
ROBERT SEDGEWICK | KEVIN WAYNE

F O U R T H E D I T I O N

Algorithms

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

Last updated on 9/9/25 9:18  AM

1.3 STACKS AND QUEUES I

‣APIs
‣ array implementations
‣ resizable arrays
‣ amortized analysis
‣ generics

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

1.3 STACKS AND QUEUES I

‣APIs
‣ array implementations
‣ resizable arrays
‣ amortized analysis
‣ genericsROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Stacks and queues

Fundamental data types.

・Value: collection of objects.

・Operations: add, remove, iterate, size, test if empty.

・Intent is clear when we add.

・Which item do we remove?
 
 
 
 
 
 
 
 
 
Stack. Remove the item most recently added.
Queue. Remove the item least recently added.

add remove

queue

F E D C B A

3

LIFO = “last in first out”

FIFO = “first in first out”

removeadd

stack

A

B

C

D

E

F

Function-call stack demo

4

public static void main(String[] args) {

 double a = Double.parseDouble(args[0]);

 double b = Double.parseDouble(args[1]);

 double c = hypotenuse(a, b);

}}

main()

variable a b c

value 3.0 4.0

public static double hypotenuse(double a, double b) {

 return Math.sqrt(square(a) + square(b));

}}

hypotenuse(3.0, 4.0)

variable a b

value 3.0 4.0

public static double square(double a) {

 return a*a;

}}

square(3.0)

variable a

value 3.0

function-call stack

Stack applications

・Rendering text and graphics: PostScript, PDF, …

・Web browser history: back button.

・Function calls: Java virtual machine, Linux kernel, ...

・Undo: text editors, photo editors, games, …

・Compilers: evaluating expressions, parsing syntax, balanced parentheses, …

・…

5

Queue applications

・Media playlists: jukebox, Spotify, Netflix, Peloton, …

・Requests on a shared resource: printer, CPU, GPU, …

・Asynchronous data transfer: file I/O, pipes, sockets, …

・Data buffers: sound card, streaming video, input devices, …

・Simulations of the real world: customer service, traffic analysis, baggage claim, …

・…

6

Data type design: API, client, and implementation

Separate client and implementation via API.  

 
 
 
 
 
 
 
 
 
Benefits.

・Design: develop and maintain reusable code.

・Performance: substitute faster implementations.
 
Ex. Stack, queue, priority queue, symbol table, set, union–find, …

7

 API: operations that characterize the behavior of a data type.

 Client: code that uses a data type through its API.

 Implementation: code that implements the API operations.

Client API Implementation

Stack API

Stack data type. Our textbook data type for stacks.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Performance goals. Every operation takes time; stack with items uses memory.Θ(1) n Θ(n)
8

poppush

 
A

 
B

 
C

 
D

 
E

 
F

public class Stack<Item> description

Stack() create an empty stack

void push(Item item) add a new item to the stack

Item pop() remove and return the item most recently added

boolean isEmpty() is the stack empty?

available with javac-algs4
and java-algs4 commands

“generic type parameter”

Algorithms
F O U R T H E D I T I O N

R O B E R T S E D G E W I C K K E V I N W A Y N E

Queue API

Queue data type. Our textbook data type for queues.  
 

 
 
 
 
 
 
 
 
 
 
 
 
Performance goals. Every operation takes time; queue with items uses memory.Θ(1) n Θ(n)

9

enqueue dequeueF E D C B AGH

public class Queue<Item> description

Queue() create an empty queue

void enqueue(Item item) add a new item to the queue

Item dequeue() remove and return the item least recently added

boolean isEmpty() is the queue empty?

available with javac-algs4
and java-algs4 commands

Algorithms
F O U R T H E D I T I O N

R O B E R T S E D G E W I C K K E V I N W A Y N E

Warmup client

Goal. Read strings from standard input and print in reverse order.

