let 7(m) denote worst-case running time of sequence of m operations. \

starting from an

Amortized cost per operation = T(m) / m. <«—— onaverage, each T Y sy u———

operation costs at most this

* Provides more robust and realistic analysis. Bob Tarjan
(1986 Turing award)

Ex. Starting from an empty stack, any sequence of m push/pop operations takes ®(m) time.

operation worst amortized
construct O(1) O(1)
stack = new ResizableArrayStackOfInts();
push O(n) [@(1)] for (int i = 0; i < n; i++) {
constant stack.push(i):
o [@) | j amortized time P DT O(n) worst case
pop (n) (1) ; O(1) amortized

resizable-array stack with n items takes ®(n) time in the worst case, not ©(n?)

31



Stacks and queuves I: poll 3

Suppose that QuickUnionPathCompressionUF has the following performance properties.

What is the worst-case running time the following code fragment?

A. O(logn)
B. O®n)

C. O(nlogn)
D. O®n?

uf = new QuickUnionPathCompressionUF(n); operation worst ZliiXelnd I
for (int 1 =0; 1 < n; 1++) {
if (uf Find(x[1]) 1= uf Find(y[i1)) construct | O(n) Ol
uf.union(x[i], y[il1);
} union O(n) O(log n)
StdOut.printin(uf.count());
find O(n) O(log n)
count O(1) O()

32



Stacks and queues I: poll 4

Python implements a 1ist as a resizable array (with the first element always at index 0).
Which of the following can you infer about the worst-case running times of various

operations, where » is the length of the list?

Python list (n = 6)

front of list ——> I have a dream today !

A. Adding an element to front of list takes ®(1) time.
B. Adding an element to back of list takes ®(1) time.
C. Replacing element i in the list with a new value takes ©(1) time.

D. None of the above.

33



Worst-case performance guarantees in Java

Java. Rarely provides worst-case performance guarantees.
* Garbage collector: automatically deallocate memory no longer in use.
* Just-in-time compiler: compile bytecode to native machine code at runtime.

* Thread scheduler: determine which thread to execute next.

Real-time Java. Provides worst-case performance guarantees. |
Real-Time Java
Programming

e Pacemakers. bl

systems with
hard deadlines

 |Industrial robots. <

 Air-traffic control.

This course. We ignore such issues in our analysis.

operations are expensive,
but run infrequently

34



Queue with two stacks

Problem. Implement a queue with two stacks so that:
¢ O(1) extra memory (besides two stacks).
« Starting from an empty queue, any sequence of m queue operations

makes ®(m) stack operations.

Applications.
* Job interview.
* Implement an immutable or persistent queue.

* Implement a queue in a purely functional programming language.

Haskell Lisp vOC—ai‘nl o

«—— amortized analysis
(worst case bound on sequence of operations)

35



1.3 STACKS AND QUEUES

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE > generlcs

https://algs4.cs.princeton.edu


https://algs4.cs.princeton.edu

Parameterized stack

We implemented: StackOfStrings.

We also want: StackOfURLs, StackOfInts, StackOfApples, StackOfOranges, ...

Solution in Java:  generics.

Guiding principle: prefer compile-time errors to run-time errors.

type argument
(use to specify type and invoke constructor)

Stack<Apple> stack = new Stack<Apple>();
Apple apple = new Apple();
stack.push(apple) :

Orange orange new Orange();
stack.push(orange); <«—— compile-time error

37



Generic stack: array implementation

The way it should be.

public class FixedCapacityStack<Item> {
private Item[] a;
private int

public FixedCapacityStack(int capacity)
({ a = new Item[capactity]; 1} ) < @#$*! generic array creation
not allowed in Java

public boolean 1sEmpty()
{ return n = 0; }

public void push(Item 1tem)
{ a[n++] = item; }

public Item pop()
{ return a[--n];

} type variable
(name Item is our convention)

stack of strings (fixed-length array) generic stack (fixed-length array) 7??

38



Generic stack: array implementation

The way it is.

stack of strings (fixed-length array)

public class FixedCapacityStack<Item> {
private Item[] a;
private 1int n = 0;

public FixedCapacityStack(int capacity)
<§ a = (Item[]) new Object[capacity]; }:><————theugbuxmt

public boolean isEmpty()
{ return n == 0; }

public void push(Item 1tem)
{ a[n++] = item; }

public Item pop()
{ return a[--n]; }

generic stack (fixed-length array)

39



Unchecked cast

~/cos226/queues> javac -Xlint:unchecked FixedCapacityStack.java
[unchecked] unchecked cast

FixedCapacityStack.java:26: warning:
a = (Item[]) new Object[capacity];

A

required: Item[]
found: Object[]

where Item 1s a type-variable:
Item extends Object declared 1n class FixedCapacityStack

1 warning

Q. Why does Java require a cast (or reflection)?

Short answer. Backward compatibility.
Need to learn about type erasure and covariant arrays.