10

import edu.princeton.cs.algs4.Stack;

import edu.princeton.cs.algs4.StdIn;

import edu.princeton.cs.algs4.StdOut;

public class Reverse {

 public static void main(String[] args) {

 Stack<String> stack = new Stack<String>();

 while (!StdIn.isEmpty()) {

 String s = StdIn.readString();

 stack.push(s);

 }

 while (!stack.isEmpty()) {

 String s = stack.pop();

 StdOut.print(s + " ");

 }

 StdOut.println();

 }

}

pop all strings
and print to

standard output

read strings from
standard input and

push onto stack

declare and
create stack

“type argument”
(can be any reference type)

~/cos226/stacks> javac-algs4 Reverse.java

~/cos226/stacks> java-algs4 Reverse

I have a dream today

<Ctrl-D>

today dream a have I

access library
in algs4.jar

 (typically omitted)

1.3 STACKS AND QUEUES I

‣APIs
‣ array implementations
‣ resizable arrays
‣ amortized analysis
‣ genericsROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Stack API (warmup)

Warmup API. Stack of strings data type, with fixed maximum capacity.

12

 public class FixedCapacityStackOfStrings

FixedCapacityStackOfStrings(int capacity) create an empty stack

void push(String item) add a new string to stack

String pop()
remove and return the string
most recently added

boolean isEmpty() is the stack empty?

artificial limit
(stay tuned)

Stacks and queues I: poll 1

How to implement e!ciently a fixed-capacity stack with an array?

 

 
 
 

C. Both A and B.  

D. Neither A nor B.

13

! today dream a have I null null null null

0 1 2 3 4 5 6 7 8 9

most recently added

I have a dream today ! null null null null

0 1 2 3 4 5 6 7 8 9

least recently added

B.

A.

Fixed-capacity stack: array implementation

・Use array a[] to store n items on stack.

・Push: add new item at a[n].

・Pop: remove item from a[n-1].
 
 
 
 
 
 
 
 
 
 
Defect. Stack overflows when n exceeds capacity. [stay tuned]

I have a dream today ! null null null null

0 1 2 3 4 5 6 7 8 9

least recently added

14

a[]

n

capacity = 10

I haveI havenull null

Fixed-capacity stack: array implementation

15

public class FixedCapacityStackOfStrings {

 private String[] a;

 private int n = 0;

 public FixedCapacityStackOfStrings(int capacity) {

 a = new String[capacity];

 }

 public boolean isEmpty() {

 return n == 0;

 }

 public void push(String item) {

 a[n++] = item;

 }

 public String pop() {

 return a[--n];

 }

}

pre-decrement operator:
decrement n;
then use as index into array

post-increment operator:
use as index into array;
then increment n

Stack considerations

Underflow. Throw exception if pop() called when stack is empty.
Overflow. Use “resizable array” to avoid overflow. [next section]
Null items. For simplicity, we allow null items to be added.
 
Loitering. Holding an object reference when it is no longer needed.

16

no loitering

public String pop() {

 String item = a[n-1];

 a[n-1] = null;

 n--;

 return item;

}

loitering

public String pop() {

 return a[--n];

}

I have a dream today ! null null null null

0 1 2 3 4 5 6 7 8 9

n

Fixed-capacity queue: array implementation

Goal. Implement a queue using a fixed-capacity array so that all operations take time.Θ(1)

17

I have a dream today ! null null null null

0 1 2 3 4 5 6 7 8 9

least recently added

n

a[]

! today dream a have I null null null null

0 1 2 3 4 5 6 7 8 9

most recently added

n

a[]

dequeue()
is inefficient

enqueue()

is inefficient

Fixed-capacity queue: array implementation demo

Goal. Implement a queue using a fixed-capacity array so that all operations take time.Θ(1)

18

least recently
added

most recently
added

null null null null null null

0 1 2 3 4 5 6 7 8 9

I have a dreama[]

first last

Fixed-capacity queue: array implementation

19

public class FixedCapacityQueueOfStrings {

 private String[] a;

 private int first = 0;

 private int last = 0;

 public FixedCapacityQueueOfStrings(int capacity) {

 a = new String[capacity];

 }

 public void enqueue(String item) {

 a[last] = item;

 last++;

 if (last == a.length) last = 0;

 }

 public String dequeue() {

 first++;

 if (first == a.length) first = 0;

 return a[first];

 }

}

circular
wraparound

1.3 STACKS AND QUEUES I

‣APIs
‣ array implementations
‣ resizable arrays
‣ amortized analysis
‣ genericsROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Stacks and queues I: poll 2

How to grow and shrink the array length?  

A. Increase by before each push;  

 decrease by after each pop.  

B. Increase by in push when array becomes full;  

 decrease by in pop when array becomes 50% full.  

C. Either A or B.

D. Neither A nor B.

1

1

2 ×

2 ×

21

Stack: resizable-array implementation

Problem. Requiring client to provide maximum capacity does not implement API!
Q. How to grow and shrink the array automatically?
 
Naive approach.

・Push: increase length of array a[] by 1.

・Pop: decrease length of array a[] by 1.
 
Too expensive.

・Need to copy all items to a new array, for each push/pop.

・Array accesses to add item : 1 + 2(k − 1)

・Array accesses to add first items: n + (2 + 4 + 6 + … + 2(n − 1))
 
 
 
 
Challenge. Ensure that array resizing happens infrequently.

k
n

22

to copy k−1 elements from old array to new array
(ignoring cost to create new array)

 infeasible
for large

Θ(n2)
n

~ n2.

add items
to array

array resizing to lengths
2, 3, 4, … , n

referred to as a {resizable, dynamic, extendable} array

Stack: resizable-array implementation

Q. How to grow the array?
A. If array is full, create a new array of twice the length, and copy items.

23

public class ResizableArrayStackOfStrings {

 private String[] a;

 private int n = 0;

 public ResizableArrayStackOfStrings() {

 a = new String[1];

 }

 public void push(String item) {

 if (n == a.length) resize(2 * a.length);

 a[n++] = item;

 }

 private void resize(int capacity) {

 String[] copy = new String[capacity];

 for (int i = 0; i < n; i++)

 copy[i] = a[i];

 a = copy;

 }

}

“geometric expansion”

if the array if full,
double its length

helper method
(to resize the array)

Stack: resizable-array implementation

Q. How to grow the array?
A. If array is full, create a new array of twice the length, and copy items.
 
Cost is reasonable.

・Still need to copy all items to a new array but, now, that happens infrequently.

・Array accesses to add first items: n + (2 + 4 + 8 + 16 + … + n)

Q. Can I use a growth factor other than ?
A. Yes. Classic time–space tradeoff.

n = 2 i

α = 2

24

 feasible
for large

Θ(n)
n

~ 3 n .

array resizing to lengths
2, 4, 8, 16, …, n

add items
to array

“geometric expansion”

language data type α

Java ArrayList 1.5

C++ vector 1.5

Python list 1.125

⋮ ⋮ ⋮

Stack: resizable-array implementation

Q. How to shrink the array?
 
First try.

・Push: double length of array a[] when array is full.

・Pop: halve length of array a[] when array is one-half full.
 
Too expensive for some sequences of operations.

・Push items to make array full; then, alternate push and pop operations.

・Each alternating operation triggers an array resizing and takes time.
n = 2 i n

Θ(n)

25

push("today") I have a dream today null null null

I have a dreamfull

I have a dreampop()

I have a dream ! null null nullpush("!")

Stack: resizable-array implementation

Q. How to shrink the array?

Efficient solution.

・Push: double length of array a[] when array is full.

・Pop: halve length of array a[] when array is one-quarter full.

Proposition. Starting from an empty stack, any sequence of m push/pop operations takes time.
Intuition. After array resizes to length , at least push/pop operations before next array resizing.

Θ(m)
n Θ(n)

26

 public String pop() {

 String item = a[--n];

 a[n] = null;

 if (n > 0 && n == a.length/4)

 resize(a.length/2);

 return item;

 }

so, on average, each of the
operation takes time

m
Θ(1)

if the array is
one-quarter full,
halve its length

Stack resizable-array: memory usage

Proposition. A ResizableArrayStackOfStrings with items use between and bytes of memory.

・Always between 25% and 100% full.