AN NN\
A BAD

DES\GN!

S\\\\\

Long answer.

40



Stacks and queues I: poll 5

How to declare and initialize an empty stack of integers in Java?

A. Stack stackl = new Stack():

B. Stack<int> stack?2 = new Stack():

C. Stack<int> stack3 new Stack<int>():

D. None of the above.

41



Generic data types: autoboxing and unboxing

Q. What to do about primitive types?

Wrapper type.
* Each primitive type has an associated “wrapper” reference type.

 EX: Integer is wrapper type associated with int.

Autoboxing. Automatic cast from primitive type to wrapper type.

Unboxing.  Automatic cast from wrapper type to primitive type.

Stack<Integer> stack = new Stack<Integer>();
stack.push(17);
1nt x = stack.pop();

Bottom line. Client code can use generic stack with any data type.

Caveat. Performance overhead for primitive types.

primitive wrapper
int Integer

double Double

boolean Boolean
char Character

42



Stacks and queues summary

Fundamental data types.
» Value: collection of objects.

 Operations: add, remove, iterate, size, test if empty.

AN

next lecture

Stack. [LIFO] Remove the item most recently added.

Queue. [FIFO] Remove the item least recently added.

Efficient implementations.
« Resizable array.

¢ Singly linked list. «<—— next lecture



Credits

image source license
Red Back Button Adobe Stock Education License
Menu with Undo Adobe Stock Education License

Dragon Book
TigerPrint
Network Packets

Just Buffering

People Standing in Line

Stack Overflow Logo

Amortization
Best/Worst Case

Bob Tarjan

Aho. Sethi. Ullman

Auburn

H3

Red Bubble

Adobe Stock

VectorlLLogoZone

Adobe Stock

Adobe Stock

Heidelberg Laureate

Education [icense

Education [icense

Education [icense

Lecture Slides © Copyright 2025 Robert Sedgewick and Kevin Wayne


https://stock.adobe.com/images/back-red-button/87039432
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/software-menu-item-with-undo-cancel-command/134311269
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://www.amazon.com/Compilers-Principles-Techniques-Alfred-Aho/dp/0201100886
https://auburn.service-now.com/it/en/ricoh-copying-on-campus?id=kb_article_view&sysparm_article=KB0012052
https://resource.h3c.com/en/202205/15/20220515_7193926_x_Img_x_png_7_1608230_294551_0.png
https://www.redbubble.com/i/sticker/Not-Lazy-Just-Buffering-by-DJBALOGH/24853852.EJUG5
https://stock.adobe.com/images/queue-people-are-standing-in-line-vector-image-of-people-from-the-back-a-crowd-of-people/479350972
https://stock.adobe.com/enterprise-conditions#educationLicenses
http://Stack%20Overflow%20logo%20https://www.vectorlogo.zone/logos/stackoverflow/index.html
https://stock.adobe.com/images/amortization-text-on-paper-with-chart-and-keyboard-business-concept/532758432
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/hand-turns-dice-and-changes-the-expression-worst-case-to-best-case/525072085
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://www.heidelberg-laureate-forum.org/laureate/robert-endre-tarjan.html

Credits

image source license
Recycling Bin Adobe Stock Education License
OpenJDK Compiler RedHat
Spools of Thread Adobe Stock Education License
Real-Time Java Book Bruno and Bollella
Stack of Apples Adobe Stock Education License
Stack of Fruit Adobe Stock Education License
Bad Design Medium
Stack of Sweaters Adobe Stock Education License

Lecture Slides © Copyright 2025 Robert Sedgewick and Kevin Wayne


https://stock.adobe.com/images/recycling-bins-containers-with-separated-garbage-trash-cans-for-plastic-glass-paper-and-organic-segregate-waste-vector-illustration-garbage-recycling-organic-recycle-box-for-trash-material/388295015
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://developers.redhat.com/taxonomy/term/36931
https://stock.adobe.com/images/spool-of-thread-watercolor-clipart/1162713652
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://www.amazon.com/Real-Time-Java-Programming-RTS/dp/0137142986
https://stock.adobe.com/images/grune-apfel/62280281
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/colorful-fresh-fruits-totem/518287
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://medium.com/@gregx73/performance-vs-bad-design-a-no-win-battle-26ed62c1c79e
https://stock.adobe.com/images/stack-of-sweaters/28195940
https://stock.adobe.com/enterprise-conditions#educationLicenses