・ when full. [array length =]

・ when one-quarter full. [array length =]
 
 
 
 
 
 
 
 
 
Remark. This counts the memory for the stack itself, including the string references.  
 [but not the memory for the string objects, which the client allocates]

n ∼ 8n ∼ 32n

∼ 8n n
∼ 32n 4n

27

public class ResizableArrayStackOfStrings {

 private String[] a;

 private int n = 0;

 ⋮

}

8 bytes × array length

1.3 STACKS AND QUEUES I

‣APIs
‣ array implementations
‣ resizable arrays
‣ amortized analysis
‣ genericsROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

29

Worst-case running time. Longest running time for an individual operation.

・Gold standard in analysis of algorithms.
– applies to all inputs (of a given size)
– provides an ironclad performance guarantee
– standardizes way to compare different algorithms

・Can be unduly pessimistic.

resizable-array stack with n items

operation worst

construct Θ(1)

push Θ(n)

pop Θ(n)

Worst-case analysis

30

stack = new ResizableArrayStackOfInts();

for (int i = 0; i < n; i++) {

 stack.push(i);

}

e.g., when an expensive operation is rare

 worst caseΘ(n)

takes time in the worst case, not Θ(n) Θ(n2)

Amortized analysis. Provides a worst-case running time for a sequence of operations.

・Let denote worst-case running time of sequence of operations.

・Amortized cost per operation = .

・Provides more robust and realistic analysis.
 
Ex. Starting from an empty stack, any sequence of push/pop operations takes time.

T(m) m
T(m) / m

m Θ(m)

operation worst amortized

construct Θ(1) Θ(1)

push Θ(n) Θ(1)

pop Θ(n) Θ(1)

Amortized analysis

31

resizable-array stack with n items

Bob Tarjan
(1986 Turing award)

stack = new ResizableArrayStackOfInts();

for (int i = 0; i < n; i++) {

 stack.push(i);

}

takes time in the worst case, not Θ(n) Θ(n2)

starting from an
empty data structure

constant
amortized time worst caseΘ(n)

 amortizedΘ(1)

on average, each
operation costs at most this

Stacks and queues I: poll 3

Suppose that QuickUnionPathCompressionUF has the following performance properties.

What is the worst-case running time the following code fragment?

A.

B.

C.

D.

Θ(log n)

Θ(n)

Θ(n log n)

Θ(n2)

32

operation worst amortized

construct Θ(n) Θ(n)

union Θ(n) Θ(log n)

find Θ(n) Θ(log n)

count Θ(1) Θ(1)

uf = new QuickUnionPathCompressionUF(n);

for (int i = 0; i < n; i++) {

 if (uf.find(x[i]) != uf.find(y[i]))

 uf.union(x[i], y[i]);

}

StdOut.println(uf.count());

starting from an empty data structure, any sequence of
 union, find, and count operations on n elements

takes time in the worst case
m1 m2 m3

Θ(n + m1 log n + m2 log n + m3)

meaning of amortized running time

Stacks and queues I: poll 4

Python implements a list as a resizable array (with the first element always at index 0).  
Which of the following can you infer about the worst-case running times of various

operations, where is the length of the list?

 

A. Adding an element to front of list takes time.

B. Adding an element to back of list takes time.

C. Replacing element in the list with a new value takes time.

D. None of the above.

n

Θ(1)

Θ(1)

i Θ(1)

33

Θ(1) amortized time, Θ(n) if it triggers a resizing operation

I have a dream today !

0 1 2 3 4 5 6 7

Python list (n = 6)

front of list

every call takes Θ(n) time

Worst-case performance guarantees in Java

Java. Rarely provides worst-case performance guarantees.

・Garbage collector: automatically deallocate memory no longer in use.

・Just-in-time compiler: compile bytecode to native machine code at runtime.

・Thread scheduler: determine which thread to execute next.
 
 
 
 
 
 
Real-time Java. Provides worst-case performance guarantees.

・Pacemakers.

・Industrial robots.

・Air-traffic control.
 
This course. We ignore such issues in our analysis.

34

operations are expensive,
but run infrequently

systems with
hard deadlines

Queue with two stacks

Problem. Implement a queue with two stacks so that:

・ extra memory (besides two stacks).

・Starting from an empty queue, any sequence of queue operations 
makes stack operations.

 
Applications.

・Job interview.

・Implement an immutable or persistent queue.

・Implement a queue in a purely functional programming language.

Θ(1)
m

Θ(m)

35

 Haskell Lisp

amortized analysis
(worst case bound on sequence of operations)

1.3 STACKS AND QUEUES

‣APIs
‣ array implementations
‣ resizable arrays
‣ amortized analysis
‣ genericsROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Parameterized stack

We implemented: StackOfStrings.
We also want: StackOfURLs, StackOfInts, StackOfApples, StackOfOranges, …
 
Solution in Java: generics.
Guiding principle: prefer compile-time errors to run-time errors.

 Stack<Apple> stack = new Stack<Apple>();

 Apple apple = new Apple();

 stack.push(apple);

 Orange orange = new Orange();

 stack.push(orange);

 ...

37

type argument
(use to specify type and invoke constructor)

compile-time error

public class FixedCapacityStackOfStrings {

 private String[] a;

 private int n = 0;

 public Fixed...OfStrings(int capacity)

 { a = new String[capacity]; }

 public boolean isEmpty()

 { return n == 0; }

 public void push(String item)

 { a[n++] = item; }

 public String pop()

 { return a[--n]; }

}

The way it should be.

public class FixedCapacityStackOfStrings {

 private String[] a;

 private int n = 0;

 public Fixed...OfStrings(int capacity)

 { a = new String[capacity]; }

 public boolean isEmpty()

 { return n == 0; }

 public void push(String item)

 { a[n++] = item; }

 public String pop()

 { return a[--n]; }

}

Generic stack: array implementation

generic stack (fixed-length array) ???

public class FixedCapacityStack<Item> {

 private Item[] a;

 private int n = 0;

 public FixedCapacityStack(int capacity)

 { a = new Item[capacity]; }

 public boolean isEmpty()

 { return n == 0; }

 public void push(Item item)

 { a[n++] = item; }

 public Item pop()

 { return a[--n]; }

}

38

@#$*! generic array creation
not allowed in Java

stack of strings (fixed-length array)

type variable
(name Item is our convention)

Generic stack: array implementation

The way it is.

39

public class FixedCapacityStack<Item> {

 private Item[] a;

 private int n = 0;

 public FixedCapacityStack(int capacity)

 { a = (Item[]) new Object[capacity]; }

 public boolean isEmpty()

 { return n == 0; }

 public void push(Item item)

 { a[n++] = item; }

 public Item pop()

 { return a[--n]; }

}

stack of strings (fixed-length array) generic stack (fixed-length array) ???

public class FixedCapacityStackOfStrings {

 private String[] a;

 private int n = 0;

 public Fixed...OfStrings(int capacity)

 { a = new String[capacity]; }

 public boolean isEmpty()

 { return n == 0; }

 public void push(String item)

 { a[n++] = item; }

 public String pop()

 { return a[--n]; }

}

the ugly cast

Unchecked cast

 
 
 
 
 
 
 
 
 
 
Q. Why does Java require a cast (or reflection)?
Short answer. Backward compatibility.
Long answer. Need to learn about type erasure and covariant arrays.

40

~/cos226/queues> javac -Xlint:unchecked FixedCapacityStack.java

FixedCapacityStack.java:26: warning: [unchecked] unchecked cast

 a = (Item[]) new Object[capacity];

 ^

 required: Item[]

 found: Object[]

 where Item is a type-variable:

 Item extends Object declared in class FixedCapacityStack

1 warning

Stacks and queues I: poll 5

How to declare and initialize an empty stack of integers in Java?

A. Stack stack1 = new Stack();

B. Stack<int> stack2 = new Stack();

C. Stack<int> stack3 = new Stack<int>();

D. None of the above.

41

~/cos226/stacks> javac-algs4 BadStack.java

BadStack.java:5: warning: [rawtypes] found raw type: Stack

 Stack stack1 = new Stack();

 ^

 missing type arguments for generic class Stack<Item>

 where Item is a type-variable:

 Item extends Object declared in class Stack

BadStack.java:6: error: unexpected type

 Stack<int> stack2 = new Stack();

 ^

 required: reference

 found: int

BadStack.java:7: error: unexpected type

 Stack<int> stack = new Stack<int>();

 ^

 required: reference

 found: int

...

Generic data types: autoboxing and unboxing

Q. What to do about primitive types? 

Wrapper type.

・Each primitive type has an associated “wrapper” reference type.

・Ex: Integer is wrapper type associated with int.  

Autoboxing. Automatic cast from primitive type to wrapper type.
Unboxing. Automatic cast from wrapper type to primitive type.  
 
 
 
 
 

Bottom line. Client code can use generic stack with any data type.
Caveat. Performance overhead for primitive types.

42

Stack<Integer> stack = new Stack<Integer>();

stack.push(17); // stack.push(Integer.valueOf(17));

int x = stack.pop(); // int x = stack.pop().intValue();

primitive wrapper

int Integer

double Double

boolean Boolean

char Character

Stacks and queues summary

Fundamental data types.

・Value: collection of objects.

・Operations: add, remove, iterate, size, test if empty.
 
 
Stack. [LIFO] Remove the item most recently added.
Queue. [FIFO] Remove the item least recently added.
 
 
Efficient implementations.

・Resizable array.

・Singly linked list.

43

next lecture

next lecture

Lecture Slides © Copyright 2025 Robert Sedgewick and Kevin Wayne

Credits

image source license

Red Back Button Adobe Stock Education License

Menu with Undo Adobe Stock Education License

Dragon Book Aho, Sethi, Ullman

TigerPrint Auburn

Network Packets H3C

Just Buffering Red Bubble

People Standing in Line Adobe Stock Education License

Stack Overflow Logo VectorLogoZone

Amortization Adobe Stock Education License

Best/Worst Case Adobe Stock Education License

Bob Tarjan Heidelberg Laureate

https://stock.adobe.com/images/back-red-button/87039432
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/software-menu-item-with-undo-cancel-command/134311269
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://www.amazon.com/Compilers-Principles-Techniques-Alfred-Aho/dp/0201100886
https://auburn.service-now.com/it/en/ricoh-copying-on-campus?id=kb_article_view&sysparm_article=KB0012052
https://resource.h3c.com/en/202205/15/20220515_7193926_x_Img_x_png_7_1608230_294551_0.png
https://www.redbubble.com/i/sticker/Not-Lazy-Just-Buffering-by-DJBALOGH/24853852.EJUG5
https://stock.adobe.com/images/queue-people-are-standing-in-line-vector-image-of-people-from-the-back-a-crowd-of-people/479350972
https://stock.adobe.com/enterprise-conditions#educationLicenses
http://Stack%20Overflow%20logo%20https://www.vectorlogo.zone/logos/stackoverflow/index.html
https://stock.adobe.com/images/amortization-text-on-paper-with-chart-and-keyboard-business-concept/532758432
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/hand-turns-dice-and-changes-the-expression-worst-case-to-best-case/525072085
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://www.heidelberg-laureate-forum.org/laureate/robert-endre-tarjan.html

Lecture Slides © Copyright 2025 Robert Sedgewick and Kevin Wayne

Credits

image source license

Recycling Bin Adobe Stock Education License

OpenJDK Compiler RedHat

Spools of Thread Adobe Stock Education License

Real-Time Java Book Bruno and Bollella

Stack of Apples Adobe Stock Education License

Stack of Fruit Adobe Stock Education License

Bad Design Medium

Stack of Sweaters Adobe Stock Education License

https://stock.adobe.com/images/recycling-bins-containers-with-separated-garbage-trash-cans-for-plastic-glass-paper-and-organic-segregate-waste-vector-illustration-garbage-recycling-organic-recycle-box-for-trash-material/388295015
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://developers.redhat.com/taxonomy/term/36931
https://stock.adobe.com/images/spool-of-thread-watercolor-clipart/1162713652
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://www.amazon.com/Real-Time-Java-Programming-RTS/dp/0137142986
https://stock.adobe.com/images/grune-apfel/62280281
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/colorful-fresh-fruits-totem/518287
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://medium.com/@gregx73/performance-vs-bad-design-a-no-win-battle-26ed62c1c79e
https://stock.adobe.com/images/stack-of-sweaters/28195940
https://stock.adobe.com/enterprise-conditions#educationLicenses

